Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_autocorrelation.wasp
Title produced by software(Partial) Autocorrelation Function
Date of computationTue, 20 Dec 2016 12:52:18 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/20/t1482234775pzv60mqvuqxkyfs.htm/, Retrieved Fri, 01 Nov 2024 03:37:11 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=301620, Retrieved Fri, 01 Nov 2024 03:37:11 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact100
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [(Partial) Autocorrelation Function] [(Partial) Autocor...] [2016-12-20 11:52:18] [86c9a777e8dbb7ef3face68c75fc8376] [Current]
Feedback Forum

Post a new message
Dataseries X:
2720
2790
3395
2810
3095
3205
3030
2525
2915
3155
3190
3300
3015
3045
3380
2975
3105
2965
3110
2475
2770
3590
3300
3100
3010
3060
3360
3475
3600
3460
3575
2730
3100
3845
3455
3760
3655
3755
3845
3855
3530
3985
3775
2770
3485
4175
4030
4120
3440
3910
4480
4200
4270
4115
4285
3355
4135
4585
4480
5030
3875
4370
5115
4735
4580
4805
4760
3645
4215
4750
4605
5070
4415
4520
4960
4850
4605
5120
4780
3515
4590
5200
5100
5285
4925
5330
5830
5450
3980
3980
6470
4585
5010
6295
5720
6035
5765
5930
6335
6615
6220
6815
6870
4250
5600
7020
6270
7260
6455
7040
7760
8050
6690
8490




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301620&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=301620&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301620&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Autocorrelation Function
Time lag kACF(k)T-STATP-value
1-0.34393-3.6560.000195
2-0.312146-3.31820.00061
30.2434112.58750.005468
4-0.06815-0.72440.235147
5-0.001734-0.01840.492665
60.0612930.65160.258006
7-0.080702-0.85790.196389
8-0.053872-0.57270.284003
90.2911573.0950.001241
10-0.272541-2.89720.002262
11-0.185438-1.97120.025571
120.5281215.6140
13-0.256586-2.72750.0037
14-0.134122-1.42570.07835
150.1997782.12370.017939
16-0.045034-0.47870.316532
17-0.003072-0.03270.487004
18-0.045296-0.48150.315545
190.0220710.23460.407465
20-0.021685-0.23050.409054

\begin{tabular}{lllllllll}
\hline
Autocorrelation Function \tabularnewline
Time lag k & ACF(k) & T-STAT & P-value \tabularnewline
1 & -0.34393 & -3.656 & 0.000195 \tabularnewline
2 & -0.312146 & -3.3182 & 0.00061 \tabularnewline
3 & 0.243411 & 2.5875 & 0.005468 \tabularnewline
4 & -0.06815 & -0.7244 & 0.235147 \tabularnewline
5 & -0.001734 & -0.0184 & 0.492665 \tabularnewline
6 & 0.061293 & 0.6516 & 0.258006 \tabularnewline
7 & -0.080702 & -0.8579 & 0.196389 \tabularnewline
8 & -0.053872 & -0.5727 & 0.284003 \tabularnewline
9 & 0.291157 & 3.095 & 0.001241 \tabularnewline
10 & -0.272541 & -2.8972 & 0.002262 \tabularnewline
11 & -0.185438 & -1.9712 & 0.025571 \tabularnewline
12 & 0.528121 & 5.614 & 0 \tabularnewline
13 & -0.256586 & -2.7275 & 0.0037 \tabularnewline
14 & -0.134122 & -1.4257 & 0.07835 \tabularnewline
15 & 0.199778 & 2.1237 & 0.017939 \tabularnewline
16 & -0.045034 & -0.4787 & 0.316532 \tabularnewline
17 & -0.003072 & -0.0327 & 0.487004 \tabularnewline
18 & -0.045296 & -0.4815 & 0.315545 \tabularnewline
19 & 0.022071 & 0.2346 & 0.407465 \tabularnewline
20 & -0.021685 & -0.2305 & 0.409054 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301620&T=1

[TABLE]
[ROW][C]Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]ACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]-0.34393[/C][C]-3.656[/C][C]0.000195[/C][/ROW]
[ROW][C]2[/C][C]-0.312146[/C][C]-3.3182[/C][C]0.00061[/C][/ROW]
[ROW][C]3[/C][C]0.243411[/C][C]2.5875[/C][C]0.005468[/C][/ROW]
[ROW][C]4[/C][C]-0.06815[/C][C]-0.7244[/C][C]0.235147[/C][/ROW]
[ROW][C]5[/C][C]-0.001734[/C][C]-0.0184[/C][C]0.492665[/C][/ROW]
[ROW][C]6[/C][C]0.061293[/C][C]0.6516[/C][C]0.258006[/C][/ROW]
[ROW][C]7[/C][C]-0.080702[/C][C]-0.8579[/C][C]0.196389[/C][/ROW]
[ROW][C]8[/C][C]-0.053872[/C][C]-0.5727[/C][C]0.284003[/C][/ROW]
[ROW][C]9[/C][C]0.291157[/C][C]3.095[/C][C]0.001241[/C][/ROW]
[ROW][C]10[/C][C]-0.272541[/C][C]-2.8972[/C][C]0.002262[/C][/ROW]
[ROW][C]11[/C][C]-0.185438[/C][C]-1.9712[/C][C]0.025571[/C][/ROW]
[ROW][C]12[/C][C]0.528121[/C][C]5.614[/C][C]0[/C][/ROW]
[ROW][C]13[/C][C]-0.256586[/C][C]-2.7275[/C][C]0.0037[/C][/ROW]
[ROW][C]14[/C][C]-0.134122[/C][C]-1.4257[/C][C]0.07835[/C][/ROW]
[ROW][C]15[/C][C]0.199778[/C][C]2.1237[/C][C]0.017939[/C][/ROW]
[ROW][C]16[/C][C]-0.045034[/C][C]-0.4787[/C][C]0.316532[/C][/ROW]
[ROW][C]17[/C][C]-0.003072[/C][C]-0.0327[/C][C]0.487004[/C][/ROW]
[ROW][C]18[/C][C]-0.045296[/C][C]-0.4815[/C][C]0.315545[/C][/ROW]
[ROW][C]19[/C][C]0.022071[/C][C]0.2346[/C][C]0.407465[/C][/ROW]
[ROW][C]20[/C][C]-0.021685[/C][C]-0.2305[/C][C]0.409054[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301620&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301620&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Autocorrelation Function
Time lag kACF(k)T-STATP-value
1-0.34393-3.6560.000195
2-0.312146-3.31820.00061
30.2434112.58750.005468
4-0.06815-0.72440.235147
5-0.001734-0.01840.492665
60.0612930.65160.258006
7-0.080702-0.85790.196389
8-0.053872-0.57270.284003
90.2911573.0950.001241
10-0.272541-2.89720.002262
11-0.185438-1.97120.025571
120.5281215.6140
13-0.256586-2.72750.0037
14-0.134122-1.42570.07835
150.1997782.12370.017939
16-0.045034-0.47870.316532
17-0.003072-0.03270.487004
18-0.045296-0.48150.315545
190.0220710.23460.407465
20-0.021685-0.23050.409054







Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
1-0.34393-3.6560.000195
2-0.48818-5.18940
3-0.125456-1.33360.092506
4-0.218199-2.31950.011083
5-0.050981-0.54190.294463
6-0.019702-0.20940.417242
7-0.042609-0.45290.325731
8-0.13818-1.46890.072323
90.2572652.73480.003625
10-0.114726-1.21960.112586
11-0.251374-2.67210.004326
120.263962.80590.002955
13-0.024978-0.26550.395546
140.0253340.26930.394095
150.044430.47230.318812
160.1205781.28180.101274
170.1015161.07910.141413
18-0.118904-1.2640.104422
190.115311.22580.111419
200.0276240.29360.384785

\begin{tabular}{lllllllll}
\hline
Partial Autocorrelation Function \tabularnewline
Time lag k & PACF(k) & T-STAT & P-value \tabularnewline
1 & -0.34393 & -3.656 & 0.000195 \tabularnewline
2 & -0.48818 & -5.1894 & 0 \tabularnewline
3 & -0.125456 & -1.3336 & 0.092506 \tabularnewline
4 & -0.218199 & -2.3195 & 0.011083 \tabularnewline
5 & -0.050981 & -0.5419 & 0.294463 \tabularnewline
6 & -0.019702 & -0.2094 & 0.417242 \tabularnewline
7 & -0.042609 & -0.4529 & 0.325731 \tabularnewline
8 & -0.13818 & -1.4689 & 0.072323 \tabularnewline
9 & 0.257265 & 2.7348 & 0.003625 \tabularnewline
10 & -0.114726 & -1.2196 & 0.112586 \tabularnewline
11 & -0.251374 & -2.6721 & 0.004326 \tabularnewline
12 & 0.26396 & 2.8059 & 0.002955 \tabularnewline
13 & -0.024978 & -0.2655 & 0.395546 \tabularnewline
14 & 0.025334 & 0.2693 & 0.394095 \tabularnewline
15 & 0.04443 & 0.4723 & 0.318812 \tabularnewline
16 & 0.120578 & 1.2818 & 0.101274 \tabularnewline
17 & 0.101516 & 1.0791 & 0.141413 \tabularnewline
18 & -0.118904 & -1.264 & 0.104422 \tabularnewline
19 & 0.11531 & 1.2258 & 0.111419 \tabularnewline
20 & 0.027624 & 0.2936 & 0.384785 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301620&T=2

[TABLE]
[ROW][C]Partial Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]PACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]-0.34393[/C][C]-3.656[/C][C]0.000195[/C][/ROW]
[ROW][C]2[/C][C]-0.48818[/C][C]-5.1894[/C][C]0[/C][/ROW]
[ROW][C]3[/C][C]-0.125456[/C][C]-1.3336[/C][C]0.092506[/C][/ROW]
[ROW][C]4[/C][C]-0.218199[/C][C]-2.3195[/C][C]0.011083[/C][/ROW]
[ROW][C]5[/C][C]-0.050981[/C][C]-0.5419[/C][C]0.294463[/C][/ROW]
[ROW][C]6[/C][C]-0.019702[/C][C]-0.2094[/C][C]0.417242[/C][/ROW]
[ROW][C]7[/C][C]-0.042609[/C][C]-0.4529[/C][C]0.325731[/C][/ROW]
[ROW][C]8[/C][C]-0.13818[/C][C]-1.4689[/C][C]0.072323[/C][/ROW]
[ROW][C]9[/C][C]0.257265[/C][C]2.7348[/C][C]0.003625[/C][/ROW]
[ROW][C]10[/C][C]-0.114726[/C][C]-1.2196[/C][C]0.112586[/C][/ROW]
[ROW][C]11[/C][C]-0.251374[/C][C]-2.6721[/C][C]0.004326[/C][/ROW]
[ROW][C]12[/C][C]0.26396[/C][C]2.8059[/C][C]0.002955[/C][/ROW]
[ROW][C]13[/C][C]-0.024978[/C][C]-0.2655[/C][C]0.395546[/C][/ROW]
[ROW][C]14[/C][C]0.025334[/C][C]0.2693[/C][C]0.394095[/C][/ROW]
[ROW][C]15[/C][C]0.04443[/C][C]0.4723[/C][C]0.318812[/C][/ROW]
[ROW][C]16[/C][C]0.120578[/C][C]1.2818[/C][C]0.101274[/C][/ROW]
[ROW][C]17[/C][C]0.101516[/C][C]1.0791[/C][C]0.141413[/C][/ROW]
[ROW][C]18[/C][C]-0.118904[/C][C]-1.264[/C][C]0.104422[/C][/ROW]
[ROW][C]19[/C][C]0.11531[/C][C]1.2258[/C][C]0.111419[/C][/ROW]
[ROW][C]20[/C][C]0.027624[/C][C]0.2936[/C][C]0.384785[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301620&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301620&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
1-0.34393-3.6560.000195
2-0.48818-5.18940
3-0.125456-1.33360.092506
4-0.218199-2.31950.011083
5-0.050981-0.54190.294463
6-0.019702-0.20940.417242
7-0.042609-0.45290.325731
8-0.13818-1.46890.072323
90.2572652.73480.003625
10-0.114726-1.21960.112586
11-0.251374-2.67210.004326
120.263962.80590.002955
13-0.024978-0.26550.395546
140.0253340.26930.394095
150.044430.47230.318812
160.1205781.28180.101274
170.1015161.07910.141413
18-0.118904-1.2640.104422
190.115311.22580.111419
200.0276240.29360.384785



Parameters (Session):
par1 = Default ; par2 = 1 ; par3 = 1 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ;
Parameters (R input):
par1 = Default ; par2 = 1 ; par3 = 1 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ; par8 = ;
R code (references can be found in the software module):
if (par1 == 'Default') {
par1 = 10*log10(length(x))
} else {
par1 <- as.numeric(par1)
}
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
par5 <- as.numeric(par5)
if (par6 == 'White Noise') par6 <- 'white' else par6 <- 'ma'
par7 <- as.numeric(par7)
if (par8 != '') par8 <- as.numeric(par8)
x <- na.omit(x)
ox <- x
if (par8 == '') {
if (par2 == 0) {
x <- log(x)
} else {
x <- (x ^ par2 - 1) / par2
}
} else {
x <- log(x,base=par8)
}
if (par3 > 0) x <- diff(x,lag=1,difference=par3)
if (par4 > 0) x <- diff(x,lag=par5,difference=par4)
bitmap(file='picts.png')
op <- par(mfrow=c(2,1))
plot(ox,type='l',main='Original Time Series',xlab='time',ylab='value')
if (par8=='') {
mytitle <- paste('Working Time Series (lambda=',par2,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(lambda=',par2,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
} else {
mytitle <- paste('Working Time Series (base=',par8,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(base=',par8,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
}
plot(x,type='l', main=mytitle,xlab='time',ylab='value')
par(op)
dev.off()
bitmap(file='pic1.png')
racf <- acf(x, par1, main='Autocorrelation', xlab='time lag', ylab='ACF', ci.type=par6, ci=par7, sub=mysub)
dev.off()
bitmap(file='pic2.png')
rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF',sub=mysub)
dev.off()
(myacf <- c(racf$acf))
(mypacf <- c(rpacf$acf))
lengthx <- length(x)
sqrtn <- sqrt(lengthx)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'ACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 2:(par1+1)) {
a<-table.row.start(a)
a<-table.element(a,i-1,header=TRUE)
a<-table.element(a,round(myacf[i],6))
mytstat <- myacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Partial Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'PACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:par1) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,round(mypacf[i],6))
mytstat <- mypacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')