Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationTue, 20 Dec 2016 12:23:57 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/20/t1482233056d9e76omcab0n0p7.htm/, Retrieved Fri, 01 Nov 2024 03:48:54 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=301610, Retrieved Fri, 01 Nov 2024 03:48:54 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywordsstap 2
Estimated Impact116
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [MR optimalisatie] [2016-12-20 11:23:57] [16e0888ced5f28ae20ce1ff74f042113] [Current]
Feedback Forum

Post a new message
Dataseries X:
4	3	3	3	22	1	11
5	4	4	3	24	2	11
4	5	5	3	21	2	15
4	4	4	3	21	2	15
4	4	4	4	24	1	13
5	3	5	3	20	2	14
5	3	5	5	22	2	13
4	4	5	3	20	2	15
4	4	5	4	19	1	14
5	4	5	3	23	1	15
5	4	5	3	21	1	10
4	4	4	3	19	1	11
4	4	4	4	19	1	16
4	3	4	3	21	1	17
4	4	4	4	21	1	14
5	4	5	3	22	2	13
4	4	4	4	22	1	10
3	4	4	4	21	2	13
4	4	5	4	21	2	17
5	4	4	3	21	2	18
4	4	4	3	20	1	17
5	4	4	3	22	2	11
4	4	4	3	22	2	15
4	4	5	4	24	1	12
3	3	5	3	21	1	15
4	4	4	4	19	1	15
4	4	4	3	19	1	12
4	4	5	3	23	1	19
4	4	5	3	21	1	13
3	4	3	3	21	1	15
4	3	5	3	19	2	13
5	4	4	4	21	1	10
4	4	5	2	19	1	14
4	2	4	3	21	2	12
5	4	5	3	21	1	15
4	4	4	3	23	1	13
3	3	4	4	19	2	18
2	4	4	4	19	1	15
5	4	5	4	19	1	11
4	4	4	3	18	2	14
5	4	5	3	22	2	11
4	3	3	3	18	2	14
4	4	5	3	22	2	9
4	4	4	3	18	2	13
3	4	5	3	22	2	13
4	4	5	3	22	2	12
4	4	4	3	19	2	17
3	4	3	3	22	2	16
3	3	3	3	25	1	15
5	4	5	3	19	2	16
5	5	5	3	19	1	16
5	5	4	4	19	2	13
2	3	3	3	19	2	13
3	4	4	3	21	1	12
2	4	4	3	21	2	11
4	4	4	3	20	1	13
5	5	4	3	19	1	15
4	4	4	4	19	2	13
4	4	4	3	22	1	14
5	4	5	3	26	2	13
5	4	4	3	19	2	15
4	5	4	3	21	2	14
5	4	4	3	21	2	14
4	4	4	3	20	1	13
4	2	4	2	23	2	11
5	4	5	3	22	1	14
3	4	4	3	22	2	17
2	4	4	4	22	1	15
5	4	4	3	21	2	15
4	4	4	3	21	2	13
4	4	4	3	22	2	12
4	4	3	3	23	1	14
3	3	4	3	18	2	11
5	5	4	4	24	1	14
4	4	4	3	22	2	18
5	3	5	3	21	1	15
3	4	4	3	21	2	18
2	4	4	5	21	1	16
5	4	5	3	23	2	12
4	4	5	3	21	2	14
1	3	3	3	23	1	14
4	4	5	3	21	1	14
5	4	4	4	19	1	14
4	4	5	4	21	2	13
5	5	5	5	21	2	12
4	4	5	4	21	2	13
5	4	5	4	23	2	15
4	4	4	3	23	2	13
5	4	4	4	20	1	14
5	4	2	3	20	2	15
4	4	4	3	19	1	13
4	5	5	3	23	1	14
4	4	5	3	22	1	17
4	5	5	3	19	1	15
4	4	4	3	23	2	13
4	4	4	4	22	2	14
4	5	4	5	22	2	17
5	4	5	4	21	1	8
5	4	4	3	21	2	15
4	4	4	4	21	2	10
4	4	5	4	21	1	15
4	4	4	3	22	1	15
2	4	4	3	25	2	14
4	4	4	3	21	2	15
4	4	5	4	23	2	18
4	4	4	4	19	2	14
4	4	5	3	22	1	19
4	4	4	3	20	1	16
4	4	4	4	21	1	17
4	4	4	4	25	2	18
4	4	3	3	21	2	13
4	4	4	3	19	2	10
3	3	3	3	23	1	14
5	4	5	5	22	1	13
4	4	4	4	21	2	12
5	4	4	3	24	1	13
4	4	5	4	21	1	12
5	4	4	3	19	2	13
3	4	4	3	18	1	16
4	4	4	3	19	1	12
3	4	4	3	20	1	14
4	4	4	4	19	2	17
4	4	4	3	22	2	14
4	4	5	4	21	2	12
4	4	4	3	22	2	14
5	4	4	3	24	2	17
4	4	5	3	28	1	13
4	4	4	3	19	1	11
4	4	4	3	18	2	14
2	3	3	3	23	2	11
4	4	4	4	19	2	17
4	5	4	5	23	1	15
3	3	4	3	19	2	10
2	3	3	3	22	1	15
4	4	4	4	21	1	16
4	4	5	5	19	1	17
3	3	3	3	22	1	15
4	4	4	3	21	2	12
5	5	5	4	23	1	15
4	5	5	3	22	1	10
3	3	4	3	19	1	13
3	4	4	3	19	1	17
4	4	4	4	21	2	17
3	4	3	3	22	1	16
4	5	5	3	21	2	15
2	4	4	4	20	2	16
5	5	5	4	23	2	16
4	3	4	3	22	2	15
4	4	4	4	23	1	16
3	3	3	3	22	1	14
4	4	4	4	21	1	17
5	4	4	3	20	1	14
4	4	4	3	18	2	12
2	4	3	3	18	2	15
4	4	4	3	20	2	14
5	4	5	3	19	2	15
4	4	3	3	21	1	14
4	4	4	3	24	2	13
5	4	5	4	19	1	16
4	4	4	3	20	2	13
5	5	5	3	19	1	14
3	4	4	4	23	1	13
4	4	4	3	22	1	13
4	4	4	4	21	1	15
3	3	4	3	24	1	13
4	4	4	4	21	2	14
4	4	3	3	21	2	13
3	4	4	5	22	1	12




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time9 seconds
R ServerBig Analytics Cloud Computing Center
R Framework error message
The field 'Names of X columns' contains a hard return which cannot be interpreted.
Please, resubmit your request without hard returns in the 'Names of X columns'.

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time9 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
R Framework error message & 
The field 'Names of X columns' contains a hard return which cannot be interpreted.
Please, resubmit your request without hard returns in the 'Names of X columns'.
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=301610&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]9 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [ROW]R Framework error message[/C][C]
The field 'Names of X columns' contains a hard return which cannot be interpreted.
Please, resubmit your request without hard returns in the 'Names of X columns'.
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=301610&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301610&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time9 seconds
R ServerBig Analytics Cloud Computing Center
R Framework error message
The field 'Names of X columns' contains a hard return which cannot be interpreted.
Please, resubmit your request without hard returns in the 'Names of X columns'.







Multiple Linear Regression - Estimated Regression Equation
SOMIVBH [t] = + 13.0556 -0.268408TVDC1[t] + 0.571933TVDC2[t] -0.128446TVDC3[t] + 0.275372TVDC4[t] -0.0228469`ALG2(leeftijd)`[t] -0.0902762`ALG4(geslacht)`[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
SOMIVBH
[t] =  +  13.0556 -0.268408TVDC1[t] +  0.571933TVDC2[t] -0.128446TVDC3[t] +  0.275372TVDC4[t] -0.0228469`ALG2(leeftijd)`[t] -0.0902762`ALG4(geslacht)`[t]  + e[t] \tabularnewline
 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301610&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]SOMIVBH
[t] =  +  13.0556 -0.268408TVDC1[t] +  0.571933TVDC2[t] -0.128446TVDC3[t] +  0.275372TVDC4[t] -0.0228469`ALG2(leeftijd)`[t] -0.0902762`ALG4(geslacht)`[t]  + e[t][/C][/ROW]
[ROW][C][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301610&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301610&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
SOMIVBH [t] = + 13.0556 -0.268408TVDC1[t] + 0.571933TVDC2[t] -0.128446TVDC3[t] + 0.275372TVDC4[t] -0.0228469`ALG2(leeftijd)`[t] -0.0902762`ALG4(geslacht)`[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+13.06 2.546+5.1270e+00 8.357e-07 4.178e-07
TVDC1-0.2684 0.2264-1.1860e+00 0.2375 0.1187
TVDC2+0.5719 0.3438+1.6640e+00 0.09813 0.04906
TVDC3-0.1285 0.2897-4.4340e-01 0.6581 0.329
TVDC4+0.2754 0.2852+9.6560e-01 0.3357 0.1678
`ALG2(leeftijd)`-0.02285 0.09139-2.5000e-01 0.8029 0.4015
`ALG4(geslacht)`-0.09028 0.3262-2.7670e-01 0.7824 0.3912

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & +13.06 &  2.546 & +5.1270e+00 &  8.357e-07 &  4.178e-07 \tabularnewline
TVDC1 & -0.2684 &  0.2264 & -1.1860e+00 &  0.2375 &  0.1187 \tabularnewline
TVDC2 & +0.5719 &  0.3438 & +1.6640e+00 &  0.09813 &  0.04906 \tabularnewline
TVDC3 & -0.1285 &  0.2897 & -4.4340e-01 &  0.6581 &  0.329 \tabularnewline
TVDC4 & +0.2754 &  0.2852 & +9.6560e-01 &  0.3357 &  0.1678 \tabularnewline
`ALG2(leeftijd)` & -0.02285 &  0.09139 & -2.5000e-01 &  0.8029 &  0.4015 \tabularnewline
`ALG4(geslacht)` & -0.09028 &  0.3262 & -2.7670e-01 &  0.7824 &  0.3912 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301610&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]+13.06[/C][C] 2.546[/C][C]+5.1270e+00[/C][C] 8.357e-07[/C][C] 4.178e-07[/C][/ROW]
[ROW][C]TVDC1[/C][C]-0.2684[/C][C] 0.2264[/C][C]-1.1860e+00[/C][C] 0.2375[/C][C] 0.1187[/C][/ROW]
[ROW][C]TVDC2[/C][C]+0.5719[/C][C] 0.3438[/C][C]+1.6640e+00[/C][C] 0.09813[/C][C] 0.04906[/C][/ROW]
[ROW][C]TVDC3[/C][C]-0.1285[/C][C] 0.2897[/C][C]-4.4340e-01[/C][C] 0.6581[/C][C] 0.329[/C][/ROW]
[ROW][C]TVDC4[/C][C]+0.2754[/C][C] 0.2852[/C][C]+9.6560e-01[/C][C] 0.3357[/C][C] 0.1678[/C][/ROW]
[ROW][C]`ALG2(leeftijd)`[/C][C]-0.02285[/C][C] 0.09139[/C][C]-2.5000e-01[/C][C] 0.8029[/C][C] 0.4015[/C][/ROW]
[ROW][C]`ALG4(geslacht)`[/C][C]-0.09028[/C][C] 0.3262[/C][C]-2.7670e-01[/C][C] 0.7824[/C][C] 0.3912[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301610&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301610&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+13.06 2.546+5.1270e+00 8.357e-07 4.178e-07
TVDC1-0.2684 0.2264-1.1860e+00 0.2375 0.1187
TVDC2+0.5719 0.3438+1.6640e+00 0.09813 0.04906
TVDC3-0.1285 0.2897-4.4340e-01 0.6581 0.329
TVDC4+0.2754 0.2852+9.6560e-01 0.3357 0.1678
`ALG2(leeftijd)`-0.02285 0.09139-2.5000e-01 0.8029 0.4015
`ALG4(geslacht)`-0.09028 0.3262-2.7670e-01 0.7824 0.3912







Multiple Linear Regression - Regression Statistics
Multiple R 0.1861
R-squared 0.03465
Adjusted R-squared-0.001328
F-TEST (value) 0.9631
F-TEST (DF numerator)6
F-TEST (DF denominator)161
p-value 0.4521
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 2.092
Sum Squared Residuals 704.7

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R &  0.1861 \tabularnewline
R-squared &  0.03465 \tabularnewline
Adjusted R-squared & -0.001328 \tabularnewline
F-TEST (value) &  0.9631 \tabularnewline
F-TEST (DF numerator) & 6 \tabularnewline
F-TEST (DF denominator) & 161 \tabularnewline
p-value &  0.4521 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation &  2.092 \tabularnewline
Sum Squared Residuals &  704.7 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301610&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C] 0.1861[/C][/ROW]
[ROW][C]R-squared[/C][C] 0.03465[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]-0.001328[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C] 0.9631[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]6[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]161[/C][/ROW]
[ROW][C]p-value[/C][C] 0.4521[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C] 2.092[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C] 704.7[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301610&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301610&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R 0.1861
R-squared 0.03465
Adjusted R-squared-0.001328
F-TEST (value) 0.9631
F-TEST (DF numerator)6
F-TEST (DF denominator)161
p-value 0.4521
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 2.092
Sum Squared Residuals 704.7







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 11 13.55-2.546
2 11 13.58-2.585
3 15 14.37 0.6349
4 15 13.92 1.078
5 13 14.22-1.219
6 14 12.98 1.024
7 13 13.48-0.4808
8 15 13.82 1.184
9 14 14.2-0.2045
10 15 13.57 1.431
11 10 13.62-3.615
12 11 14.06-3.058
13 16 14.33 1.667
14 17 13.44 3.56
15 14 14.29-0.2873
16 13 13.5-0.5019
17 10 14.26-4.264
18 13 14.47-1.465
19 17 14.07 2.931
20 18 13.65 4.347
21 17 14.03 2.965
22 11 13.63-2.63
23 15 13.9 1.101
24 12 14.09-2.09
25 15 13.58 1.42
26 15 14.33 0.667
27 12 14.06-2.058
28 19 13.84 5.162
29 13 13.88-0.8835
30 15 14.41 0.5912
31 13 13.27-0.267
32 10 14.02-4.019
33 14 13.65 0.3462
34 12 12.78-0.7778
35 15 13.62 1.385
36 13 13.97-0.9662
37 18 13.94 4.061
38 15 14.87 0.1302
39 11 13.94-2.936
40 14 13.99 0.009812
41 11 13.5-2.502
42 14 13.55 0.4533
43 9 13.77-4.77
44 13 13.99-0.9902
45 13 14.04-1.039
46 12 13.77-1.77
47 17 13.97 3.033
48 16 14.3 1.704
49 15 13.75 1.255
50 16 13.57 2.43
51 16 14.23 1.767
52 13 14.55-1.546
53 13 14.06-1.061
54 12 14.28-2.28
55 11 14.46-3.458
56 13 14.03-1.035
57 15 14.36 0.6389
58 13 14.24-1.243
59 14 13.99 0.01092
60 13 13.41-0.4106
61 15 13.7 1.301
62 14 14.49-0.4936
63 14 13.65 0.3468
64 13 14.03-1.035
65 11 12.46-1.457
66 14 13.59 0.4078
67 17 14.17 2.833
68 15 14.8 0.1987
69 15 13.65 1.347
70 13 13.92-0.9216
71 12 13.9-1.899
72 14 14.09-0.09468
73 11 13.69-2.687
74 14 14.52-0.5223
75 18 13.9 4.101
76 15 13.04 1.957
77 18 14.19 3.81
78 16 15.1 0.9005
79 12 13.48-1.479
80 14 13.79 0.2068
81 14 14.33-0.328
82 14 13.88 0.1165
83 14 14.06-0.06458
84 13 14.07-1.069
85 12 14.65-2.647
86 13 14.07-1.069
87 15 13.75 1.246
88 13 13.88-0.876
89 14 14.04-0.04173
90 15 13.93 1.067
91 13 14.06-1.058
92 14 14.41-0.4097
93 17 13.86 3.139
94 15 14.5 0.4989
95 13 13.88-0.876
96 14 14.17-0.1742
97 17 15.02 1.979
98 8 13.89-5.89
99 15 13.65 1.347
100 10 14.2-4.197
101 15 14.16 0.8411
102 15 13.99 1.011
103 14 14.37-0.3671
104 15 13.92 1.078
105 18 14.02 3.977
106 14 14.24-0.2427
107 19 13.86 5.139
108 16 14.03 1.965
109 17 14.29 2.713
110 18 14.11 3.894
111 13 14.05-1.05
112 10 13.97-3.967
113 14 13.79 0.2088
114 13 14.14-1.143
115 12 14.2-2.197
116 13 13.68-0.675
117 12 14.16-2.159
118 13 13.7-0.6989
119 16 14.35 1.651
120 12 14.06-2.058
121 14 14.3-0.3032
122 17 14.24 2.757
123 14 13.9 0.1012
124 12 14.07-2.069
125 14 13.9 0.1012
126 17 13.58 3.415
127 13 13.72-0.7235
128 11 14.06-3.058
129 14 13.99 0.009812
130 11 13.97-2.969
131 17 14.24 2.757
132 15 15.09-0.08891
133 10 13.66-3.664
134 15 14.08 0.9176
135 16 14.29 1.713
136 17 14.48 2.52
137 15 13.81 1.186
138 12 13.92-1.922
139 15 14.42 0.5833
140 10 14.43-4.433
141 13 13.75-0.7541
142 17 14.33 2.674
143 17 14.2 2.803
144 16 14.39 1.614
145 15 14.37 0.6349
146 16 14.76 1.243
147 16 14.33 1.674
148 15 13.33 1.673
149 16 14.24 1.758
150 14 13.81 0.186
151 17 14.29 2.713
152 14 13.77 0.2336
153 12 13.99-1.99
154 15 14.66 0.3445
155 14 13.94 0.05551
156 15 13.57 1.43
157 14 14.14-0.1404
158 13 13.85-0.8531
159 16 13.94 2.064
160 13 13.94-0.9445
161 14 14.23-0.2327
162 13 14.51-1.51
163 13 13.99-0.9891
164 15 14.29 0.7127
165 13 13.64-0.6399
166 14 14.2-0.197
167 13 14.05-1.05
168 12 14.81-2.808

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 &  11 &  13.55 & -2.546 \tabularnewline
2 &  11 &  13.58 & -2.585 \tabularnewline
3 &  15 &  14.37 &  0.6349 \tabularnewline
4 &  15 &  13.92 &  1.078 \tabularnewline
5 &  13 &  14.22 & -1.219 \tabularnewline
6 &  14 &  12.98 &  1.024 \tabularnewline
7 &  13 &  13.48 & -0.4808 \tabularnewline
8 &  15 &  13.82 &  1.184 \tabularnewline
9 &  14 &  14.2 & -0.2045 \tabularnewline
10 &  15 &  13.57 &  1.431 \tabularnewline
11 &  10 &  13.62 & -3.615 \tabularnewline
12 &  11 &  14.06 & -3.058 \tabularnewline
13 &  16 &  14.33 &  1.667 \tabularnewline
14 &  17 &  13.44 &  3.56 \tabularnewline
15 &  14 &  14.29 & -0.2873 \tabularnewline
16 &  13 &  13.5 & -0.5019 \tabularnewline
17 &  10 &  14.26 & -4.264 \tabularnewline
18 &  13 &  14.47 & -1.465 \tabularnewline
19 &  17 &  14.07 &  2.931 \tabularnewline
20 &  18 &  13.65 &  4.347 \tabularnewline
21 &  17 &  14.03 &  2.965 \tabularnewline
22 &  11 &  13.63 & -2.63 \tabularnewline
23 &  15 &  13.9 &  1.101 \tabularnewline
24 &  12 &  14.09 & -2.09 \tabularnewline
25 &  15 &  13.58 &  1.42 \tabularnewline
26 &  15 &  14.33 &  0.667 \tabularnewline
27 &  12 &  14.06 & -2.058 \tabularnewline
28 &  19 &  13.84 &  5.162 \tabularnewline
29 &  13 &  13.88 & -0.8835 \tabularnewline
30 &  15 &  14.41 &  0.5912 \tabularnewline
31 &  13 &  13.27 & -0.267 \tabularnewline
32 &  10 &  14.02 & -4.019 \tabularnewline
33 &  14 &  13.65 &  0.3462 \tabularnewline
34 &  12 &  12.78 & -0.7778 \tabularnewline
35 &  15 &  13.62 &  1.385 \tabularnewline
36 &  13 &  13.97 & -0.9662 \tabularnewline
37 &  18 &  13.94 &  4.061 \tabularnewline
38 &  15 &  14.87 &  0.1302 \tabularnewline
39 &  11 &  13.94 & -2.936 \tabularnewline
40 &  14 &  13.99 &  0.009812 \tabularnewline
41 &  11 &  13.5 & -2.502 \tabularnewline
42 &  14 &  13.55 &  0.4533 \tabularnewline
43 &  9 &  13.77 & -4.77 \tabularnewline
44 &  13 &  13.99 & -0.9902 \tabularnewline
45 &  13 &  14.04 & -1.039 \tabularnewline
46 &  12 &  13.77 & -1.77 \tabularnewline
47 &  17 &  13.97 &  3.033 \tabularnewline
48 &  16 &  14.3 &  1.704 \tabularnewline
49 &  15 &  13.75 &  1.255 \tabularnewline
50 &  16 &  13.57 &  2.43 \tabularnewline
51 &  16 &  14.23 &  1.767 \tabularnewline
52 &  13 &  14.55 & -1.546 \tabularnewline
53 &  13 &  14.06 & -1.061 \tabularnewline
54 &  12 &  14.28 & -2.28 \tabularnewline
55 &  11 &  14.46 & -3.458 \tabularnewline
56 &  13 &  14.03 & -1.035 \tabularnewline
57 &  15 &  14.36 &  0.6389 \tabularnewline
58 &  13 &  14.24 & -1.243 \tabularnewline
59 &  14 &  13.99 &  0.01092 \tabularnewline
60 &  13 &  13.41 & -0.4106 \tabularnewline
61 &  15 &  13.7 &  1.301 \tabularnewline
62 &  14 &  14.49 & -0.4936 \tabularnewline
63 &  14 &  13.65 &  0.3468 \tabularnewline
64 &  13 &  14.03 & -1.035 \tabularnewline
65 &  11 &  12.46 & -1.457 \tabularnewline
66 &  14 &  13.59 &  0.4078 \tabularnewline
67 &  17 &  14.17 &  2.833 \tabularnewline
68 &  15 &  14.8 &  0.1987 \tabularnewline
69 &  15 &  13.65 &  1.347 \tabularnewline
70 &  13 &  13.92 & -0.9216 \tabularnewline
71 &  12 &  13.9 & -1.899 \tabularnewline
72 &  14 &  14.09 & -0.09468 \tabularnewline
73 &  11 &  13.69 & -2.687 \tabularnewline
74 &  14 &  14.52 & -0.5223 \tabularnewline
75 &  18 &  13.9 &  4.101 \tabularnewline
76 &  15 &  13.04 &  1.957 \tabularnewline
77 &  18 &  14.19 &  3.81 \tabularnewline
78 &  16 &  15.1 &  0.9005 \tabularnewline
79 &  12 &  13.48 & -1.479 \tabularnewline
80 &  14 &  13.79 &  0.2068 \tabularnewline
81 &  14 &  14.33 & -0.328 \tabularnewline
82 &  14 &  13.88 &  0.1165 \tabularnewline
83 &  14 &  14.06 & -0.06458 \tabularnewline
84 &  13 &  14.07 & -1.069 \tabularnewline
85 &  12 &  14.65 & -2.647 \tabularnewline
86 &  13 &  14.07 & -1.069 \tabularnewline
87 &  15 &  13.75 &  1.246 \tabularnewline
88 &  13 &  13.88 & -0.876 \tabularnewline
89 &  14 &  14.04 & -0.04173 \tabularnewline
90 &  15 &  13.93 &  1.067 \tabularnewline
91 &  13 &  14.06 & -1.058 \tabularnewline
92 &  14 &  14.41 & -0.4097 \tabularnewline
93 &  17 &  13.86 &  3.139 \tabularnewline
94 &  15 &  14.5 &  0.4989 \tabularnewline
95 &  13 &  13.88 & -0.876 \tabularnewline
96 &  14 &  14.17 & -0.1742 \tabularnewline
97 &  17 &  15.02 &  1.979 \tabularnewline
98 &  8 &  13.89 & -5.89 \tabularnewline
99 &  15 &  13.65 &  1.347 \tabularnewline
100 &  10 &  14.2 & -4.197 \tabularnewline
101 &  15 &  14.16 &  0.8411 \tabularnewline
102 &  15 &  13.99 &  1.011 \tabularnewline
103 &  14 &  14.37 & -0.3671 \tabularnewline
104 &  15 &  13.92 &  1.078 \tabularnewline
105 &  18 &  14.02 &  3.977 \tabularnewline
106 &  14 &  14.24 & -0.2427 \tabularnewline
107 &  19 &  13.86 &  5.139 \tabularnewline
108 &  16 &  14.03 &  1.965 \tabularnewline
109 &  17 &  14.29 &  2.713 \tabularnewline
110 &  18 &  14.11 &  3.894 \tabularnewline
111 &  13 &  14.05 & -1.05 \tabularnewline
112 &  10 &  13.97 & -3.967 \tabularnewline
113 &  14 &  13.79 &  0.2088 \tabularnewline
114 &  13 &  14.14 & -1.143 \tabularnewline
115 &  12 &  14.2 & -2.197 \tabularnewline
116 &  13 &  13.68 & -0.675 \tabularnewline
117 &  12 &  14.16 & -2.159 \tabularnewline
118 &  13 &  13.7 & -0.6989 \tabularnewline
119 &  16 &  14.35 &  1.651 \tabularnewline
120 &  12 &  14.06 & -2.058 \tabularnewline
121 &  14 &  14.3 & -0.3032 \tabularnewline
122 &  17 &  14.24 &  2.757 \tabularnewline
123 &  14 &  13.9 &  0.1012 \tabularnewline
124 &  12 &  14.07 & -2.069 \tabularnewline
125 &  14 &  13.9 &  0.1012 \tabularnewline
126 &  17 &  13.58 &  3.415 \tabularnewline
127 &  13 &  13.72 & -0.7235 \tabularnewline
128 &  11 &  14.06 & -3.058 \tabularnewline
129 &  14 &  13.99 &  0.009812 \tabularnewline
130 &  11 &  13.97 & -2.969 \tabularnewline
131 &  17 &  14.24 &  2.757 \tabularnewline
132 &  15 &  15.09 & -0.08891 \tabularnewline
133 &  10 &  13.66 & -3.664 \tabularnewline
134 &  15 &  14.08 &  0.9176 \tabularnewline
135 &  16 &  14.29 &  1.713 \tabularnewline
136 &  17 &  14.48 &  2.52 \tabularnewline
137 &  15 &  13.81 &  1.186 \tabularnewline
138 &  12 &  13.92 & -1.922 \tabularnewline
139 &  15 &  14.42 &  0.5833 \tabularnewline
140 &  10 &  14.43 & -4.433 \tabularnewline
141 &  13 &  13.75 & -0.7541 \tabularnewline
142 &  17 &  14.33 &  2.674 \tabularnewline
143 &  17 &  14.2 &  2.803 \tabularnewline
144 &  16 &  14.39 &  1.614 \tabularnewline
145 &  15 &  14.37 &  0.6349 \tabularnewline
146 &  16 &  14.76 &  1.243 \tabularnewline
147 &  16 &  14.33 &  1.674 \tabularnewline
148 &  15 &  13.33 &  1.673 \tabularnewline
149 &  16 &  14.24 &  1.758 \tabularnewline
150 &  14 &  13.81 &  0.186 \tabularnewline
151 &  17 &  14.29 &  2.713 \tabularnewline
152 &  14 &  13.77 &  0.2336 \tabularnewline
153 &  12 &  13.99 & -1.99 \tabularnewline
154 &  15 &  14.66 &  0.3445 \tabularnewline
155 &  14 &  13.94 &  0.05551 \tabularnewline
156 &  15 &  13.57 &  1.43 \tabularnewline
157 &  14 &  14.14 & -0.1404 \tabularnewline
158 &  13 &  13.85 & -0.8531 \tabularnewline
159 &  16 &  13.94 &  2.064 \tabularnewline
160 &  13 &  13.94 & -0.9445 \tabularnewline
161 &  14 &  14.23 & -0.2327 \tabularnewline
162 &  13 &  14.51 & -1.51 \tabularnewline
163 &  13 &  13.99 & -0.9891 \tabularnewline
164 &  15 &  14.29 &  0.7127 \tabularnewline
165 &  13 &  13.64 & -0.6399 \tabularnewline
166 &  14 &  14.2 & -0.197 \tabularnewline
167 &  13 &  14.05 & -1.05 \tabularnewline
168 &  12 &  14.81 & -2.808 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301610&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C] 11[/C][C] 13.55[/C][C]-2.546[/C][/ROW]
[ROW][C]2[/C][C] 11[/C][C] 13.58[/C][C]-2.585[/C][/ROW]
[ROW][C]3[/C][C] 15[/C][C] 14.37[/C][C] 0.6349[/C][/ROW]
[ROW][C]4[/C][C] 15[/C][C] 13.92[/C][C] 1.078[/C][/ROW]
[ROW][C]5[/C][C] 13[/C][C] 14.22[/C][C]-1.219[/C][/ROW]
[ROW][C]6[/C][C] 14[/C][C] 12.98[/C][C] 1.024[/C][/ROW]
[ROW][C]7[/C][C] 13[/C][C] 13.48[/C][C]-0.4808[/C][/ROW]
[ROW][C]8[/C][C] 15[/C][C] 13.82[/C][C] 1.184[/C][/ROW]
[ROW][C]9[/C][C] 14[/C][C] 14.2[/C][C]-0.2045[/C][/ROW]
[ROW][C]10[/C][C] 15[/C][C] 13.57[/C][C] 1.431[/C][/ROW]
[ROW][C]11[/C][C] 10[/C][C] 13.62[/C][C]-3.615[/C][/ROW]
[ROW][C]12[/C][C] 11[/C][C] 14.06[/C][C]-3.058[/C][/ROW]
[ROW][C]13[/C][C] 16[/C][C] 14.33[/C][C] 1.667[/C][/ROW]
[ROW][C]14[/C][C] 17[/C][C] 13.44[/C][C] 3.56[/C][/ROW]
[ROW][C]15[/C][C] 14[/C][C] 14.29[/C][C]-0.2873[/C][/ROW]
[ROW][C]16[/C][C] 13[/C][C] 13.5[/C][C]-0.5019[/C][/ROW]
[ROW][C]17[/C][C] 10[/C][C] 14.26[/C][C]-4.264[/C][/ROW]
[ROW][C]18[/C][C] 13[/C][C] 14.47[/C][C]-1.465[/C][/ROW]
[ROW][C]19[/C][C] 17[/C][C] 14.07[/C][C] 2.931[/C][/ROW]
[ROW][C]20[/C][C] 18[/C][C] 13.65[/C][C] 4.347[/C][/ROW]
[ROW][C]21[/C][C] 17[/C][C] 14.03[/C][C] 2.965[/C][/ROW]
[ROW][C]22[/C][C] 11[/C][C] 13.63[/C][C]-2.63[/C][/ROW]
[ROW][C]23[/C][C] 15[/C][C] 13.9[/C][C] 1.101[/C][/ROW]
[ROW][C]24[/C][C] 12[/C][C] 14.09[/C][C]-2.09[/C][/ROW]
[ROW][C]25[/C][C] 15[/C][C] 13.58[/C][C] 1.42[/C][/ROW]
[ROW][C]26[/C][C] 15[/C][C] 14.33[/C][C] 0.667[/C][/ROW]
[ROW][C]27[/C][C] 12[/C][C] 14.06[/C][C]-2.058[/C][/ROW]
[ROW][C]28[/C][C] 19[/C][C] 13.84[/C][C] 5.162[/C][/ROW]
[ROW][C]29[/C][C] 13[/C][C] 13.88[/C][C]-0.8835[/C][/ROW]
[ROW][C]30[/C][C] 15[/C][C] 14.41[/C][C] 0.5912[/C][/ROW]
[ROW][C]31[/C][C] 13[/C][C] 13.27[/C][C]-0.267[/C][/ROW]
[ROW][C]32[/C][C] 10[/C][C] 14.02[/C][C]-4.019[/C][/ROW]
[ROW][C]33[/C][C] 14[/C][C] 13.65[/C][C] 0.3462[/C][/ROW]
[ROW][C]34[/C][C] 12[/C][C] 12.78[/C][C]-0.7778[/C][/ROW]
[ROW][C]35[/C][C] 15[/C][C] 13.62[/C][C] 1.385[/C][/ROW]
[ROW][C]36[/C][C] 13[/C][C] 13.97[/C][C]-0.9662[/C][/ROW]
[ROW][C]37[/C][C] 18[/C][C] 13.94[/C][C] 4.061[/C][/ROW]
[ROW][C]38[/C][C] 15[/C][C] 14.87[/C][C] 0.1302[/C][/ROW]
[ROW][C]39[/C][C] 11[/C][C] 13.94[/C][C]-2.936[/C][/ROW]
[ROW][C]40[/C][C] 14[/C][C] 13.99[/C][C] 0.009812[/C][/ROW]
[ROW][C]41[/C][C] 11[/C][C] 13.5[/C][C]-2.502[/C][/ROW]
[ROW][C]42[/C][C] 14[/C][C] 13.55[/C][C] 0.4533[/C][/ROW]
[ROW][C]43[/C][C] 9[/C][C] 13.77[/C][C]-4.77[/C][/ROW]
[ROW][C]44[/C][C] 13[/C][C] 13.99[/C][C]-0.9902[/C][/ROW]
[ROW][C]45[/C][C] 13[/C][C] 14.04[/C][C]-1.039[/C][/ROW]
[ROW][C]46[/C][C] 12[/C][C] 13.77[/C][C]-1.77[/C][/ROW]
[ROW][C]47[/C][C] 17[/C][C] 13.97[/C][C] 3.033[/C][/ROW]
[ROW][C]48[/C][C] 16[/C][C] 14.3[/C][C] 1.704[/C][/ROW]
[ROW][C]49[/C][C] 15[/C][C] 13.75[/C][C] 1.255[/C][/ROW]
[ROW][C]50[/C][C] 16[/C][C] 13.57[/C][C] 2.43[/C][/ROW]
[ROW][C]51[/C][C] 16[/C][C] 14.23[/C][C] 1.767[/C][/ROW]
[ROW][C]52[/C][C] 13[/C][C] 14.55[/C][C]-1.546[/C][/ROW]
[ROW][C]53[/C][C] 13[/C][C] 14.06[/C][C]-1.061[/C][/ROW]
[ROW][C]54[/C][C] 12[/C][C] 14.28[/C][C]-2.28[/C][/ROW]
[ROW][C]55[/C][C] 11[/C][C] 14.46[/C][C]-3.458[/C][/ROW]
[ROW][C]56[/C][C] 13[/C][C] 14.03[/C][C]-1.035[/C][/ROW]
[ROW][C]57[/C][C] 15[/C][C] 14.36[/C][C] 0.6389[/C][/ROW]
[ROW][C]58[/C][C] 13[/C][C] 14.24[/C][C]-1.243[/C][/ROW]
[ROW][C]59[/C][C] 14[/C][C] 13.99[/C][C] 0.01092[/C][/ROW]
[ROW][C]60[/C][C] 13[/C][C] 13.41[/C][C]-0.4106[/C][/ROW]
[ROW][C]61[/C][C] 15[/C][C] 13.7[/C][C] 1.301[/C][/ROW]
[ROW][C]62[/C][C] 14[/C][C] 14.49[/C][C]-0.4936[/C][/ROW]
[ROW][C]63[/C][C] 14[/C][C] 13.65[/C][C] 0.3468[/C][/ROW]
[ROW][C]64[/C][C] 13[/C][C] 14.03[/C][C]-1.035[/C][/ROW]
[ROW][C]65[/C][C] 11[/C][C] 12.46[/C][C]-1.457[/C][/ROW]
[ROW][C]66[/C][C] 14[/C][C] 13.59[/C][C] 0.4078[/C][/ROW]
[ROW][C]67[/C][C] 17[/C][C] 14.17[/C][C] 2.833[/C][/ROW]
[ROW][C]68[/C][C] 15[/C][C] 14.8[/C][C] 0.1987[/C][/ROW]
[ROW][C]69[/C][C] 15[/C][C] 13.65[/C][C] 1.347[/C][/ROW]
[ROW][C]70[/C][C] 13[/C][C] 13.92[/C][C]-0.9216[/C][/ROW]
[ROW][C]71[/C][C] 12[/C][C] 13.9[/C][C]-1.899[/C][/ROW]
[ROW][C]72[/C][C] 14[/C][C] 14.09[/C][C]-0.09468[/C][/ROW]
[ROW][C]73[/C][C] 11[/C][C] 13.69[/C][C]-2.687[/C][/ROW]
[ROW][C]74[/C][C] 14[/C][C] 14.52[/C][C]-0.5223[/C][/ROW]
[ROW][C]75[/C][C] 18[/C][C] 13.9[/C][C] 4.101[/C][/ROW]
[ROW][C]76[/C][C] 15[/C][C] 13.04[/C][C] 1.957[/C][/ROW]
[ROW][C]77[/C][C] 18[/C][C] 14.19[/C][C] 3.81[/C][/ROW]
[ROW][C]78[/C][C] 16[/C][C] 15.1[/C][C] 0.9005[/C][/ROW]
[ROW][C]79[/C][C] 12[/C][C] 13.48[/C][C]-1.479[/C][/ROW]
[ROW][C]80[/C][C] 14[/C][C] 13.79[/C][C] 0.2068[/C][/ROW]
[ROW][C]81[/C][C] 14[/C][C] 14.33[/C][C]-0.328[/C][/ROW]
[ROW][C]82[/C][C] 14[/C][C] 13.88[/C][C] 0.1165[/C][/ROW]
[ROW][C]83[/C][C] 14[/C][C] 14.06[/C][C]-0.06458[/C][/ROW]
[ROW][C]84[/C][C] 13[/C][C] 14.07[/C][C]-1.069[/C][/ROW]
[ROW][C]85[/C][C] 12[/C][C] 14.65[/C][C]-2.647[/C][/ROW]
[ROW][C]86[/C][C] 13[/C][C] 14.07[/C][C]-1.069[/C][/ROW]
[ROW][C]87[/C][C] 15[/C][C] 13.75[/C][C] 1.246[/C][/ROW]
[ROW][C]88[/C][C] 13[/C][C] 13.88[/C][C]-0.876[/C][/ROW]
[ROW][C]89[/C][C] 14[/C][C] 14.04[/C][C]-0.04173[/C][/ROW]
[ROW][C]90[/C][C] 15[/C][C] 13.93[/C][C] 1.067[/C][/ROW]
[ROW][C]91[/C][C] 13[/C][C] 14.06[/C][C]-1.058[/C][/ROW]
[ROW][C]92[/C][C] 14[/C][C] 14.41[/C][C]-0.4097[/C][/ROW]
[ROW][C]93[/C][C] 17[/C][C] 13.86[/C][C] 3.139[/C][/ROW]
[ROW][C]94[/C][C] 15[/C][C] 14.5[/C][C] 0.4989[/C][/ROW]
[ROW][C]95[/C][C] 13[/C][C] 13.88[/C][C]-0.876[/C][/ROW]
[ROW][C]96[/C][C] 14[/C][C] 14.17[/C][C]-0.1742[/C][/ROW]
[ROW][C]97[/C][C] 17[/C][C] 15.02[/C][C] 1.979[/C][/ROW]
[ROW][C]98[/C][C] 8[/C][C] 13.89[/C][C]-5.89[/C][/ROW]
[ROW][C]99[/C][C] 15[/C][C] 13.65[/C][C] 1.347[/C][/ROW]
[ROW][C]100[/C][C] 10[/C][C] 14.2[/C][C]-4.197[/C][/ROW]
[ROW][C]101[/C][C] 15[/C][C] 14.16[/C][C] 0.8411[/C][/ROW]
[ROW][C]102[/C][C] 15[/C][C] 13.99[/C][C] 1.011[/C][/ROW]
[ROW][C]103[/C][C] 14[/C][C] 14.37[/C][C]-0.3671[/C][/ROW]
[ROW][C]104[/C][C] 15[/C][C] 13.92[/C][C] 1.078[/C][/ROW]
[ROW][C]105[/C][C] 18[/C][C] 14.02[/C][C] 3.977[/C][/ROW]
[ROW][C]106[/C][C] 14[/C][C] 14.24[/C][C]-0.2427[/C][/ROW]
[ROW][C]107[/C][C] 19[/C][C] 13.86[/C][C] 5.139[/C][/ROW]
[ROW][C]108[/C][C] 16[/C][C] 14.03[/C][C] 1.965[/C][/ROW]
[ROW][C]109[/C][C] 17[/C][C] 14.29[/C][C] 2.713[/C][/ROW]
[ROW][C]110[/C][C] 18[/C][C] 14.11[/C][C] 3.894[/C][/ROW]
[ROW][C]111[/C][C] 13[/C][C] 14.05[/C][C]-1.05[/C][/ROW]
[ROW][C]112[/C][C] 10[/C][C] 13.97[/C][C]-3.967[/C][/ROW]
[ROW][C]113[/C][C] 14[/C][C] 13.79[/C][C] 0.2088[/C][/ROW]
[ROW][C]114[/C][C] 13[/C][C] 14.14[/C][C]-1.143[/C][/ROW]
[ROW][C]115[/C][C] 12[/C][C] 14.2[/C][C]-2.197[/C][/ROW]
[ROW][C]116[/C][C] 13[/C][C] 13.68[/C][C]-0.675[/C][/ROW]
[ROW][C]117[/C][C] 12[/C][C] 14.16[/C][C]-2.159[/C][/ROW]
[ROW][C]118[/C][C] 13[/C][C] 13.7[/C][C]-0.6989[/C][/ROW]
[ROW][C]119[/C][C] 16[/C][C] 14.35[/C][C] 1.651[/C][/ROW]
[ROW][C]120[/C][C] 12[/C][C] 14.06[/C][C]-2.058[/C][/ROW]
[ROW][C]121[/C][C] 14[/C][C] 14.3[/C][C]-0.3032[/C][/ROW]
[ROW][C]122[/C][C] 17[/C][C] 14.24[/C][C] 2.757[/C][/ROW]
[ROW][C]123[/C][C] 14[/C][C] 13.9[/C][C] 0.1012[/C][/ROW]
[ROW][C]124[/C][C] 12[/C][C] 14.07[/C][C]-2.069[/C][/ROW]
[ROW][C]125[/C][C] 14[/C][C] 13.9[/C][C] 0.1012[/C][/ROW]
[ROW][C]126[/C][C] 17[/C][C] 13.58[/C][C] 3.415[/C][/ROW]
[ROW][C]127[/C][C] 13[/C][C] 13.72[/C][C]-0.7235[/C][/ROW]
[ROW][C]128[/C][C] 11[/C][C] 14.06[/C][C]-3.058[/C][/ROW]
[ROW][C]129[/C][C] 14[/C][C] 13.99[/C][C] 0.009812[/C][/ROW]
[ROW][C]130[/C][C] 11[/C][C] 13.97[/C][C]-2.969[/C][/ROW]
[ROW][C]131[/C][C] 17[/C][C] 14.24[/C][C] 2.757[/C][/ROW]
[ROW][C]132[/C][C] 15[/C][C] 15.09[/C][C]-0.08891[/C][/ROW]
[ROW][C]133[/C][C] 10[/C][C] 13.66[/C][C]-3.664[/C][/ROW]
[ROW][C]134[/C][C] 15[/C][C] 14.08[/C][C] 0.9176[/C][/ROW]
[ROW][C]135[/C][C] 16[/C][C] 14.29[/C][C] 1.713[/C][/ROW]
[ROW][C]136[/C][C] 17[/C][C] 14.48[/C][C] 2.52[/C][/ROW]
[ROW][C]137[/C][C] 15[/C][C] 13.81[/C][C] 1.186[/C][/ROW]
[ROW][C]138[/C][C] 12[/C][C] 13.92[/C][C]-1.922[/C][/ROW]
[ROW][C]139[/C][C] 15[/C][C] 14.42[/C][C] 0.5833[/C][/ROW]
[ROW][C]140[/C][C] 10[/C][C] 14.43[/C][C]-4.433[/C][/ROW]
[ROW][C]141[/C][C] 13[/C][C] 13.75[/C][C]-0.7541[/C][/ROW]
[ROW][C]142[/C][C] 17[/C][C] 14.33[/C][C] 2.674[/C][/ROW]
[ROW][C]143[/C][C] 17[/C][C] 14.2[/C][C] 2.803[/C][/ROW]
[ROW][C]144[/C][C] 16[/C][C] 14.39[/C][C] 1.614[/C][/ROW]
[ROW][C]145[/C][C] 15[/C][C] 14.37[/C][C] 0.6349[/C][/ROW]
[ROW][C]146[/C][C] 16[/C][C] 14.76[/C][C] 1.243[/C][/ROW]
[ROW][C]147[/C][C] 16[/C][C] 14.33[/C][C] 1.674[/C][/ROW]
[ROW][C]148[/C][C] 15[/C][C] 13.33[/C][C] 1.673[/C][/ROW]
[ROW][C]149[/C][C] 16[/C][C] 14.24[/C][C] 1.758[/C][/ROW]
[ROW][C]150[/C][C] 14[/C][C] 13.81[/C][C] 0.186[/C][/ROW]
[ROW][C]151[/C][C] 17[/C][C] 14.29[/C][C] 2.713[/C][/ROW]
[ROW][C]152[/C][C] 14[/C][C] 13.77[/C][C] 0.2336[/C][/ROW]
[ROW][C]153[/C][C] 12[/C][C] 13.99[/C][C]-1.99[/C][/ROW]
[ROW][C]154[/C][C] 15[/C][C] 14.66[/C][C] 0.3445[/C][/ROW]
[ROW][C]155[/C][C] 14[/C][C] 13.94[/C][C] 0.05551[/C][/ROW]
[ROW][C]156[/C][C] 15[/C][C] 13.57[/C][C] 1.43[/C][/ROW]
[ROW][C]157[/C][C] 14[/C][C] 14.14[/C][C]-0.1404[/C][/ROW]
[ROW][C]158[/C][C] 13[/C][C] 13.85[/C][C]-0.8531[/C][/ROW]
[ROW][C]159[/C][C] 16[/C][C] 13.94[/C][C] 2.064[/C][/ROW]
[ROW][C]160[/C][C] 13[/C][C] 13.94[/C][C]-0.9445[/C][/ROW]
[ROW][C]161[/C][C] 14[/C][C] 14.23[/C][C]-0.2327[/C][/ROW]
[ROW][C]162[/C][C] 13[/C][C] 14.51[/C][C]-1.51[/C][/ROW]
[ROW][C]163[/C][C] 13[/C][C] 13.99[/C][C]-0.9891[/C][/ROW]
[ROW][C]164[/C][C] 15[/C][C] 14.29[/C][C] 0.7127[/C][/ROW]
[ROW][C]165[/C][C] 13[/C][C] 13.64[/C][C]-0.6399[/C][/ROW]
[ROW][C]166[/C][C] 14[/C][C] 14.2[/C][C]-0.197[/C][/ROW]
[ROW][C]167[/C][C] 13[/C][C] 14.05[/C][C]-1.05[/C][/ROW]
[ROW][C]168[/C][C] 12[/C][C] 14.81[/C][C]-2.808[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301610&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301610&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 11 13.55-2.546
2 11 13.58-2.585
3 15 14.37 0.6349
4 15 13.92 1.078
5 13 14.22-1.219
6 14 12.98 1.024
7 13 13.48-0.4808
8 15 13.82 1.184
9 14 14.2-0.2045
10 15 13.57 1.431
11 10 13.62-3.615
12 11 14.06-3.058
13 16 14.33 1.667
14 17 13.44 3.56
15 14 14.29-0.2873
16 13 13.5-0.5019
17 10 14.26-4.264
18 13 14.47-1.465
19 17 14.07 2.931
20 18 13.65 4.347
21 17 14.03 2.965
22 11 13.63-2.63
23 15 13.9 1.101
24 12 14.09-2.09
25 15 13.58 1.42
26 15 14.33 0.667
27 12 14.06-2.058
28 19 13.84 5.162
29 13 13.88-0.8835
30 15 14.41 0.5912
31 13 13.27-0.267
32 10 14.02-4.019
33 14 13.65 0.3462
34 12 12.78-0.7778
35 15 13.62 1.385
36 13 13.97-0.9662
37 18 13.94 4.061
38 15 14.87 0.1302
39 11 13.94-2.936
40 14 13.99 0.009812
41 11 13.5-2.502
42 14 13.55 0.4533
43 9 13.77-4.77
44 13 13.99-0.9902
45 13 14.04-1.039
46 12 13.77-1.77
47 17 13.97 3.033
48 16 14.3 1.704
49 15 13.75 1.255
50 16 13.57 2.43
51 16 14.23 1.767
52 13 14.55-1.546
53 13 14.06-1.061
54 12 14.28-2.28
55 11 14.46-3.458
56 13 14.03-1.035
57 15 14.36 0.6389
58 13 14.24-1.243
59 14 13.99 0.01092
60 13 13.41-0.4106
61 15 13.7 1.301
62 14 14.49-0.4936
63 14 13.65 0.3468
64 13 14.03-1.035
65 11 12.46-1.457
66 14 13.59 0.4078
67 17 14.17 2.833
68 15 14.8 0.1987
69 15 13.65 1.347
70 13 13.92-0.9216
71 12 13.9-1.899
72 14 14.09-0.09468
73 11 13.69-2.687
74 14 14.52-0.5223
75 18 13.9 4.101
76 15 13.04 1.957
77 18 14.19 3.81
78 16 15.1 0.9005
79 12 13.48-1.479
80 14 13.79 0.2068
81 14 14.33-0.328
82 14 13.88 0.1165
83 14 14.06-0.06458
84 13 14.07-1.069
85 12 14.65-2.647
86 13 14.07-1.069
87 15 13.75 1.246
88 13 13.88-0.876
89 14 14.04-0.04173
90 15 13.93 1.067
91 13 14.06-1.058
92 14 14.41-0.4097
93 17 13.86 3.139
94 15 14.5 0.4989
95 13 13.88-0.876
96 14 14.17-0.1742
97 17 15.02 1.979
98 8 13.89-5.89
99 15 13.65 1.347
100 10 14.2-4.197
101 15 14.16 0.8411
102 15 13.99 1.011
103 14 14.37-0.3671
104 15 13.92 1.078
105 18 14.02 3.977
106 14 14.24-0.2427
107 19 13.86 5.139
108 16 14.03 1.965
109 17 14.29 2.713
110 18 14.11 3.894
111 13 14.05-1.05
112 10 13.97-3.967
113 14 13.79 0.2088
114 13 14.14-1.143
115 12 14.2-2.197
116 13 13.68-0.675
117 12 14.16-2.159
118 13 13.7-0.6989
119 16 14.35 1.651
120 12 14.06-2.058
121 14 14.3-0.3032
122 17 14.24 2.757
123 14 13.9 0.1012
124 12 14.07-2.069
125 14 13.9 0.1012
126 17 13.58 3.415
127 13 13.72-0.7235
128 11 14.06-3.058
129 14 13.99 0.009812
130 11 13.97-2.969
131 17 14.24 2.757
132 15 15.09-0.08891
133 10 13.66-3.664
134 15 14.08 0.9176
135 16 14.29 1.713
136 17 14.48 2.52
137 15 13.81 1.186
138 12 13.92-1.922
139 15 14.42 0.5833
140 10 14.43-4.433
141 13 13.75-0.7541
142 17 14.33 2.674
143 17 14.2 2.803
144 16 14.39 1.614
145 15 14.37 0.6349
146 16 14.76 1.243
147 16 14.33 1.674
148 15 13.33 1.673
149 16 14.24 1.758
150 14 13.81 0.186
151 17 14.29 2.713
152 14 13.77 0.2336
153 12 13.99-1.99
154 15 14.66 0.3445
155 14 13.94 0.05551
156 15 13.57 1.43
157 14 14.14-0.1404
158 13 13.85-0.8531
159 16 13.94 2.064
160 13 13.94-0.9445
161 14 14.23-0.2327
162 13 14.51-1.51
163 13 13.99-0.9891
164 15 14.29 0.7127
165 13 13.64-0.6399
166 14 14.2-0.197
167 13 14.05-1.05
168 12 14.81-2.808







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
10 0.2426 0.4852 0.7574
11 0.3586 0.7171 0.6414
12 0.2313 0.4626 0.7687
13 0.606 0.788 0.394
14 0.7024 0.5953 0.2976
15 0.6122 0.7756 0.3878
16 0.5122 0.9756 0.4878
17 0.6441 0.7119 0.3559
18 0.6684 0.6632 0.3316
19 0.6697 0.6606 0.3303
20 0.9 0.2 0.1
21 0.9241 0.1518 0.07591
22 0.9276 0.1448 0.0724
23 0.905 0.19 0.095
24 0.8783 0.2435 0.1217
25 0.8426 0.3147 0.1574
26 0.8029 0.3942 0.1971
27 0.8102 0.3796 0.1898
28 0.9432 0.1136 0.05679
29 0.9334 0.1332 0.06661
30 0.9148 0.1704 0.08522
31 0.9118 0.1764 0.08818
32 0.9243 0.1513 0.07566
33 0.907 0.186 0.09301
34 0.8922 0.2155 0.1078
35 0.8792 0.2415 0.1208
36 0.8515 0.297 0.1485
37 0.8908 0.2185 0.1092
38 0.8699 0.2603 0.1301
39 0.8727 0.2545 0.1273
40 0.8443 0.3114 0.1557
41 0.8565 0.2869 0.1435
42 0.8248 0.3503 0.1752
43 0.9425 0.1151 0.05754
44 0.9312 0.1377 0.06885
45 0.9248 0.1503 0.07515
46 0.9182 0.1637 0.08183
47 0.9334 0.1332 0.0666
48 0.9253 0.1493 0.07467
49 0.9108 0.1784 0.08918
50 0.9188 0.1624 0.08122
51 0.9193 0.1615 0.08073
52 0.9048 0.1905 0.09525
53 0.9045 0.1909 0.09546
54 0.9089 0.1822 0.09108
55 0.9382 0.1237 0.06183
56 0.9256 0.1487 0.07435
57 0.9102 0.1795 0.08977
58 0.8946 0.2107 0.1054
59 0.8718 0.2563 0.1282
60 0.8477 0.3046 0.1523
61 0.8282 0.3436 0.1718
62 0.7975 0.405 0.2025
63 0.7638 0.4724 0.2362
64 0.7349 0.5302 0.2651
65 0.7224 0.5551 0.2776
66 0.6846 0.6309 0.3154
67 0.7231 0.5537 0.2769
68 0.6858 0.6283 0.3142
69 0.6624 0.6752 0.3376
70 0.6266 0.7469 0.3734
71 0.6139 0.7722 0.3861
72 0.5723 0.8554 0.4277
73 0.6094 0.7812 0.3906
74 0.5701 0.8598 0.4299
75 0.6912 0.6176 0.3088
76 0.6847 0.6307 0.3153
77 0.7709 0.4582 0.2291
78 0.7461 0.5078 0.2539
79 0.7252 0.5496 0.2748
80 0.6867 0.6267 0.3133
81 0.6459 0.7082 0.3541
82 0.6026 0.7948 0.3974
83 0.5589 0.8823 0.4411
84 0.5221 0.9557 0.4779
85 0.5423 0.9154 0.4577
86 0.5065 0.987 0.4935
87 0.4826 0.9651 0.5174
88 0.4443 0.8887 0.5557
89 0.4016 0.8032 0.5984
90 0.367 0.7341 0.633
91 0.3356 0.6712 0.6644
92 0.2969 0.5938 0.7031
93 0.3476 0.6952 0.6524
94 0.3091 0.6182 0.6909
95 0.2758 0.5516 0.7242
96 0.2405 0.481 0.7595
97 0.2378 0.4757 0.7622
98 0.5448 0.9104 0.4552
99 0.5136 0.9729 0.4864
100 0.6624 0.6751 0.3376
101 0.6261 0.7479 0.3739
102 0.591 0.8179 0.409
103 0.5454 0.9091 0.4546
104 0.5108 0.9784 0.4892
105 0.6242 0.7516 0.3758
106 0.5805 0.8391 0.4195
107 0.8205 0.3591 0.1795
108 0.8213 0.3574 0.1787
109 0.8342 0.3316 0.1658
110 0.8941 0.2118 0.1059
111 0.8804 0.2391 0.1196
112 0.9356 0.1288 0.0644
113 0.9184 0.1632 0.08162
114 0.9174 0.1652 0.08262
115 0.9331 0.1338 0.0669
116 0.9189 0.1623 0.08114
117 0.9229 0.1542 0.07708
118 0.913 0.174 0.08702
119 0.9201 0.1598 0.07992
120 0.9211 0.1578 0.07888
121 0.9021 0.1958 0.09789
122 0.9031 0.1938 0.09691
123 0.8778 0.2445 0.1222
124 0.8867 0.2266 0.1133
125 0.8578 0.2844 0.1422
126 0.8953 0.2093 0.1047
127 0.8732 0.2536 0.1268
128 0.9176 0.1647 0.08236
129 0.894 0.2119 0.106
130 0.9003 0.1994 0.09968
131 0.8986 0.2028 0.1014
132 0.8798 0.2405 0.1202
133 0.9487 0.1026 0.0513
134 0.9369 0.1262 0.0631
135 0.9215 0.1569 0.07846
136 0.9052 0.1896 0.09482
137 0.885 0.23 0.115
138 0.8872 0.2256 0.1128
139 0.856 0.288 0.144
140 0.9467 0.1066 0.05332
141 0.9355 0.129 0.06451
142 0.9519 0.09626 0.04813
143 0.9627 0.07464 0.03732
144 0.972 0.05598 0.02799
145 0.9589 0.08217 0.04108
146 0.9635 0.07308 0.03654
147 0.9682 0.0636 0.0318
148 0.9561 0.08787 0.04393
149 0.9656 0.06872 0.03436
150 0.9417 0.1166 0.0583
151 0.9822 0.03555 0.01778
152 0.9668 0.06635 0.03317
153 0.9952 0.009558 0.004779
154 0.9985 0.002955 0.001477
155 0.9972 0.005591 0.002796
156 0.9904 0.01923 0.009615
157 0.9701 0.05984 0.02992
158 0.9169 0.1662 0.08311

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
10 &  0.2426 &  0.4852 &  0.7574 \tabularnewline
11 &  0.3586 &  0.7171 &  0.6414 \tabularnewline
12 &  0.2313 &  0.4626 &  0.7687 \tabularnewline
13 &  0.606 &  0.788 &  0.394 \tabularnewline
14 &  0.7024 &  0.5953 &  0.2976 \tabularnewline
15 &  0.6122 &  0.7756 &  0.3878 \tabularnewline
16 &  0.5122 &  0.9756 &  0.4878 \tabularnewline
17 &  0.6441 &  0.7119 &  0.3559 \tabularnewline
18 &  0.6684 &  0.6632 &  0.3316 \tabularnewline
19 &  0.6697 &  0.6606 &  0.3303 \tabularnewline
20 &  0.9 &  0.2 &  0.1 \tabularnewline
21 &  0.9241 &  0.1518 &  0.07591 \tabularnewline
22 &  0.9276 &  0.1448 &  0.0724 \tabularnewline
23 &  0.905 &  0.19 &  0.095 \tabularnewline
24 &  0.8783 &  0.2435 &  0.1217 \tabularnewline
25 &  0.8426 &  0.3147 &  0.1574 \tabularnewline
26 &  0.8029 &  0.3942 &  0.1971 \tabularnewline
27 &  0.8102 &  0.3796 &  0.1898 \tabularnewline
28 &  0.9432 &  0.1136 &  0.05679 \tabularnewline
29 &  0.9334 &  0.1332 &  0.06661 \tabularnewline
30 &  0.9148 &  0.1704 &  0.08522 \tabularnewline
31 &  0.9118 &  0.1764 &  0.08818 \tabularnewline
32 &  0.9243 &  0.1513 &  0.07566 \tabularnewline
33 &  0.907 &  0.186 &  0.09301 \tabularnewline
34 &  0.8922 &  0.2155 &  0.1078 \tabularnewline
35 &  0.8792 &  0.2415 &  0.1208 \tabularnewline
36 &  0.8515 &  0.297 &  0.1485 \tabularnewline
37 &  0.8908 &  0.2185 &  0.1092 \tabularnewline
38 &  0.8699 &  0.2603 &  0.1301 \tabularnewline
39 &  0.8727 &  0.2545 &  0.1273 \tabularnewline
40 &  0.8443 &  0.3114 &  0.1557 \tabularnewline
41 &  0.8565 &  0.2869 &  0.1435 \tabularnewline
42 &  0.8248 &  0.3503 &  0.1752 \tabularnewline
43 &  0.9425 &  0.1151 &  0.05754 \tabularnewline
44 &  0.9312 &  0.1377 &  0.06885 \tabularnewline
45 &  0.9248 &  0.1503 &  0.07515 \tabularnewline
46 &  0.9182 &  0.1637 &  0.08183 \tabularnewline
47 &  0.9334 &  0.1332 &  0.0666 \tabularnewline
48 &  0.9253 &  0.1493 &  0.07467 \tabularnewline
49 &  0.9108 &  0.1784 &  0.08918 \tabularnewline
50 &  0.9188 &  0.1624 &  0.08122 \tabularnewline
51 &  0.9193 &  0.1615 &  0.08073 \tabularnewline
52 &  0.9048 &  0.1905 &  0.09525 \tabularnewline
53 &  0.9045 &  0.1909 &  0.09546 \tabularnewline
54 &  0.9089 &  0.1822 &  0.09108 \tabularnewline
55 &  0.9382 &  0.1237 &  0.06183 \tabularnewline
56 &  0.9256 &  0.1487 &  0.07435 \tabularnewline
57 &  0.9102 &  0.1795 &  0.08977 \tabularnewline
58 &  0.8946 &  0.2107 &  0.1054 \tabularnewline
59 &  0.8718 &  0.2563 &  0.1282 \tabularnewline
60 &  0.8477 &  0.3046 &  0.1523 \tabularnewline
61 &  0.8282 &  0.3436 &  0.1718 \tabularnewline
62 &  0.7975 &  0.405 &  0.2025 \tabularnewline
63 &  0.7638 &  0.4724 &  0.2362 \tabularnewline
64 &  0.7349 &  0.5302 &  0.2651 \tabularnewline
65 &  0.7224 &  0.5551 &  0.2776 \tabularnewline
66 &  0.6846 &  0.6309 &  0.3154 \tabularnewline
67 &  0.7231 &  0.5537 &  0.2769 \tabularnewline
68 &  0.6858 &  0.6283 &  0.3142 \tabularnewline
69 &  0.6624 &  0.6752 &  0.3376 \tabularnewline
70 &  0.6266 &  0.7469 &  0.3734 \tabularnewline
71 &  0.6139 &  0.7722 &  0.3861 \tabularnewline
72 &  0.5723 &  0.8554 &  0.4277 \tabularnewline
73 &  0.6094 &  0.7812 &  0.3906 \tabularnewline
74 &  0.5701 &  0.8598 &  0.4299 \tabularnewline
75 &  0.6912 &  0.6176 &  0.3088 \tabularnewline
76 &  0.6847 &  0.6307 &  0.3153 \tabularnewline
77 &  0.7709 &  0.4582 &  0.2291 \tabularnewline
78 &  0.7461 &  0.5078 &  0.2539 \tabularnewline
79 &  0.7252 &  0.5496 &  0.2748 \tabularnewline
80 &  0.6867 &  0.6267 &  0.3133 \tabularnewline
81 &  0.6459 &  0.7082 &  0.3541 \tabularnewline
82 &  0.6026 &  0.7948 &  0.3974 \tabularnewline
83 &  0.5589 &  0.8823 &  0.4411 \tabularnewline
84 &  0.5221 &  0.9557 &  0.4779 \tabularnewline
85 &  0.5423 &  0.9154 &  0.4577 \tabularnewline
86 &  0.5065 &  0.987 &  0.4935 \tabularnewline
87 &  0.4826 &  0.9651 &  0.5174 \tabularnewline
88 &  0.4443 &  0.8887 &  0.5557 \tabularnewline
89 &  0.4016 &  0.8032 &  0.5984 \tabularnewline
90 &  0.367 &  0.7341 &  0.633 \tabularnewline
91 &  0.3356 &  0.6712 &  0.6644 \tabularnewline
92 &  0.2969 &  0.5938 &  0.7031 \tabularnewline
93 &  0.3476 &  0.6952 &  0.6524 \tabularnewline
94 &  0.3091 &  0.6182 &  0.6909 \tabularnewline
95 &  0.2758 &  0.5516 &  0.7242 \tabularnewline
96 &  0.2405 &  0.481 &  0.7595 \tabularnewline
97 &  0.2378 &  0.4757 &  0.7622 \tabularnewline
98 &  0.5448 &  0.9104 &  0.4552 \tabularnewline
99 &  0.5136 &  0.9729 &  0.4864 \tabularnewline
100 &  0.6624 &  0.6751 &  0.3376 \tabularnewline
101 &  0.6261 &  0.7479 &  0.3739 \tabularnewline
102 &  0.591 &  0.8179 &  0.409 \tabularnewline
103 &  0.5454 &  0.9091 &  0.4546 \tabularnewline
104 &  0.5108 &  0.9784 &  0.4892 \tabularnewline
105 &  0.6242 &  0.7516 &  0.3758 \tabularnewline
106 &  0.5805 &  0.8391 &  0.4195 \tabularnewline
107 &  0.8205 &  0.3591 &  0.1795 \tabularnewline
108 &  0.8213 &  0.3574 &  0.1787 \tabularnewline
109 &  0.8342 &  0.3316 &  0.1658 \tabularnewline
110 &  0.8941 &  0.2118 &  0.1059 \tabularnewline
111 &  0.8804 &  0.2391 &  0.1196 \tabularnewline
112 &  0.9356 &  0.1288 &  0.0644 \tabularnewline
113 &  0.9184 &  0.1632 &  0.08162 \tabularnewline
114 &  0.9174 &  0.1652 &  0.08262 \tabularnewline
115 &  0.9331 &  0.1338 &  0.0669 \tabularnewline
116 &  0.9189 &  0.1623 &  0.08114 \tabularnewline
117 &  0.9229 &  0.1542 &  0.07708 \tabularnewline
118 &  0.913 &  0.174 &  0.08702 \tabularnewline
119 &  0.9201 &  0.1598 &  0.07992 \tabularnewline
120 &  0.9211 &  0.1578 &  0.07888 \tabularnewline
121 &  0.9021 &  0.1958 &  0.09789 \tabularnewline
122 &  0.9031 &  0.1938 &  0.09691 \tabularnewline
123 &  0.8778 &  0.2445 &  0.1222 \tabularnewline
124 &  0.8867 &  0.2266 &  0.1133 \tabularnewline
125 &  0.8578 &  0.2844 &  0.1422 \tabularnewline
126 &  0.8953 &  0.2093 &  0.1047 \tabularnewline
127 &  0.8732 &  0.2536 &  0.1268 \tabularnewline
128 &  0.9176 &  0.1647 &  0.08236 \tabularnewline
129 &  0.894 &  0.2119 &  0.106 \tabularnewline
130 &  0.9003 &  0.1994 &  0.09968 \tabularnewline
131 &  0.8986 &  0.2028 &  0.1014 \tabularnewline
132 &  0.8798 &  0.2405 &  0.1202 \tabularnewline
133 &  0.9487 &  0.1026 &  0.0513 \tabularnewline
134 &  0.9369 &  0.1262 &  0.0631 \tabularnewline
135 &  0.9215 &  0.1569 &  0.07846 \tabularnewline
136 &  0.9052 &  0.1896 &  0.09482 \tabularnewline
137 &  0.885 &  0.23 &  0.115 \tabularnewline
138 &  0.8872 &  0.2256 &  0.1128 \tabularnewline
139 &  0.856 &  0.288 &  0.144 \tabularnewline
140 &  0.9467 &  0.1066 &  0.05332 \tabularnewline
141 &  0.9355 &  0.129 &  0.06451 \tabularnewline
142 &  0.9519 &  0.09626 &  0.04813 \tabularnewline
143 &  0.9627 &  0.07464 &  0.03732 \tabularnewline
144 &  0.972 &  0.05598 &  0.02799 \tabularnewline
145 &  0.9589 &  0.08217 &  0.04108 \tabularnewline
146 &  0.9635 &  0.07308 &  0.03654 \tabularnewline
147 &  0.9682 &  0.0636 &  0.0318 \tabularnewline
148 &  0.9561 &  0.08787 &  0.04393 \tabularnewline
149 &  0.9656 &  0.06872 &  0.03436 \tabularnewline
150 &  0.9417 &  0.1166 &  0.0583 \tabularnewline
151 &  0.9822 &  0.03555 &  0.01778 \tabularnewline
152 &  0.9668 &  0.06635 &  0.03317 \tabularnewline
153 &  0.9952 &  0.009558 &  0.004779 \tabularnewline
154 &  0.9985 &  0.002955 &  0.001477 \tabularnewline
155 &  0.9972 &  0.005591 &  0.002796 \tabularnewline
156 &  0.9904 &  0.01923 &  0.009615 \tabularnewline
157 &  0.9701 &  0.05984 &  0.02992 \tabularnewline
158 &  0.9169 &  0.1662 &  0.08311 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301610&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]10[/C][C] 0.2426[/C][C] 0.4852[/C][C] 0.7574[/C][/ROW]
[ROW][C]11[/C][C] 0.3586[/C][C] 0.7171[/C][C] 0.6414[/C][/ROW]
[ROW][C]12[/C][C] 0.2313[/C][C] 0.4626[/C][C] 0.7687[/C][/ROW]
[ROW][C]13[/C][C] 0.606[/C][C] 0.788[/C][C] 0.394[/C][/ROW]
[ROW][C]14[/C][C] 0.7024[/C][C] 0.5953[/C][C] 0.2976[/C][/ROW]
[ROW][C]15[/C][C] 0.6122[/C][C] 0.7756[/C][C] 0.3878[/C][/ROW]
[ROW][C]16[/C][C] 0.5122[/C][C] 0.9756[/C][C] 0.4878[/C][/ROW]
[ROW][C]17[/C][C] 0.6441[/C][C] 0.7119[/C][C] 0.3559[/C][/ROW]
[ROW][C]18[/C][C] 0.6684[/C][C] 0.6632[/C][C] 0.3316[/C][/ROW]
[ROW][C]19[/C][C] 0.6697[/C][C] 0.6606[/C][C] 0.3303[/C][/ROW]
[ROW][C]20[/C][C] 0.9[/C][C] 0.2[/C][C] 0.1[/C][/ROW]
[ROW][C]21[/C][C] 0.9241[/C][C] 0.1518[/C][C] 0.07591[/C][/ROW]
[ROW][C]22[/C][C] 0.9276[/C][C] 0.1448[/C][C] 0.0724[/C][/ROW]
[ROW][C]23[/C][C] 0.905[/C][C] 0.19[/C][C] 0.095[/C][/ROW]
[ROW][C]24[/C][C] 0.8783[/C][C] 0.2435[/C][C] 0.1217[/C][/ROW]
[ROW][C]25[/C][C] 0.8426[/C][C] 0.3147[/C][C] 0.1574[/C][/ROW]
[ROW][C]26[/C][C] 0.8029[/C][C] 0.3942[/C][C] 0.1971[/C][/ROW]
[ROW][C]27[/C][C] 0.8102[/C][C] 0.3796[/C][C] 0.1898[/C][/ROW]
[ROW][C]28[/C][C] 0.9432[/C][C] 0.1136[/C][C] 0.05679[/C][/ROW]
[ROW][C]29[/C][C] 0.9334[/C][C] 0.1332[/C][C] 0.06661[/C][/ROW]
[ROW][C]30[/C][C] 0.9148[/C][C] 0.1704[/C][C] 0.08522[/C][/ROW]
[ROW][C]31[/C][C] 0.9118[/C][C] 0.1764[/C][C] 0.08818[/C][/ROW]
[ROW][C]32[/C][C] 0.9243[/C][C] 0.1513[/C][C] 0.07566[/C][/ROW]
[ROW][C]33[/C][C] 0.907[/C][C] 0.186[/C][C] 0.09301[/C][/ROW]
[ROW][C]34[/C][C] 0.8922[/C][C] 0.2155[/C][C] 0.1078[/C][/ROW]
[ROW][C]35[/C][C] 0.8792[/C][C] 0.2415[/C][C] 0.1208[/C][/ROW]
[ROW][C]36[/C][C] 0.8515[/C][C] 0.297[/C][C] 0.1485[/C][/ROW]
[ROW][C]37[/C][C] 0.8908[/C][C] 0.2185[/C][C] 0.1092[/C][/ROW]
[ROW][C]38[/C][C] 0.8699[/C][C] 0.2603[/C][C] 0.1301[/C][/ROW]
[ROW][C]39[/C][C] 0.8727[/C][C] 0.2545[/C][C] 0.1273[/C][/ROW]
[ROW][C]40[/C][C] 0.8443[/C][C] 0.3114[/C][C] 0.1557[/C][/ROW]
[ROW][C]41[/C][C] 0.8565[/C][C] 0.2869[/C][C] 0.1435[/C][/ROW]
[ROW][C]42[/C][C] 0.8248[/C][C] 0.3503[/C][C] 0.1752[/C][/ROW]
[ROW][C]43[/C][C] 0.9425[/C][C] 0.1151[/C][C] 0.05754[/C][/ROW]
[ROW][C]44[/C][C] 0.9312[/C][C] 0.1377[/C][C] 0.06885[/C][/ROW]
[ROW][C]45[/C][C] 0.9248[/C][C] 0.1503[/C][C] 0.07515[/C][/ROW]
[ROW][C]46[/C][C] 0.9182[/C][C] 0.1637[/C][C] 0.08183[/C][/ROW]
[ROW][C]47[/C][C] 0.9334[/C][C] 0.1332[/C][C] 0.0666[/C][/ROW]
[ROW][C]48[/C][C] 0.9253[/C][C] 0.1493[/C][C] 0.07467[/C][/ROW]
[ROW][C]49[/C][C] 0.9108[/C][C] 0.1784[/C][C] 0.08918[/C][/ROW]
[ROW][C]50[/C][C] 0.9188[/C][C] 0.1624[/C][C] 0.08122[/C][/ROW]
[ROW][C]51[/C][C] 0.9193[/C][C] 0.1615[/C][C] 0.08073[/C][/ROW]
[ROW][C]52[/C][C] 0.9048[/C][C] 0.1905[/C][C] 0.09525[/C][/ROW]
[ROW][C]53[/C][C] 0.9045[/C][C] 0.1909[/C][C] 0.09546[/C][/ROW]
[ROW][C]54[/C][C] 0.9089[/C][C] 0.1822[/C][C] 0.09108[/C][/ROW]
[ROW][C]55[/C][C] 0.9382[/C][C] 0.1237[/C][C] 0.06183[/C][/ROW]
[ROW][C]56[/C][C] 0.9256[/C][C] 0.1487[/C][C] 0.07435[/C][/ROW]
[ROW][C]57[/C][C] 0.9102[/C][C] 0.1795[/C][C] 0.08977[/C][/ROW]
[ROW][C]58[/C][C] 0.8946[/C][C] 0.2107[/C][C] 0.1054[/C][/ROW]
[ROW][C]59[/C][C] 0.8718[/C][C] 0.2563[/C][C] 0.1282[/C][/ROW]
[ROW][C]60[/C][C] 0.8477[/C][C] 0.3046[/C][C] 0.1523[/C][/ROW]
[ROW][C]61[/C][C] 0.8282[/C][C] 0.3436[/C][C] 0.1718[/C][/ROW]
[ROW][C]62[/C][C] 0.7975[/C][C] 0.405[/C][C] 0.2025[/C][/ROW]
[ROW][C]63[/C][C] 0.7638[/C][C] 0.4724[/C][C] 0.2362[/C][/ROW]
[ROW][C]64[/C][C] 0.7349[/C][C] 0.5302[/C][C] 0.2651[/C][/ROW]
[ROW][C]65[/C][C] 0.7224[/C][C] 0.5551[/C][C] 0.2776[/C][/ROW]
[ROW][C]66[/C][C] 0.6846[/C][C] 0.6309[/C][C] 0.3154[/C][/ROW]
[ROW][C]67[/C][C] 0.7231[/C][C] 0.5537[/C][C] 0.2769[/C][/ROW]
[ROW][C]68[/C][C] 0.6858[/C][C] 0.6283[/C][C] 0.3142[/C][/ROW]
[ROW][C]69[/C][C] 0.6624[/C][C] 0.6752[/C][C] 0.3376[/C][/ROW]
[ROW][C]70[/C][C] 0.6266[/C][C] 0.7469[/C][C] 0.3734[/C][/ROW]
[ROW][C]71[/C][C] 0.6139[/C][C] 0.7722[/C][C] 0.3861[/C][/ROW]
[ROW][C]72[/C][C] 0.5723[/C][C] 0.8554[/C][C] 0.4277[/C][/ROW]
[ROW][C]73[/C][C] 0.6094[/C][C] 0.7812[/C][C] 0.3906[/C][/ROW]
[ROW][C]74[/C][C] 0.5701[/C][C] 0.8598[/C][C] 0.4299[/C][/ROW]
[ROW][C]75[/C][C] 0.6912[/C][C] 0.6176[/C][C] 0.3088[/C][/ROW]
[ROW][C]76[/C][C] 0.6847[/C][C] 0.6307[/C][C] 0.3153[/C][/ROW]
[ROW][C]77[/C][C] 0.7709[/C][C] 0.4582[/C][C] 0.2291[/C][/ROW]
[ROW][C]78[/C][C] 0.7461[/C][C] 0.5078[/C][C] 0.2539[/C][/ROW]
[ROW][C]79[/C][C] 0.7252[/C][C] 0.5496[/C][C] 0.2748[/C][/ROW]
[ROW][C]80[/C][C] 0.6867[/C][C] 0.6267[/C][C] 0.3133[/C][/ROW]
[ROW][C]81[/C][C] 0.6459[/C][C] 0.7082[/C][C] 0.3541[/C][/ROW]
[ROW][C]82[/C][C] 0.6026[/C][C] 0.7948[/C][C] 0.3974[/C][/ROW]
[ROW][C]83[/C][C] 0.5589[/C][C] 0.8823[/C][C] 0.4411[/C][/ROW]
[ROW][C]84[/C][C] 0.5221[/C][C] 0.9557[/C][C] 0.4779[/C][/ROW]
[ROW][C]85[/C][C] 0.5423[/C][C] 0.9154[/C][C] 0.4577[/C][/ROW]
[ROW][C]86[/C][C] 0.5065[/C][C] 0.987[/C][C] 0.4935[/C][/ROW]
[ROW][C]87[/C][C] 0.4826[/C][C] 0.9651[/C][C] 0.5174[/C][/ROW]
[ROW][C]88[/C][C] 0.4443[/C][C] 0.8887[/C][C] 0.5557[/C][/ROW]
[ROW][C]89[/C][C] 0.4016[/C][C] 0.8032[/C][C] 0.5984[/C][/ROW]
[ROW][C]90[/C][C] 0.367[/C][C] 0.7341[/C][C] 0.633[/C][/ROW]
[ROW][C]91[/C][C] 0.3356[/C][C] 0.6712[/C][C] 0.6644[/C][/ROW]
[ROW][C]92[/C][C] 0.2969[/C][C] 0.5938[/C][C] 0.7031[/C][/ROW]
[ROW][C]93[/C][C] 0.3476[/C][C] 0.6952[/C][C] 0.6524[/C][/ROW]
[ROW][C]94[/C][C] 0.3091[/C][C] 0.6182[/C][C] 0.6909[/C][/ROW]
[ROW][C]95[/C][C] 0.2758[/C][C] 0.5516[/C][C] 0.7242[/C][/ROW]
[ROW][C]96[/C][C] 0.2405[/C][C] 0.481[/C][C] 0.7595[/C][/ROW]
[ROW][C]97[/C][C] 0.2378[/C][C] 0.4757[/C][C] 0.7622[/C][/ROW]
[ROW][C]98[/C][C] 0.5448[/C][C] 0.9104[/C][C] 0.4552[/C][/ROW]
[ROW][C]99[/C][C] 0.5136[/C][C] 0.9729[/C][C] 0.4864[/C][/ROW]
[ROW][C]100[/C][C] 0.6624[/C][C] 0.6751[/C][C] 0.3376[/C][/ROW]
[ROW][C]101[/C][C] 0.6261[/C][C] 0.7479[/C][C] 0.3739[/C][/ROW]
[ROW][C]102[/C][C] 0.591[/C][C] 0.8179[/C][C] 0.409[/C][/ROW]
[ROW][C]103[/C][C] 0.5454[/C][C] 0.9091[/C][C] 0.4546[/C][/ROW]
[ROW][C]104[/C][C] 0.5108[/C][C] 0.9784[/C][C] 0.4892[/C][/ROW]
[ROW][C]105[/C][C] 0.6242[/C][C] 0.7516[/C][C] 0.3758[/C][/ROW]
[ROW][C]106[/C][C] 0.5805[/C][C] 0.8391[/C][C] 0.4195[/C][/ROW]
[ROW][C]107[/C][C] 0.8205[/C][C] 0.3591[/C][C] 0.1795[/C][/ROW]
[ROW][C]108[/C][C] 0.8213[/C][C] 0.3574[/C][C] 0.1787[/C][/ROW]
[ROW][C]109[/C][C] 0.8342[/C][C] 0.3316[/C][C] 0.1658[/C][/ROW]
[ROW][C]110[/C][C] 0.8941[/C][C] 0.2118[/C][C] 0.1059[/C][/ROW]
[ROW][C]111[/C][C] 0.8804[/C][C] 0.2391[/C][C] 0.1196[/C][/ROW]
[ROW][C]112[/C][C] 0.9356[/C][C] 0.1288[/C][C] 0.0644[/C][/ROW]
[ROW][C]113[/C][C] 0.9184[/C][C] 0.1632[/C][C] 0.08162[/C][/ROW]
[ROW][C]114[/C][C] 0.9174[/C][C] 0.1652[/C][C] 0.08262[/C][/ROW]
[ROW][C]115[/C][C] 0.9331[/C][C] 0.1338[/C][C] 0.0669[/C][/ROW]
[ROW][C]116[/C][C] 0.9189[/C][C] 0.1623[/C][C] 0.08114[/C][/ROW]
[ROW][C]117[/C][C] 0.9229[/C][C] 0.1542[/C][C] 0.07708[/C][/ROW]
[ROW][C]118[/C][C] 0.913[/C][C] 0.174[/C][C] 0.08702[/C][/ROW]
[ROW][C]119[/C][C] 0.9201[/C][C] 0.1598[/C][C] 0.07992[/C][/ROW]
[ROW][C]120[/C][C] 0.9211[/C][C] 0.1578[/C][C] 0.07888[/C][/ROW]
[ROW][C]121[/C][C] 0.9021[/C][C] 0.1958[/C][C] 0.09789[/C][/ROW]
[ROW][C]122[/C][C] 0.9031[/C][C] 0.1938[/C][C] 0.09691[/C][/ROW]
[ROW][C]123[/C][C] 0.8778[/C][C] 0.2445[/C][C] 0.1222[/C][/ROW]
[ROW][C]124[/C][C] 0.8867[/C][C] 0.2266[/C][C] 0.1133[/C][/ROW]
[ROW][C]125[/C][C] 0.8578[/C][C] 0.2844[/C][C] 0.1422[/C][/ROW]
[ROW][C]126[/C][C] 0.8953[/C][C] 0.2093[/C][C] 0.1047[/C][/ROW]
[ROW][C]127[/C][C] 0.8732[/C][C] 0.2536[/C][C] 0.1268[/C][/ROW]
[ROW][C]128[/C][C] 0.9176[/C][C] 0.1647[/C][C] 0.08236[/C][/ROW]
[ROW][C]129[/C][C] 0.894[/C][C] 0.2119[/C][C] 0.106[/C][/ROW]
[ROW][C]130[/C][C] 0.9003[/C][C] 0.1994[/C][C] 0.09968[/C][/ROW]
[ROW][C]131[/C][C] 0.8986[/C][C] 0.2028[/C][C] 0.1014[/C][/ROW]
[ROW][C]132[/C][C] 0.8798[/C][C] 0.2405[/C][C] 0.1202[/C][/ROW]
[ROW][C]133[/C][C] 0.9487[/C][C] 0.1026[/C][C] 0.0513[/C][/ROW]
[ROW][C]134[/C][C] 0.9369[/C][C] 0.1262[/C][C] 0.0631[/C][/ROW]
[ROW][C]135[/C][C] 0.9215[/C][C] 0.1569[/C][C] 0.07846[/C][/ROW]
[ROW][C]136[/C][C] 0.9052[/C][C] 0.1896[/C][C] 0.09482[/C][/ROW]
[ROW][C]137[/C][C] 0.885[/C][C] 0.23[/C][C] 0.115[/C][/ROW]
[ROW][C]138[/C][C] 0.8872[/C][C] 0.2256[/C][C] 0.1128[/C][/ROW]
[ROW][C]139[/C][C] 0.856[/C][C] 0.288[/C][C] 0.144[/C][/ROW]
[ROW][C]140[/C][C] 0.9467[/C][C] 0.1066[/C][C] 0.05332[/C][/ROW]
[ROW][C]141[/C][C] 0.9355[/C][C] 0.129[/C][C] 0.06451[/C][/ROW]
[ROW][C]142[/C][C] 0.9519[/C][C] 0.09626[/C][C] 0.04813[/C][/ROW]
[ROW][C]143[/C][C] 0.9627[/C][C] 0.07464[/C][C] 0.03732[/C][/ROW]
[ROW][C]144[/C][C] 0.972[/C][C] 0.05598[/C][C] 0.02799[/C][/ROW]
[ROW][C]145[/C][C] 0.9589[/C][C] 0.08217[/C][C] 0.04108[/C][/ROW]
[ROW][C]146[/C][C] 0.9635[/C][C] 0.07308[/C][C] 0.03654[/C][/ROW]
[ROW][C]147[/C][C] 0.9682[/C][C] 0.0636[/C][C] 0.0318[/C][/ROW]
[ROW][C]148[/C][C] 0.9561[/C][C] 0.08787[/C][C] 0.04393[/C][/ROW]
[ROW][C]149[/C][C] 0.9656[/C][C] 0.06872[/C][C] 0.03436[/C][/ROW]
[ROW][C]150[/C][C] 0.9417[/C][C] 0.1166[/C][C] 0.0583[/C][/ROW]
[ROW][C]151[/C][C] 0.9822[/C][C] 0.03555[/C][C] 0.01778[/C][/ROW]
[ROW][C]152[/C][C] 0.9668[/C][C] 0.06635[/C][C] 0.03317[/C][/ROW]
[ROW][C]153[/C][C] 0.9952[/C][C] 0.009558[/C][C] 0.004779[/C][/ROW]
[ROW][C]154[/C][C] 0.9985[/C][C] 0.002955[/C][C] 0.001477[/C][/ROW]
[ROW][C]155[/C][C] 0.9972[/C][C] 0.005591[/C][C] 0.002796[/C][/ROW]
[ROW][C]156[/C][C] 0.9904[/C][C] 0.01923[/C][C] 0.009615[/C][/ROW]
[ROW][C]157[/C][C] 0.9701[/C][C] 0.05984[/C][C] 0.02992[/C][/ROW]
[ROW][C]158[/C][C] 0.9169[/C][C] 0.1662[/C][C] 0.08311[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301610&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301610&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
10 0.2426 0.4852 0.7574
11 0.3586 0.7171 0.6414
12 0.2313 0.4626 0.7687
13 0.606 0.788 0.394
14 0.7024 0.5953 0.2976
15 0.6122 0.7756 0.3878
16 0.5122 0.9756 0.4878
17 0.6441 0.7119 0.3559
18 0.6684 0.6632 0.3316
19 0.6697 0.6606 0.3303
20 0.9 0.2 0.1
21 0.9241 0.1518 0.07591
22 0.9276 0.1448 0.0724
23 0.905 0.19 0.095
24 0.8783 0.2435 0.1217
25 0.8426 0.3147 0.1574
26 0.8029 0.3942 0.1971
27 0.8102 0.3796 0.1898
28 0.9432 0.1136 0.05679
29 0.9334 0.1332 0.06661
30 0.9148 0.1704 0.08522
31 0.9118 0.1764 0.08818
32 0.9243 0.1513 0.07566
33 0.907 0.186 0.09301
34 0.8922 0.2155 0.1078
35 0.8792 0.2415 0.1208
36 0.8515 0.297 0.1485
37 0.8908 0.2185 0.1092
38 0.8699 0.2603 0.1301
39 0.8727 0.2545 0.1273
40 0.8443 0.3114 0.1557
41 0.8565 0.2869 0.1435
42 0.8248 0.3503 0.1752
43 0.9425 0.1151 0.05754
44 0.9312 0.1377 0.06885
45 0.9248 0.1503 0.07515
46 0.9182 0.1637 0.08183
47 0.9334 0.1332 0.0666
48 0.9253 0.1493 0.07467
49 0.9108 0.1784 0.08918
50 0.9188 0.1624 0.08122
51 0.9193 0.1615 0.08073
52 0.9048 0.1905 0.09525
53 0.9045 0.1909 0.09546
54 0.9089 0.1822 0.09108
55 0.9382 0.1237 0.06183
56 0.9256 0.1487 0.07435
57 0.9102 0.1795 0.08977
58 0.8946 0.2107 0.1054
59 0.8718 0.2563 0.1282
60 0.8477 0.3046 0.1523
61 0.8282 0.3436 0.1718
62 0.7975 0.405 0.2025
63 0.7638 0.4724 0.2362
64 0.7349 0.5302 0.2651
65 0.7224 0.5551 0.2776
66 0.6846 0.6309 0.3154
67 0.7231 0.5537 0.2769
68 0.6858 0.6283 0.3142
69 0.6624 0.6752 0.3376
70 0.6266 0.7469 0.3734
71 0.6139 0.7722 0.3861
72 0.5723 0.8554 0.4277
73 0.6094 0.7812 0.3906
74 0.5701 0.8598 0.4299
75 0.6912 0.6176 0.3088
76 0.6847 0.6307 0.3153
77 0.7709 0.4582 0.2291
78 0.7461 0.5078 0.2539
79 0.7252 0.5496 0.2748
80 0.6867 0.6267 0.3133
81 0.6459 0.7082 0.3541
82 0.6026 0.7948 0.3974
83 0.5589 0.8823 0.4411
84 0.5221 0.9557 0.4779
85 0.5423 0.9154 0.4577
86 0.5065 0.987 0.4935
87 0.4826 0.9651 0.5174
88 0.4443 0.8887 0.5557
89 0.4016 0.8032 0.5984
90 0.367 0.7341 0.633
91 0.3356 0.6712 0.6644
92 0.2969 0.5938 0.7031
93 0.3476 0.6952 0.6524
94 0.3091 0.6182 0.6909
95 0.2758 0.5516 0.7242
96 0.2405 0.481 0.7595
97 0.2378 0.4757 0.7622
98 0.5448 0.9104 0.4552
99 0.5136 0.9729 0.4864
100 0.6624 0.6751 0.3376
101 0.6261 0.7479 0.3739
102 0.591 0.8179 0.409
103 0.5454 0.9091 0.4546
104 0.5108 0.9784 0.4892
105 0.6242 0.7516 0.3758
106 0.5805 0.8391 0.4195
107 0.8205 0.3591 0.1795
108 0.8213 0.3574 0.1787
109 0.8342 0.3316 0.1658
110 0.8941 0.2118 0.1059
111 0.8804 0.2391 0.1196
112 0.9356 0.1288 0.0644
113 0.9184 0.1632 0.08162
114 0.9174 0.1652 0.08262
115 0.9331 0.1338 0.0669
116 0.9189 0.1623 0.08114
117 0.9229 0.1542 0.07708
118 0.913 0.174 0.08702
119 0.9201 0.1598 0.07992
120 0.9211 0.1578 0.07888
121 0.9021 0.1958 0.09789
122 0.9031 0.1938 0.09691
123 0.8778 0.2445 0.1222
124 0.8867 0.2266 0.1133
125 0.8578 0.2844 0.1422
126 0.8953 0.2093 0.1047
127 0.8732 0.2536 0.1268
128 0.9176 0.1647 0.08236
129 0.894 0.2119 0.106
130 0.9003 0.1994 0.09968
131 0.8986 0.2028 0.1014
132 0.8798 0.2405 0.1202
133 0.9487 0.1026 0.0513
134 0.9369 0.1262 0.0631
135 0.9215 0.1569 0.07846
136 0.9052 0.1896 0.09482
137 0.885 0.23 0.115
138 0.8872 0.2256 0.1128
139 0.856 0.288 0.144
140 0.9467 0.1066 0.05332
141 0.9355 0.129 0.06451
142 0.9519 0.09626 0.04813
143 0.9627 0.07464 0.03732
144 0.972 0.05598 0.02799
145 0.9589 0.08217 0.04108
146 0.9635 0.07308 0.03654
147 0.9682 0.0636 0.0318
148 0.9561 0.08787 0.04393
149 0.9656 0.06872 0.03436
150 0.9417 0.1166 0.0583
151 0.9822 0.03555 0.01778
152 0.9668 0.06635 0.03317
153 0.9952 0.009558 0.004779
154 0.9985 0.002955 0.001477
155 0.9972 0.005591 0.002796
156 0.9904 0.01923 0.009615
157 0.9701 0.05984 0.02992
158 0.9169 0.1662 0.08311







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level3 0.02013NOK
5% type I error level50.033557OK
10% type I error level150.100671NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 3 &  0.02013 & NOK \tabularnewline
5% type I error level & 5 & 0.033557 & OK \tabularnewline
10% type I error level & 15 & 0.100671 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301610&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]3[/C][C] 0.02013[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]5[/C][C]0.033557[/C][C]OK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]15[/C][C]0.100671[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301610&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301610&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level3 0.02013NOK
5% type I error level50.033557OK
10% type I error level150.100671NOK







Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.29314, df1 = 2, df2 = 159, p-value = 0.7463
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0.1355, df1 = 12, df2 = 149, p-value = 0.9998
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.0060125, df1 = 2, df2 = 159, p-value = 0.994

\begin{tabular}{lllllllll}
\hline
Ramsey RESET F-Test for powers (2 and 3) of fitted values \tabularnewline
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.29314, df1 = 2, df2 = 159, p-value = 0.7463
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of regressors \tabularnewline
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0.1355, df1 = 12, df2 = 149, p-value = 0.9998
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of principal components \tabularnewline
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.0060125, df1 = 2, df2 = 159, p-value = 0.994
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=301610&T=7

[TABLE]
[ROW][C]Ramsey RESET F-Test for powers (2 and 3) of fitted values[/C][/ROW]
[ROW][C]
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.29314, df1 = 2, df2 = 159, p-value = 0.7463
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of regressors[/C][/ROW] [ROW][C]
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0.1355, df1 = 12, df2 = 149, p-value = 0.9998
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of principal components[/C][/ROW] [ROW][C]
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.0060125, df1 = 2, df2 = 159, p-value = 0.994
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=301610&T=7

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301610&T=7

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.29314, df1 = 2, df2 = 159, p-value = 0.7463
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0.1355, df1 = 12, df2 = 149, p-value = 0.9998
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.0060125, df1 = 2, df2 = 159, p-value = 0.994







Variance Inflation Factors (Multicollinearity)
> vif
           TVDC1            TVDC2            TVDC3            TVDC4 
        1.321299         1.226022         1.301919         1.088301 
`ALG2(leeftijd)` `ALG4(geslacht)` 
        1.005991         1.020722 

\begin{tabular}{lllllllll}
\hline
Variance Inflation Factors (Multicollinearity) \tabularnewline
> vif
           TVDC1            TVDC2            TVDC3            TVDC4 
        1.321299         1.226022         1.301919         1.088301 
`ALG2(leeftijd)` `ALG4(geslacht)` 
        1.005991         1.020722 
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=301610&T=8

[TABLE]
[ROW][C]Variance Inflation Factors (Multicollinearity)[/C][/ROW]
[ROW][C]
> vif
           TVDC1            TVDC2            TVDC3            TVDC4 
        1.321299         1.226022         1.301919         1.088301 
`ALG2(leeftijd)` `ALG4(geslacht)` 
        1.005991         1.020722 
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=301610&T=8

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301610&T=8

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variance Inflation Factors (Multicollinearity)
> vif
           TVDC1            TVDC2            TVDC3            TVDC4 
        1.321299         1.226022         1.301919         1.088301 
`ALG2(leeftijd)` `ALG4(geslacht)` 
        1.005991         1.020722 



Parameters (Session):
par1 = 12 ;
Parameters (R input):
par1 = 7 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = ; par5 = ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
library(car)
library(MASS)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
mywarning <- ''
par1 <- as.numeric(par1)
if(is.na(par1)) {
par1 <- 1
mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.'
}
if (par4=='') par4 <- 0
par4 <- as.numeric(par4)
if (par5=='') par5 <- 0
par5 <- as.numeric(par5)
x <- na.omit(t(y))
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'Seasonal Differences (s=12)'){
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'First and Seasonal Differences (s=12)'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if(par4 > 0) {
x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep='')))
for (i in 1:(n-par4)) {
for (j in 1:par4) {
x2[i,j] <- x[i+par4-j,par1]
}
}
x <- cbind(x[(par4+1):n,], x2)
n <- n - par4
}
if(par5 > 0) {
x2 <- array(0, dim=c(n-par5*12,par5), dimnames=list(1:(n-par5*12), paste(colnames(x)[par1],'(t-',1:par5,'s)',sep='')))
for (i in 1:(n-par5*12)) {
for (j in 1:par5) {
x2[i,j] <- x[i+par5*12-j*12,par1]
}
}
x <- cbind(x[(par5*12+1):n,], x2)
n <- n - par5*12
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
(k <- length(x[n,]))
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
print(x)
(k <- length(x[n,]))
head(x)
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
sresid <- studres(mylm)
hist(sresid, freq=FALSE, main='Distribution of Studentized Residuals')
xfit<-seq(min(sresid),max(sresid),length=40)
yfit<-dnorm(xfit)
lines(xfit, yfit)
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqPlot(mylm, main='QQ Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
print(z)
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, mywarning)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Multiple Linear Regression - Ordinary Least Squares', 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
myr <- as.numeric(mysum$resid)
myr
if(n < 200) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' '))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of fitted values',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_fitted <- resettest(mylm,power=2:3,type='fitted')
a<-table.element(a,paste('
',RC.texteval('reset_test_fitted'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of regressors',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_regressors <- resettest(mylm,power=2:3,type='regressor')
a<-table.element(a,paste('
',RC.texteval('reset_test_regressors'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of principal components',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_principal_components <- resettest(mylm,power=2:3,type='princomp')
a<-table.element(a,paste('
',RC.texteval('reset_test_principal_components'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable8.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variance Inflation Factors (Multicollinearity)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
vif <- vif(mylm)
a<-table.element(a,paste('
',RC.texteval('vif'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable9.tab')