Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_decompose.wasp
Title produced by softwareClassical Decomposition
Date of computationTue, 20 Dec 2016 11:42:22 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/20/t14822320016bt7oa8fn4t8uwb.htm/, Retrieved Fri, 01 Nov 2024 03:29:42 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=301605, Retrieved Fri, 01 Nov 2024 03:29:42 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact117
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Classical Decomposition] [classical decompo...] [2016-12-20 10:42:22] [6db9e6f0306aa16a744aea8c8a65c446] [Current]
Feedback Forum

Post a new message
Dataseries X:
2850
2360
2880
3000
3120
2910
3380
3730
2960
4070
4660
3880
4190
4140
4060
4250
4380
4780
4460
4820
4580
4630
5030
4370
4240
4220
4070
4290
4340
4250
4520
4680
4200
4490
4840
3840
3940
3510
3240
3410
3290
3190
3790
4090
4180
5020
5910
5850
6660
6950
6850
6360
5600
5290
5630
5410
5020
5070
5370
4860
4440
4220
3720
3650
3650
3040
3530
3520
3030
2920
3530
2920
3520
3380
2920
3000
2860
2760
2810
3400
2730
2670
2900
2240
2920
2650
2370
2560
2430
1930
2360
2470
2720
2750
3010
2610
3440
3540
2790
3060
3050
3000
3200
3530
3640
3830
4460
3420
5180
5310
4870
4550
4510
4380
5260
5270
4610
4840
5050
4760
5210
5540
4830
5210
5320
5150




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301605&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=301605&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301605&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
12850NANA336.725NA
22360NANA253.113NA
32880NANA-98.3218NA
43000NANA-82.8588NA
53120NANA-201.563NA
62910NANA-372.998NA
733803323.343372.5-49.155156.6551
837303628.263502.5125.762101.738
929603405.223625.83-220.613-445.22
1040703751.143727.0824.0532318.863
1146604284.343831.67452.678375.655
1238803795.263962.08-166.82284.7384
1341904421.724085336.725-231.725
1441404428.534175.42253.113-288.53
1540604190.014288.33-98.3218-130.012
1642504296.314379.17-82.8588-46.3079
1743804216.354417.92-201.563163.646
1847804080.754453.75-372.998699.248
1944604427.094476.25-49.155132.9051
2048204607.434481.67125.762212.572
2145804264.84485.42-220.613315.197
2246304511.554487.524.0532118.447
2350304940.184487.5452.67889.8218
2443704296.934463.75-166.82273.0718
2542404780.894444.17336.725-540.891
2642204693.954440.83253.113-473.947
2740704320.844419.17-98.3218-250.845
2842904314.644397.5-82.8588-24.6412
2943404182.194383.75-201.563157.813
3042503980.754353.75-372.998269.248
3145204270.014319.17-49.1551249.988
3246804402.844277.08125.762277.155
3342003992.34212.92-220.613207.697
3444904165.724141.6724.0532324.28
3548404513.934061.25452.678326.072
3638403806.513973.33-166.82233.4884
3739404235.473898.75336.725-295.475
3835104096.863843.75253.113-586.863
3932403720.013818.33-98.3218-480.012
4034103756.723839.58-82.8588-346.725
4132903704.693906.25-201.563-414.687
4231903661.594034.58-372.998-471.586
4337904182.514231.67-49.1551-392.512
4440904614.094488.33125.762-524.095
4541804561.474782.08-220.613-381.47
4650205079.475055.4224.0532-59.4699
4759105727.265274.58452.678182.738
4858505291.515458.33-166.822558.488
4966605959.225622.5336.725700.775
5069506007.285754.17253.113942.72
5168505745.845844.17-98.32181104.16
5263605798.395881.25-82.8588561.609
5356005659.275860.83-201.563-59.2708
5452905424.095797.08-372.998-134.086
5556305614.185663.33-49.155115.8218
5654105582.845457.08125.762-172.845
5750204992.35212.92-220.61327.6968
5850704993.644969.5824.053276.3634
5953705228.094775.42452.678141.905
6048604433.594600.42-166.822426.405
6144404755.894419.17336.725-315.891
6242204506.034252.92253.113-286.03
6337203992.934091.25-98.3218-272.928
6436503835.893918.75-82.8588-185.891
6536503550.943752.5-201.56399.0625
66304032223595-372.998-182.002
6735303426.683475.83-49.1551103.322
6835203528.263402.5125.762-8.26157
6930303113.553334.17-220.613-83.5532
7029203297.83273.7524.0532-377.803
7135303666.433213.75452.678-136.428
7229203002.343169.17-166.822-82.3449
7335203464.223127.5336.72555.7755
7433803345.613092.5253.11334.3866
7529202976.683075-98.3218-56.6782
7630002969.223052.08-82.858830.7755
7728602813.853015.42-201.56346.1458
7827602587.842960.83-372.998172.164
7928102858.342907.5-49.1551-48.3449
8034002977.842852.08125.762422.155
8127302578.142798.75-220.613151.863
8226702781.552757.524.0532-111.553
8329003173.932721.25452.678-273.928
8422402501.932668.75-166.822-261.928
8529202952.142615.42336.725-32.1412
8626502811.032557.92253.113-161.03
8723702420.432518.75-98.3218-50.4282
8825602438.812521.67-82.8588121.192
8924302328.022529.58-201.563101.979
9019302176.592549.58-372.998-246.586
9123602537.512586.67-49.1551-177.512
9224702771.182645.42125.762-301.178
9327202479.392700-220.613240.613
9427502762.392738.3324.0532-12.3866
9530103237.682785452.678-227.678
9626102688.592855.42-166.822-78.5949
9734403271.722935336.725168.275
9835403267.283014.17253.113272.72
9927902998.343096.67-98.3218-208.345
10030603097.143180-82.8588-37.1412
10130503083.853285.42-201.563-33.8542
10230003006.593379.58-372.998-6.58565
10332003436.683485.83-49.1551-236.678
10435303757.843632.08125.762-227.845
10536403571.893792.5-220.61368.1134
10638303965.33941.2524.0532-135.303
10744604516.844064.17452.678-56.8449
10834204015.684182.5-166.822-595.678
10951804662.564325.83336.725517.442
11053104737.284484.17253.113572.72
11148704498.764597.08-98.3218371.238
11245504596.724679.58-82.8588-46.7245
11345104544.694746.25-201.563-34.6875
11443804453.674826.67-372.998-73.669
11552604834.594883.75-49.1551425.405
11652705020.344894.58125.762249.655
11746104681.894902.5-220.613-71.8866
11848404952.394928.3324.0532-112.387
11950505442.264989.58452.678-392.262
12047604888.595055.42-166.822-128.595
1215210NANA336.725NA
1225540NANA253.113NA
1234830NANA-98.3218NA
1245210NANA-82.8588NA
1255320NANA-201.563NA
1265150NANA-372.998NA

\begin{tabular}{lllllllll}
\hline
Classical Decomposition by Moving Averages \tabularnewline
t & Observations & Fit & Trend & Seasonal & Random \tabularnewline
1 & 2850 & NA & NA & 336.725 & NA \tabularnewline
2 & 2360 & NA & NA & 253.113 & NA \tabularnewline
3 & 2880 & NA & NA & -98.3218 & NA \tabularnewline
4 & 3000 & NA & NA & -82.8588 & NA \tabularnewline
5 & 3120 & NA & NA & -201.563 & NA \tabularnewline
6 & 2910 & NA & NA & -372.998 & NA \tabularnewline
7 & 3380 & 3323.34 & 3372.5 & -49.1551 & 56.6551 \tabularnewline
8 & 3730 & 3628.26 & 3502.5 & 125.762 & 101.738 \tabularnewline
9 & 2960 & 3405.22 & 3625.83 & -220.613 & -445.22 \tabularnewline
10 & 4070 & 3751.14 & 3727.08 & 24.0532 & 318.863 \tabularnewline
11 & 4660 & 4284.34 & 3831.67 & 452.678 & 375.655 \tabularnewline
12 & 3880 & 3795.26 & 3962.08 & -166.822 & 84.7384 \tabularnewline
13 & 4190 & 4421.72 & 4085 & 336.725 & -231.725 \tabularnewline
14 & 4140 & 4428.53 & 4175.42 & 253.113 & -288.53 \tabularnewline
15 & 4060 & 4190.01 & 4288.33 & -98.3218 & -130.012 \tabularnewline
16 & 4250 & 4296.31 & 4379.17 & -82.8588 & -46.3079 \tabularnewline
17 & 4380 & 4216.35 & 4417.92 & -201.563 & 163.646 \tabularnewline
18 & 4780 & 4080.75 & 4453.75 & -372.998 & 699.248 \tabularnewline
19 & 4460 & 4427.09 & 4476.25 & -49.1551 & 32.9051 \tabularnewline
20 & 4820 & 4607.43 & 4481.67 & 125.762 & 212.572 \tabularnewline
21 & 4580 & 4264.8 & 4485.42 & -220.613 & 315.197 \tabularnewline
22 & 4630 & 4511.55 & 4487.5 & 24.0532 & 118.447 \tabularnewline
23 & 5030 & 4940.18 & 4487.5 & 452.678 & 89.8218 \tabularnewline
24 & 4370 & 4296.93 & 4463.75 & -166.822 & 73.0718 \tabularnewline
25 & 4240 & 4780.89 & 4444.17 & 336.725 & -540.891 \tabularnewline
26 & 4220 & 4693.95 & 4440.83 & 253.113 & -473.947 \tabularnewline
27 & 4070 & 4320.84 & 4419.17 & -98.3218 & -250.845 \tabularnewline
28 & 4290 & 4314.64 & 4397.5 & -82.8588 & -24.6412 \tabularnewline
29 & 4340 & 4182.19 & 4383.75 & -201.563 & 157.813 \tabularnewline
30 & 4250 & 3980.75 & 4353.75 & -372.998 & 269.248 \tabularnewline
31 & 4520 & 4270.01 & 4319.17 & -49.1551 & 249.988 \tabularnewline
32 & 4680 & 4402.84 & 4277.08 & 125.762 & 277.155 \tabularnewline
33 & 4200 & 3992.3 & 4212.92 & -220.613 & 207.697 \tabularnewline
34 & 4490 & 4165.72 & 4141.67 & 24.0532 & 324.28 \tabularnewline
35 & 4840 & 4513.93 & 4061.25 & 452.678 & 326.072 \tabularnewline
36 & 3840 & 3806.51 & 3973.33 & -166.822 & 33.4884 \tabularnewline
37 & 3940 & 4235.47 & 3898.75 & 336.725 & -295.475 \tabularnewline
38 & 3510 & 4096.86 & 3843.75 & 253.113 & -586.863 \tabularnewline
39 & 3240 & 3720.01 & 3818.33 & -98.3218 & -480.012 \tabularnewline
40 & 3410 & 3756.72 & 3839.58 & -82.8588 & -346.725 \tabularnewline
41 & 3290 & 3704.69 & 3906.25 & -201.563 & -414.687 \tabularnewline
42 & 3190 & 3661.59 & 4034.58 & -372.998 & -471.586 \tabularnewline
43 & 3790 & 4182.51 & 4231.67 & -49.1551 & -392.512 \tabularnewline
44 & 4090 & 4614.09 & 4488.33 & 125.762 & -524.095 \tabularnewline
45 & 4180 & 4561.47 & 4782.08 & -220.613 & -381.47 \tabularnewline
46 & 5020 & 5079.47 & 5055.42 & 24.0532 & -59.4699 \tabularnewline
47 & 5910 & 5727.26 & 5274.58 & 452.678 & 182.738 \tabularnewline
48 & 5850 & 5291.51 & 5458.33 & -166.822 & 558.488 \tabularnewline
49 & 6660 & 5959.22 & 5622.5 & 336.725 & 700.775 \tabularnewline
50 & 6950 & 6007.28 & 5754.17 & 253.113 & 942.72 \tabularnewline
51 & 6850 & 5745.84 & 5844.17 & -98.3218 & 1104.16 \tabularnewline
52 & 6360 & 5798.39 & 5881.25 & -82.8588 & 561.609 \tabularnewline
53 & 5600 & 5659.27 & 5860.83 & -201.563 & -59.2708 \tabularnewline
54 & 5290 & 5424.09 & 5797.08 & -372.998 & -134.086 \tabularnewline
55 & 5630 & 5614.18 & 5663.33 & -49.1551 & 15.8218 \tabularnewline
56 & 5410 & 5582.84 & 5457.08 & 125.762 & -172.845 \tabularnewline
57 & 5020 & 4992.3 & 5212.92 & -220.613 & 27.6968 \tabularnewline
58 & 5070 & 4993.64 & 4969.58 & 24.0532 & 76.3634 \tabularnewline
59 & 5370 & 5228.09 & 4775.42 & 452.678 & 141.905 \tabularnewline
60 & 4860 & 4433.59 & 4600.42 & -166.822 & 426.405 \tabularnewline
61 & 4440 & 4755.89 & 4419.17 & 336.725 & -315.891 \tabularnewline
62 & 4220 & 4506.03 & 4252.92 & 253.113 & -286.03 \tabularnewline
63 & 3720 & 3992.93 & 4091.25 & -98.3218 & -272.928 \tabularnewline
64 & 3650 & 3835.89 & 3918.75 & -82.8588 & -185.891 \tabularnewline
65 & 3650 & 3550.94 & 3752.5 & -201.563 & 99.0625 \tabularnewline
66 & 3040 & 3222 & 3595 & -372.998 & -182.002 \tabularnewline
67 & 3530 & 3426.68 & 3475.83 & -49.1551 & 103.322 \tabularnewline
68 & 3520 & 3528.26 & 3402.5 & 125.762 & -8.26157 \tabularnewline
69 & 3030 & 3113.55 & 3334.17 & -220.613 & -83.5532 \tabularnewline
70 & 2920 & 3297.8 & 3273.75 & 24.0532 & -377.803 \tabularnewline
71 & 3530 & 3666.43 & 3213.75 & 452.678 & -136.428 \tabularnewline
72 & 2920 & 3002.34 & 3169.17 & -166.822 & -82.3449 \tabularnewline
73 & 3520 & 3464.22 & 3127.5 & 336.725 & 55.7755 \tabularnewline
74 & 3380 & 3345.61 & 3092.5 & 253.113 & 34.3866 \tabularnewline
75 & 2920 & 2976.68 & 3075 & -98.3218 & -56.6782 \tabularnewline
76 & 3000 & 2969.22 & 3052.08 & -82.8588 & 30.7755 \tabularnewline
77 & 2860 & 2813.85 & 3015.42 & -201.563 & 46.1458 \tabularnewline
78 & 2760 & 2587.84 & 2960.83 & -372.998 & 172.164 \tabularnewline
79 & 2810 & 2858.34 & 2907.5 & -49.1551 & -48.3449 \tabularnewline
80 & 3400 & 2977.84 & 2852.08 & 125.762 & 422.155 \tabularnewline
81 & 2730 & 2578.14 & 2798.75 & -220.613 & 151.863 \tabularnewline
82 & 2670 & 2781.55 & 2757.5 & 24.0532 & -111.553 \tabularnewline
83 & 2900 & 3173.93 & 2721.25 & 452.678 & -273.928 \tabularnewline
84 & 2240 & 2501.93 & 2668.75 & -166.822 & -261.928 \tabularnewline
85 & 2920 & 2952.14 & 2615.42 & 336.725 & -32.1412 \tabularnewline
86 & 2650 & 2811.03 & 2557.92 & 253.113 & -161.03 \tabularnewline
87 & 2370 & 2420.43 & 2518.75 & -98.3218 & -50.4282 \tabularnewline
88 & 2560 & 2438.81 & 2521.67 & -82.8588 & 121.192 \tabularnewline
89 & 2430 & 2328.02 & 2529.58 & -201.563 & 101.979 \tabularnewline
90 & 1930 & 2176.59 & 2549.58 & -372.998 & -246.586 \tabularnewline
91 & 2360 & 2537.51 & 2586.67 & -49.1551 & -177.512 \tabularnewline
92 & 2470 & 2771.18 & 2645.42 & 125.762 & -301.178 \tabularnewline
93 & 2720 & 2479.39 & 2700 & -220.613 & 240.613 \tabularnewline
94 & 2750 & 2762.39 & 2738.33 & 24.0532 & -12.3866 \tabularnewline
95 & 3010 & 3237.68 & 2785 & 452.678 & -227.678 \tabularnewline
96 & 2610 & 2688.59 & 2855.42 & -166.822 & -78.5949 \tabularnewline
97 & 3440 & 3271.72 & 2935 & 336.725 & 168.275 \tabularnewline
98 & 3540 & 3267.28 & 3014.17 & 253.113 & 272.72 \tabularnewline
99 & 2790 & 2998.34 & 3096.67 & -98.3218 & -208.345 \tabularnewline
100 & 3060 & 3097.14 & 3180 & -82.8588 & -37.1412 \tabularnewline
101 & 3050 & 3083.85 & 3285.42 & -201.563 & -33.8542 \tabularnewline
102 & 3000 & 3006.59 & 3379.58 & -372.998 & -6.58565 \tabularnewline
103 & 3200 & 3436.68 & 3485.83 & -49.1551 & -236.678 \tabularnewline
104 & 3530 & 3757.84 & 3632.08 & 125.762 & -227.845 \tabularnewline
105 & 3640 & 3571.89 & 3792.5 & -220.613 & 68.1134 \tabularnewline
106 & 3830 & 3965.3 & 3941.25 & 24.0532 & -135.303 \tabularnewline
107 & 4460 & 4516.84 & 4064.17 & 452.678 & -56.8449 \tabularnewline
108 & 3420 & 4015.68 & 4182.5 & -166.822 & -595.678 \tabularnewline
109 & 5180 & 4662.56 & 4325.83 & 336.725 & 517.442 \tabularnewline
110 & 5310 & 4737.28 & 4484.17 & 253.113 & 572.72 \tabularnewline
111 & 4870 & 4498.76 & 4597.08 & -98.3218 & 371.238 \tabularnewline
112 & 4550 & 4596.72 & 4679.58 & -82.8588 & -46.7245 \tabularnewline
113 & 4510 & 4544.69 & 4746.25 & -201.563 & -34.6875 \tabularnewline
114 & 4380 & 4453.67 & 4826.67 & -372.998 & -73.669 \tabularnewline
115 & 5260 & 4834.59 & 4883.75 & -49.1551 & 425.405 \tabularnewline
116 & 5270 & 5020.34 & 4894.58 & 125.762 & 249.655 \tabularnewline
117 & 4610 & 4681.89 & 4902.5 & -220.613 & -71.8866 \tabularnewline
118 & 4840 & 4952.39 & 4928.33 & 24.0532 & -112.387 \tabularnewline
119 & 5050 & 5442.26 & 4989.58 & 452.678 & -392.262 \tabularnewline
120 & 4760 & 4888.59 & 5055.42 & -166.822 & -128.595 \tabularnewline
121 & 5210 & NA & NA & 336.725 & NA \tabularnewline
122 & 5540 & NA & NA & 253.113 & NA \tabularnewline
123 & 4830 & NA & NA & -98.3218 & NA \tabularnewline
124 & 5210 & NA & NA & -82.8588 & NA \tabularnewline
125 & 5320 & NA & NA & -201.563 & NA \tabularnewline
126 & 5150 & NA & NA & -372.998 & NA \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301605&T=1

[TABLE]
[ROW][C]Classical Decomposition by Moving Averages[/C][/ROW]
[ROW][C]t[/C][C]Observations[/C][C]Fit[/C][C]Trend[/C][C]Seasonal[/C][C]Random[/C][/ROW]
[ROW][C]1[/C][C]2850[/C][C]NA[/C][C]NA[/C][C]336.725[/C][C]NA[/C][/ROW]
[ROW][C]2[/C][C]2360[/C][C]NA[/C][C]NA[/C][C]253.113[/C][C]NA[/C][/ROW]
[ROW][C]3[/C][C]2880[/C][C]NA[/C][C]NA[/C][C]-98.3218[/C][C]NA[/C][/ROW]
[ROW][C]4[/C][C]3000[/C][C]NA[/C][C]NA[/C][C]-82.8588[/C][C]NA[/C][/ROW]
[ROW][C]5[/C][C]3120[/C][C]NA[/C][C]NA[/C][C]-201.563[/C][C]NA[/C][/ROW]
[ROW][C]6[/C][C]2910[/C][C]NA[/C][C]NA[/C][C]-372.998[/C][C]NA[/C][/ROW]
[ROW][C]7[/C][C]3380[/C][C]3323.34[/C][C]3372.5[/C][C]-49.1551[/C][C]56.6551[/C][/ROW]
[ROW][C]8[/C][C]3730[/C][C]3628.26[/C][C]3502.5[/C][C]125.762[/C][C]101.738[/C][/ROW]
[ROW][C]9[/C][C]2960[/C][C]3405.22[/C][C]3625.83[/C][C]-220.613[/C][C]-445.22[/C][/ROW]
[ROW][C]10[/C][C]4070[/C][C]3751.14[/C][C]3727.08[/C][C]24.0532[/C][C]318.863[/C][/ROW]
[ROW][C]11[/C][C]4660[/C][C]4284.34[/C][C]3831.67[/C][C]452.678[/C][C]375.655[/C][/ROW]
[ROW][C]12[/C][C]3880[/C][C]3795.26[/C][C]3962.08[/C][C]-166.822[/C][C]84.7384[/C][/ROW]
[ROW][C]13[/C][C]4190[/C][C]4421.72[/C][C]4085[/C][C]336.725[/C][C]-231.725[/C][/ROW]
[ROW][C]14[/C][C]4140[/C][C]4428.53[/C][C]4175.42[/C][C]253.113[/C][C]-288.53[/C][/ROW]
[ROW][C]15[/C][C]4060[/C][C]4190.01[/C][C]4288.33[/C][C]-98.3218[/C][C]-130.012[/C][/ROW]
[ROW][C]16[/C][C]4250[/C][C]4296.31[/C][C]4379.17[/C][C]-82.8588[/C][C]-46.3079[/C][/ROW]
[ROW][C]17[/C][C]4380[/C][C]4216.35[/C][C]4417.92[/C][C]-201.563[/C][C]163.646[/C][/ROW]
[ROW][C]18[/C][C]4780[/C][C]4080.75[/C][C]4453.75[/C][C]-372.998[/C][C]699.248[/C][/ROW]
[ROW][C]19[/C][C]4460[/C][C]4427.09[/C][C]4476.25[/C][C]-49.1551[/C][C]32.9051[/C][/ROW]
[ROW][C]20[/C][C]4820[/C][C]4607.43[/C][C]4481.67[/C][C]125.762[/C][C]212.572[/C][/ROW]
[ROW][C]21[/C][C]4580[/C][C]4264.8[/C][C]4485.42[/C][C]-220.613[/C][C]315.197[/C][/ROW]
[ROW][C]22[/C][C]4630[/C][C]4511.55[/C][C]4487.5[/C][C]24.0532[/C][C]118.447[/C][/ROW]
[ROW][C]23[/C][C]5030[/C][C]4940.18[/C][C]4487.5[/C][C]452.678[/C][C]89.8218[/C][/ROW]
[ROW][C]24[/C][C]4370[/C][C]4296.93[/C][C]4463.75[/C][C]-166.822[/C][C]73.0718[/C][/ROW]
[ROW][C]25[/C][C]4240[/C][C]4780.89[/C][C]4444.17[/C][C]336.725[/C][C]-540.891[/C][/ROW]
[ROW][C]26[/C][C]4220[/C][C]4693.95[/C][C]4440.83[/C][C]253.113[/C][C]-473.947[/C][/ROW]
[ROW][C]27[/C][C]4070[/C][C]4320.84[/C][C]4419.17[/C][C]-98.3218[/C][C]-250.845[/C][/ROW]
[ROW][C]28[/C][C]4290[/C][C]4314.64[/C][C]4397.5[/C][C]-82.8588[/C][C]-24.6412[/C][/ROW]
[ROW][C]29[/C][C]4340[/C][C]4182.19[/C][C]4383.75[/C][C]-201.563[/C][C]157.813[/C][/ROW]
[ROW][C]30[/C][C]4250[/C][C]3980.75[/C][C]4353.75[/C][C]-372.998[/C][C]269.248[/C][/ROW]
[ROW][C]31[/C][C]4520[/C][C]4270.01[/C][C]4319.17[/C][C]-49.1551[/C][C]249.988[/C][/ROW]
[ROW][C]32[/C][C]4680[/C][C]4402.84[/C][C]4277.08[/C][C]125.762[/C][C]277.155[/C][/ROW]
[ROW][C]33[/C][C]4200[/C][C]3992.3[/C][C]4212.92[/C][C]-220.613[/C][C]207.697[/C][/ROW]
[ROW][C]34[/C][C]4490[/C][C]4165.72[/C][C]4141.67[/C][C]24.0532[/C][C]324.28[/C][/ROW]
[ROW][C]35[/C][C]4840[/C][C]4513.93[/C][C]4061.25[/C][C]452.678[/C][C]326.072[/C][/ROW]
[ROW][C]36[/C][C]3840[/C][C]3806.51[/C][C]3973.33[/C][C]-166.822[/C][C]33.4884[/C][/ROW]
[ROW][C]37[/C][C]3940[/C][C]4235.47[/C][C]3898.75[/C][C]336.725[/C][C]-295.475[/C][/ROW]
[ROW][C]38[/C][C]3510[/C][C]4096.86[/C][C]3843.75[/C][C]253.113[/C][C]-586.863[/C][/ROW]
[ROW][C]39[/C][C]3240[/C][C]3720.01[/C][C]3818.33[/C][C]-98.3218[/C][C]-480.012[/C][/ROW]
[ROW][C]40[/C][C]3410[/C][C]3756.72[/C][C]3839.58[/C][C]-82.8588[/C][C]-346.725[/C][/ROW]
[ROW][C]41[/C][C]3290[/C][C]3704.69[/C][C]3906.25[/C][C]-201.563[/C][C]-414.687[/C][/ROW]
[ROW][C]42[/C][C]3190[/C][C]3661.59[/C][C]4034.58[/C][C]-372.998[/C][C]-471.586[/C][/ROW]
[ROW][C]43[/C][C]3790[/C][C]4182.51[/C][C]4231.67[/C][C]-49.1551[/C][C]-392.512[/C][/ROW]
[ROW][C]44[/C][C]4090[/C][C]4614.09[/C][C]4488.33[/C][C]125.762[/C][C]-524.095[/C][/ROW]
[ROW][C]45[/C][C]4180[/C][C]4561.47[/C][C]4782.08[/C][C]-220.613[/C][C]-381.47[/C][/ROW]
[ROW][C]46[/C][C]5020[/C][C]5079.47[/C][C]5055.42[/C][C]24.0532[/C][C]-59.4699[/C][/ROW]
[ROW][C]47[/C][C]5910[/C][C]5727.26[/C][C]5274.58[/C][C]452.678[/C][C]182.738[/C][/ROW]
[ROW][C]48[/C][C]5850[/C][C]5291.51[/C][C]5458.33[/C][C]-166.822[/C][C]558.488[/C][/ROW]
[ROW][C]49[/C][C]6660[/C][C]5959.22[/C][C]5622.5[/C][C]336.725[/C][C]700.775[/C][/ROW]
[ROW][C]50[/C][C]6950[/C][C]6007.28[/C][C]5754.17[/C][C]253.113[/C][C]942.72[/C][/ROW]
[ROW][C]51[/C][C]6850[/C][C]5745.84[/C][C]5844.17[/C][C]-98.3218[/C][C]1104.16[/C][/ROW]
[ROW][C]52[/C][C]6360[/C][C]5798.39[/C][C]5881.25[/C][C]-82.8588[/C][C]561.609[/C][/ROW]
[ROW][C]53[/C][C]5600[/C][C]5659.27[/C][C]5860.83[/C][C]-201.563[/C][C]-59.2708[/C][/ROW]
[ROW][C]54[/C][C]5290[/C][C]5424.09[/C][C]5797.08[/C][C]-372.998[/C][C]-134.086[/C][/ROW]
[ROW][C]55[/C][C]5630[/C][C]5614.18[/C][C]5663.33[/C][C]-49.1551[/C][C]15.8218[/C][/ROW]
[ROW][C]56[/C][C]5410[/C][C]5582.84[/C][C]5457.08[/C][C]125.762[/C][C]-172.845[/C][/ROW]
[ROW][C]57[/C][C]5020[/C][C]4992.3[/C][C]5212.92[/C][C]-220.613[/C][C]27.6968[/C][/ROW]
[ROW][C]58[/C][C]5070[/C][C]4993.64[/C][C]4969.58[/C][C]24.0532[/C][C]76.3634[/C][/ROW]
[ROW][C]59[/C][C]5370[/C][C]5228.09[/C][C]4775.42[/C][C]452.678[/C][C]141.905[/C][/ROW]
[ROW][C]60[/C][C]4860[/C][C]4433.59[/C][C]4600.42[/C][C]-166.822[/C][C]426.405[/C][/ROW]
[ROW][C]61[/C][C]4440[/C][C]4755.89[/C][C]4419.17[/C][C]336.725[/C][C]-315.891[/C][/ROW]
[ROW][C]62[/C][C]4220[/C][C]4506.03[/C][C]4252.92[/C][C]253.113[/C][C]-286.03[/C][/ROW]
[ROW][C]63[/C][C]3720[/C][C]3992.93[/C][C]4091.25[/C][C]-98.3218[/C][C]-272.928[/C][/ROW]
[ROW][C]64[/C][C]3650[/C][C]3835.89[/C][C]3918.75[/C][C]-82.8588[/C][C]-185.891[/C][/ROW]
[ROW][C]65[/C][C]3650[/C][C]3550.94[/C][C]3752.5[/C][C]-201.563[/C][C]99.0625[/C][/ROW]
[ROW][C]66[/C][C]3040[/C][C]3222[/C][C]3595[/C][C]-372.998[/C][C]-182.002[/C][/ROW]
[ROW][C]67[/C][C]3530[/C][C]3426.68[/C][C]3475.83[/C][C]-49.1551[/C][C]103.322[/C][/ROW]
[ROW][C]68[/C][C]3520[/C][C]3528.26[/C][C]3402.5[/C][C]125.762[/C][C]-8.26157[/C][/ROW]
[ROW][C]69[/C][C]3030[/C][C]3113.55[/C][C]3334.17[/C][C]-220.613[/C][C]-83.5532[/C][/ROW]
[ROW][C]70[/C][C]2920[/C][C]3297.8[/C][C]3273.75[/C][C]24.0532[/C][C]-377.803[/C][/ROW]
[ROW][C]71[/C][C]3530[/C][C]3666.43[/C][C]3213.75[/C][C]452.678[/C][C]-136.428[/C][/ROW]
[ROW][C]72[/C][C]2920[/C][C]3002.34[/C][C]3169.17[/C][C]-166.822[/C][C]-82.3449[/C][/ROW]
[ROW][C]73[/C][C]3520[/C][C]3464.22[/C][C]3127.5[/C][C]336.725[/C][C]55.7755[/C][/ROW]
[ROW][C]74[/C][C]3380[/C][C]3345.61[/C][C]3092.5[/C][C]253.113[/C][C]34.3866[/C][/ROW]
[ROW][C]75[/C][C]2920[/C][C]2976.68[/C][C]3075[/C][C]-98.3218[/C][C]-56.6782[/C][/ROW]
[ROW][C]76[/C][C]3000[/C][C]2969.22[/C][C]3052.08[/C][C]-82.8588[/C][C]30.7755[/C][/ROW]
[ROW][C]77[/C][C]2860[/C][C]2813.85[/C][C]3015.42[/C][C]-201.563[/C][C]46.1458[/C][/ROW]
[ROW][C]78[/C][C]2760[/C][C]2587.84[/C][C]2960.83[/C][C]-372.998[/C][C]172.164[/C][/ROW]
[ROW][C]79[/C][C]2810[/C][C]2858.34[/C][C]2907.5[/C][C]-49.1551[/C][C]-48.3449[/C][/ROW]
[ROW][C]80[/C][C]3400[/C][C]2977.84[/C][C]2852.08[/C][C]125.762[/C][C]422.155[/C][/ROW]
[ROW][C]81[/C][C]2730[/C][C]2578.14[/C][C]2798.75[/C][C]-220.613[/C][C]151.863[/C][/ROW]
[ROW][C]82[/C][C]2670[/C][C]2781.55[/C][C]2757.5[/C][C]24.0532[/C][C]-111.553[/C][/ROW]
[ROW][C]83[/C][C]2900[/C][C]3173.93[/C][C]2721.25[/C][C]452.678[/C][C]-273.928[/C][/ROW]
[ROW][C]84[/C][C]2240[/C][C]2501.93[/C][C]2668.75[/C][C]-166.822[/C][C]-261.928[/C][/ROW]
[ROW][C]85[/C][C]2920[/C][C]2952.14[/C][C]2615.42[/C][C]336.725[/C][C]-32.1412[/C][/ROW]
[ROW][C]86[/C][C]2650[/C][C]2811.03[/C][C]2557.92[/C][C]253.113[/C][C]-161.03[/C][/ROW]
[ROW][C]87[/C][C]2370[/C][C]2420.43[/C][C]2518.75[/C][C]-98.3218[/C][C]-50.4282[/C][/ROW]
[ROW][C]88[/C][C]2560[/C][C]2438.81[/C][C]2521.67[/C][C]-82.8588[/C][C]121.192[/C][/ROW]
[ROW][C]89[/C][C]2430[/C][C]2328.02[/C][C]2529.58[/C][C]-201.563[/C][C]101.979[/C][/ROW]
[ROW][C]90[/C][C]1930[/C][C]2176.59[/C][C]2549.58[/C][C]-372.998[/C][C]-246.586[/C][/ROW]
[ROW][C]91[/C][C]2360[/C][C]2537.51[/C][C]2586.67[/C][C]-49.1551[/C][C]-177.512[/C][/ROW]
[ROW][C]92[/C][C]2470[/C][C]2771.18[/C][C]2645.42[/C][C]125.762[/C][C]-301.178[/C][/ROW]
[ROW][C]93[/C][C]2720[/C][C]2479.39[/C][C]2700[/C][C]-220.613[/C][C]240.613[/C][/ROW]
[ROW][C]94[/C][C]2750[/C][C]2762.39[/C][C]2738.33[/C][C]24.0532[/C][C]-12.3866[/C][/ROW]
[ROW][C]95[/C][C]3010[/C][C]3237.68[/C][C]2785[/C][C]452.678[/C][C]-227.678[/C][/ROW]
[ROW][C]96[/C][C]2610[/C][C]2688.59[/C][C]2855.42[/C][C]-166.822[/C][C]-78.5949[/C][/ROW]
[ROW][C]97[/C][C]3440[/C][C]3271.72[/C][C]2935[/C][C]336.725[/C][C]168.275[/C][/ROW]
[ROW][C]98[/C][C]3540[/C][C]3267.28[/C][C]3014.17[/C][C]253.113[/C][C]272.72[/C][/ROW]
[ROW][C]99[/C][C]2790[/C][C]2998.34[/C][C]3096.67[/C][C]-98.3218[/C][C]-208.345[/C][/ROW]
[ROW][C]100[/C][C]3060[/C][C]3097.14[/C][C]3180[/C][C]-82.8588[/C][C]-37.1412[/C][/ROW]
[ROW][C]101[/C][C]3050[/C][C]3083.85[/C][C]3285.42[/C][C]-201.563[/C][C]-33.8542[/C][/ROW]
[ROW][C]102[/C][C]3000[/C][C]3006.59[/C][C]3379.58[/C][C]-372.998[/C][C]-6.58565[/C][/ROW]
[ROW][C]103[/C][C]3200[/C][C]3436.68[/C][C]3485.83[/C][C]-49.1551[/C][C]-236.678[/C][/ROW]
[ROW][C]104[/C][C]3530[/C][C]3757.84[/C][C]3632.08[/C][C]125.762[/C][C]-227.845[/C][/ROW]
[ROW][C]105[/C][C]3640[/C][C]3571.89[/C][C]3792.5[/C][C]-220.613[/C][C]68.1134[/C][/ROW]
[ROW][C]106[/C][C]3830[/C][C]3965.3[/C][C]3941.25[/C][C]24.0532[/C][C]-135.303[/C][/ROW]
[ROW][C]107[/C][C]4460[/C][C]4516.84[/C][C]4064.17[/C][C]452.678[/C][C]-56.8449[/C][/ROW]
[ROW][C]108[/C][C]3420[/C][C]4015.68[/C][C]4182.5[/C][C]-166.822[/C][C]-595.678[/C][/ROW]
[ROW][C]109[/C][C]5180[/C][C]4662.56[/C][C]4325.83[/C][C]336.725[/C][C]517.442[/C][/ROW]
[ROW][C]110[/C][C]5310[/C][C]4737.28[/C][C]4484.17[/C][C]253.113[/C][C]572.72[/C][/ROW]
[ROW][C]111[/C][C]4870[/C][C]4498.76[/C][C]4597.08[/C][C]-98.3218[/C][C]371.238[/C][/ROW]
[ROW][C]112[/C][C]4550[/C][C]4596.72[/C][C]4679.58[/C][C]-82.8588[/C][C]-46.7245[/C][/ROW]
[ROW][C]113[/C][C]4510[/C][C]4544.69[/C][C]4746.25[/C][C]-201.563[/C][C]-34.6875[/C][/ROW]
[ROW][C]114[/C][C]4380[/C][C]4453.67[/C][C]4826.67[/C][C]-372.998[/C][C]-73.669[/C][/ROW]
[ROW][C]115[/C][C]5260[/C][C]4834.59[/C][C]4883.75[/C][C]-49.1551[/C][C]425.405[/C][/ROW]
[ROW][C]116[/C][C]5270[/C][C]5020.34[/C][C]4894.58[/C][C]125.762[/C][C]249.655[/C][/ROW]
[ROW][C]117[/C][C]4610[/C][C]4681.89[/C][C]4902.5[/C][C]-220.613[/C][C]-71.8866[/C][/ROW]
[ROW][C]118[/C][C]4840[/C][C]4952.39[/C][C]4928.33[/C][C]24.0532[/C][C]-112.387[/C][/ROW]
[ROW][C]119[/C][C]5050[/C][C]5442.26[/C][C]4989.58[/C][C]452.678[/C][C]-392.262[/C][/ROW]
[ROW][C]120[/C][C]4760[/C][C]4888.59[/C][C]5055.42[/C][C]-166.822[/C][C]-128.595[/C][/ROW]
[ROW][C]121[/C][C]5210[/C][C]NA[/C][C]NA[/C][C]336.725[/C][C]NA[/C][/ROW]
[ROW][C]122[/C][C]5540[/C][C]NA[/C][C]NA[/C][C]253.113[/C][C]NA[/C][/ROW]
[ROW][C]123[/C][C]4830[/C][C]NA[/C][C]NA[/C][C]-98.3218[/C][C]NA[/C][/ROW]
[ROW][C]124[/C][C]5210[/C][C]NA[/C][C]NA[/C][C]-82.8588[/C][C]NA[/C][/ROW]
[ROW][C]125[/C][C]5320[/C][C]NA[/C][C]NA[/C][C]-201.563[/C][C]NA[/C][/ROW]
[ROW][C]126[/C][C]5150[/C][C]NA[/C][C]NA[/C][C]-372.998[/C][C]NA[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301605&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301605&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
12850NANA336.725NA
22360NANA253.113NA
32880NANA-98.3218NA
43000NANA-82.8588NA
53120NANA-201.563NA
62910NANA-372.998NA
733803323.343372.5-49.155156.6551
837303628.263502.5125.762101.738
929603405.223625.83-220.613-445.22
1040703751.143727.0824.0532318.863
1146604284.343831.67452.678375.655
1238803795.263962.08-166.82284.7384
1341904421.724085336.725-231.725
1441404428.534175.42253.113-288.53
1540604190.014288.33-98.3218-130.012
1642504296.314379.17-82.8588-46.3079
1743804216.354417.92-201.563163.646
1847804080.754453.75-372.998699.248
1944604427.094476.25-49.155132.9051
2048204607.434481.67125.762212.572
2145804264.84485.42-220.613315.197
2246304511.554487.524.0532118.447
2350304940.184487.5452.67889.8218
2443704296.934463.75-166.82273.0718
2542404780.894444.17336.725-540.891
2642204693.954440.83253.113-473.947
2740704320.844419.17-98.3218-250.845
2842904314.644397.5-82.8588-24.6412
2943404182.194383.75-201.563157.813
3042503980.754353.75-372.998269.248
3145204270.014319.17-49.1551249.988
3246804402.844277.08125.762277.155
3342003992.34212.92-220.613207.697
3444904165.724141.6724.0532324.28
3548404513.934061.25452.678326.072
3638403806.513973.33-166.82233.4884
3739404235.473898.75336.725-295.475
3835104096.863843.75253.113-586.863
3932403720.013818.33-98.3218-480.012
4034103756.723839.58-82.8588-346.725
4132903704.693906.25-201.563-414.687
4231903661.594034.58-372.998-471.586
4337904182.514231.67-49.1551-392.512
4440904614.094488.33125.762-524.095
4541804561.474782.08-220.613-381.47
4650205079.475055.4224.0532-59.4699
4759105727.265274.58452.678182.738
4858505291.515458.33-166.822558.488
4966605959.225622.5336.725700.775
5069506007.285754.17253.113942.72
5168505745.845844.17-98.32181104.16
5263605798.395881.25-82.8588561.609
5356005659.275860.83-201.563-59.2708
5452905424.095797.08-372.998-134.086
5556305614.185663.33-49.155115.8218
5654105582.845457.08125.762-172.845
5750204992.35212.92-220.61327.6968
5850704993.644969.5824.053276.3634
5953705228.094775.42452.678141.905
6048604433.594600.42-166.822426.405
6144404755.894419.17336.725-315.891
6242204506.034252.92253.113-286.03
6337203992.934091.25-98.3218-272.928
6436503835.893918.75-82.8588-185.891
6536503550.943752.5-201.56399.0625
66304032223595-372.998-182.002
6735303426.683475.83-49.1551103.322
6835203528.263402.5125.762-8.26157
6930303113.553334.17-220.613-83.5532
7029203297.83273.7524.0532-377.803
7135303666.433213.75452.678-136.428
7229203002.343169.17-166.822-82.3449
7335203464.223127.5336.72555.7755
7433803345.613092.5253.11334.3866
7529202976.683075-98.3218-56.6782
7630002969.223052.08-82.858830.7755
7728602813.853015.42-201.56346.1458
7827602587.842960.83-372.998172.164
7928102858.342907.5-49.1551-48.3449
8034002977.842852.08125.762422.155
8127302578.142798.75-220.613151.863
8226702781.552757.524.0532-111.553
8329003173.932721.25452.678-273.928
8422402501.932668.75-166.822-261.928
8529202952.142615.42336.725-32.1412
8626502811.032557.92253.113-161.03
8723702420.432518.75-98.3218-50.4282
8825602438.812521.67-82.8588121.192
8924302328.022529.58-201.563101.979
9019302176.592549.58-372.998-246.586
9123602537.512586.67-49.1551-177.512
9224702771.182645.42125.762-301.178
9327202479.392700-220.613240.613
9427502762.392738.3324.0532-12.3866
9530103237.682785452.678-227.678
9626102688.592855.42-166.822-78.5949
9734403271.722935336.725168.275
9835403267.283014.17253.113272.72
9927902998.343096.67-98.3218-208.345
10030603097.143180-82.8588-37.1412
10130503083.853285.42-201.563-33.8542
10230003006.593379.58-372.998-6.58565
10332003436.683485.83-49.1551-236.678
10435303757.843632.08125.762-227.845
10536403571.893792.5-220.61368.1134
10638303965.33941.2524.0532-135.303
10744604516.844064.17452.678-56.8449
10834204015.684182.5-166.822-595.678
10951804662.564325.83336.725517.442
11053104737.284484.17253.113572.72
11148704498.764597.08-98.3218371.238
11245504596.724679.58-82.8588-46.7245
11345104544.694746.25-201.563-34.6875
11443804453.674826.67-372.998-73.669
11552604834.594883.75-49.1551425.405
11652705020.344894.58125.762249.655
11746104681.894902.5-220.613-71.8866
11848404952.394928.3324.0532-112.387
11950505442.264989.58452.678-392.262
12047604888.595055.42-166.822-128.595
1215210NANA336.725NA
1225540NANA253.113NA
1234830NANA-98.3218NA
1245210NANA-82.8588NA
1255320NANA-201.563NA
1265150NANA-372.998NA



Parameters (Session):
par1 = additive ; par2 = 12 ;
Parameters (R input):
par1 = additive ; par2 = 12 ;
R code (references can be found in the software module):
par2 <- as.numeric(par2)
x <- ts(x,freq=par2)
m <- decompose(x,type=par1)
m$figure
bitmap(file='test1.png')
plot(m)
dev.off()
mylagmax <- length(x)/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$trend),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$seasonal),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$random),na.action=na.pass,lag.max = mylagmax,main='Random')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
spectrum(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
spectrum(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
cpgram(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
cpgram(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Classical Decomposition by Moving Averages',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observations',header=TRUE)
a<-table.element(a,'Fit',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Random',header=TRUE)
a<-table.row.end(a)
for (i in 1:length(m$trend)) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
if (par1 == 'additive') a<-table.element(a,signif(m$trend[i]+m$seasonal[i],6)) else a<-table.element(a,signif(m$trend[i]*m$seasonal[i],6))
a<-table.element(a,signif(m$trend[i],6))
a<-table.element(a,signif(m$seasonal[i],6))
a<-table.element(a,signif(m$random[i],6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')