Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_structuraltimeseries.wasp
Title produced by softwareStructural Time Series Models
Date of computationTue, 20 Dec 2016 11:34:18 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/20/t14822300719wjejujp9tjcu38.htm/, Retrieved Fri, 01 Nov 2024 03:30:06 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=301586, Retrieved Fri, 01 Nov 2024 03:30:06 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact128
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Structural Time Series Models] [structural time ] [2016-12-20 10:34:18] [34b674d558c9d5fa20516c65c4cfbe6a] [Current]
Feedback Forum

Post a new message
Dataseries X:
3650
3700
3750
3850
3950
3900
3700
3700
4000
4350
4350
4200
4050
4100
4150
4350
4350
4350
4000
4050
4350
4750
4750
4700
4300
4400
4450
4600
4500
4500
4200
4150
4500
4850
4900
4850
4500
4650
4600
4700
4750
4800
4400
4450
4750
5100
5200
4850
4600
4650
4850
5000
5050
5150
4650
4700
5100
5450
5550
5300
5200
5400
5500
5500
5650
5500
4850
5050
5550
6050
6050
5850
5600
5700
5700
5750
5950
5850
5150
5250
5900
6350
6400
6200
5850
5950
6150
6250
6250
6200
5200
5750
6200
6650
6700
6550
6100
6250
6300
6500
6250
6500
5400
6100
6550
6950
7150
7150
6700
6950
7050
7050
7100
7250




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time4 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301586&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]4 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=301586&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301586&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R ServerBig Analytics Cloud Computing Center







Structural Time Series Model -- Interpolation
tObservedLevelSlopeSeasonalStand. Residuals
136503650000
237003677.459600470660.79411704920844822.54039952934490.332886750970293
337503723.057514533973.6122869967985926.94248546603340.467477079915969
438503788.074041526926.8949689861672761.92595847307760.800276530227124
539503872.015872367329.6473161976680577.98412763268311.10301136932683
639003904.2228129611310.1872180797063-4.22281296112840.329269386294564
737003822.74426250358.43225984911154-122.744262503495-1.3397554000085
837003747.018788711056.88155700704509-47.0187887110495-1.22790699103924
940003836.546624902268.4727304925907163.4533750977441.20330365108141
1043504082.8115536278413.3015873270365267.1884463721563.45606046093453
1143504262.3834547629116.818254025438287.61654523708922.41347007800194
1242004280.7527983047716.852002654364-80.75279830476620.0224931723383508
1340504231.2548891955817.5464379206668-181.254889195584-1.01551658591856
1441004194.4770782028717.2668909673523-94.4770782028688-0.811830279228569
1541504184.7181327485616.5502527125884-34.7181327485585-0.366864277450138
1643504248.0075745581318.192772343665101.992425441870.627924864713137
1743504264.3114264467718.127727117856485.6885735532337-0.0262858795838957
1843504274.4134336771417.885469877237975.5865663228559-0.114500502578317
1940004203.3947577120315.5428432341872-203.394757712027-1.27977341158954
2040504187.9459211586914.7929461132079-137.945921158691-0.44690003672649
2143504258.3291424002816.089221823500391.6708575997150.801193288684091
2247504411.5736395834119.2002476604414338.4263604165881.97389932183253
2347504551.6168690327621.7669285324417198.3831309672361.73590514499018
2447004667.7216992547423.517126490599232.27830074525561.35598848682611
2543004613.6892441204422.2742343974513-313.689244120444-1.12262351677728
2644004561.9813385667420.861347584203-161.981338566736-1.06241817583158
2744504536.7195817646919.696130217008-86.7195817646881-0.645626888098959
2846004514.5488817433918.441849629522385.4511182566065-0.578735559939311
2945004457.1811719379616.045509280028942.8188280620413-1.0565044114461
3045004410.7199966695514.111259697578189.2800033304456-0.883085624443554
3142004403.9716507123813.4996673460402-203.971650712384-0.297249886190276
3241504390.7018833492912.7585237515203-240.701883349293-0.382578923445225
3345004449.9855445262313.983655320168350.01445547377020.664730450087181
3448504532.2319945129615.6999520177651317.7680054870450.973854001626034
3549004640.9360871066717.9321394692134259.0639128933271.32539768358306
3648504717.6686053792719.2922163846177132.3313946207260.838488813639105
3745004756.9325695481619.7548041669039-256.9325695481580.28497963345906
3846504776.9437451255319.7611213190423-126.9437451255320.00364075583960229
3946004728.8726326747117.927738541488-128.87263267471-0.953803071260978
4047004649.3523132278715.083226576771650.6476867721307-1.36141882412217
4147504643.8890049205514.4591386329092106.110995079447-0.287597277451357
4248004669.4329521198414.7971820124574130.5670478801620.156188880599103
4344004652.9736853172713.8630839182901-252.97368531727-0.442917879865092
4444504692.5715631390314.6080046261305-242.5715631390260.365534092845166
4547504738.8234560036915.492782114425111.17654399631120.449351292770004
4651004803.0307040100516.8117962580512296.9692959899540.690975648267956
4752004897.3115566700418.8574344868902302.6884433299641.09826529691779
4848504849.9780322072417.12974840466020.0219677927610888-0.938765794915414
4946004838.5460969213916.3778626563904-238.546096921395-0.40503210388585
5046504788.738083044714.5842238374178-138.738083044697-0.93609631214715
5148504838.2147428620515.56799310749211.78525713795330.491209918686898
5250004896.2214977406116.808324790848103.7785022593870.595470271714621
5350504934.1045877878517.4382155267028115.8954122121510.295837355838922
5451504980.2801253052418.302337592251169.7198746947640.404707198934914
5546504975.682830625417.6190716790574-325.682830625404-0.323554462707924
5647004982.6026222795117.3050587185967-282.602622279508-0.151403329991564
5751005052.9453211289418.830983541263647.05467887105870.750391620496079
5854505126.5170633102320.3768601135735323.4829366897730.773914305321377
5955505177.8544409421121.2396037045307372.1455590578920.437596057091849
6053005234.5935999290122.224099939905965.4064000709920.501893283341567
6152005329.420019651724.2484040928803-129.4200196517041.02636376863001
6254005459.8307006281327.2508911114384-59.83070062813111.49871764308614
6355005521.1113791886728.2315099548508-21.11137918867290.479281026211779
6455005497.369217809526.70731169211072.63078219050517-0.730721402324604
6556505522.1872480582426.6512447524558127.812751941764-0.0265639944994492
6655005451.9844620430623.764947860057348.0155379569438-1.36399480948641
6748505335.953921336119.6118462835474-485.9539213361-1.97229542346544
6850505340.1750353907919.1583847712418-290.175035390789-0.217334423387048
6955505437.1937163946621.428129006001112.8062836053351.09935924593951
7060505602.3100814062325.5747457256525447.6899185937652.02790996519612
7160505697.0867685026927.5576790023591352.9132314973090.976516339116714
7258505792.1628415408329.487711110536357.83715845917350.952938363751932
7356005822.5989928127729.5148979493521-222.5989928127670.0133859547822774
7457005813.8831447299928.4112717271628-113.883144729992-0.539200459864454
7557005765.0545103834426.1609537018733-65.0545103834401-1.08806196278058
7657505741.1350670407724.68906318363328.86493295922631-0.704802968589251
7759505741.6444292601823.9740002534896208.355570739821-0.34028023449129
7858505745.2499677348723.3701608949076104.750032265128-0.28687636075913
7951505720.2266017405121.9373203197377-570.226601740512-0.682254213058413
8052505686.4706600146220.2951131988924-436.470660014617-0.78556587987503
8159005776.3067562978222.3343740565206123.6932437021760.980834906202164
8263505880.6318221476524.7259406520729469.3681778523471.15612448668493
8364005994.8775257113827.3272958169773405.1224742886161.2621741732268
8462006081.5809005420629.0504240352989118.4190994579370.83726434371258
8558506084.7667267790928.2988166918016-234.766726779093-0.364727645403339
8659506060.6626784712626.7707117177943-110.662678471257-0.73870469463292
8761506114.6675399623527.568524966539235.33246003764760.383669334440197
8862506178.9079123719928.647578292050871.09208762801040.516359109258458
8962506132.548769936726.4334439924736117.451230063301-1.05608288199271
9062006102.9176621686224.776185125879297.0823378313751-0.789701378571293
9152005965.1519895353319.9740082873543-765.151989535333-2.29068480928701
9257506069.946737009822.4748924560211-319.9467370098031.19570757456292
9362006135.7997133240423.750273129603964.20028667595950.611477427946004
9466506203.5186693373125.0394415890614446.4813306626880.619708590626368
9567006274.5998543684926.386703930706425.4001456315150.648890627102786
9665506353.6101468071927.9254165998754196.389853192810.741703326000884
9761006361.910184429227.3512180554531-261.910184429203-0.276619123070611
9862506379.4998104659227.0651230032637-129.499810465924-0.137567214244059
9963006341.6750181427825.1589471249359-41.6750181427777-0.914177100632568
10065006350.5560835894424.6796997770552149.443916410563-0.22926025827636
10162506242.6133148595420.7685801912387.38668514045978-1.86779729779018
10265006268.8848363162920.9309876848883231.1151636837120.0775169121019482
10354006267.8348483355320.2824060933064-867.834848335535-0.309719454801266
10461006357.8666306359522.3384106726622-257.8666306359470.98294573642113
10565506456.2679466129624.577322649038593.73205338704271.07190365344606
10669506520.5675242299625.7448764372071429.4324757700380.559731007944282
10771506637.8306649251128.4320441124558512.1693350748851.28955029236939
10871506795.2751271367432.2185305471434354.7248728632611.81793830649555
10967006895.8402294994134.2250388508598-195.8402294994120.9631109697454
11069506981.1670842739735.7265443463375-31.16708427397490.720051559786364
11170507038.1436062855236.351642931860411.85639371448490.299373176984811
11270506971.9765324419333.332458906942578.0234675580681-1.44407915492947
11371007024.3030693162333.892317742986675.69693068377190.267542450443964
11472507051.7720820266233.70291077394198.227917973384-0.0904852215538867

\begin{tabular}{lllllllll}
\hline
Structural Time Series Model -- Interpolation \tabularnewline
t & Observed & Level & Slope & Seasonal & Stand. Residuals \tabularnewline
1 & 3650 & 3650 & 0 & 0 & 0 \tabularnewline
2 & 3700 & 3677.45960047066 & 0.794117049208448 & 22.5403995293449 & 0.332886750970293 \tabularnewline
3 & 3750 & 3723.05751453397 & 3.61228699679859 & 26.9424854660334 & 0.467477079915969 \tabularnewline
4 & 3850 & 3788.07404152692 & 6.89496898616727 & 61.9259584730776 & 0.800276530227124 \tabularnewline
5 & 3950 & 3872.01587236732 & 9.64731619766805 & 77.9841276326831 & 1.10301136932683 \tabularnewline
6 & 3900 & 3904.22281296113 & 10.1872180797063 & -4.2228129611284 & 0.329269386294564 \tabularnewline
7 & 3700 & 3822.7442625035 & 8.43225984911154 & -122.744262503495 & -1.3397554000085 \tabularnewline
8 & 3700 & 3747.01878871105 & 6.88155700704509 & -47.0187887110495 & -1.22790699103924 \tabularnewline
9 & 4000 & 3836.54662490226 & 8.4727304925907 & 163.453375097744 & 1.20330365108141 \tabularnewline
10 & 4350 & 4082.81155362784 & 13.3015873270365 & 267.188446372156 & 3.45606046093453 \tabularnewline
11 & 4350 & 4262.38345476291 & 16.8182540254382 & 87.6165452370892 & 2.41347007800194 \tabularnewline
12 & 4200 & 4280.75279830477 & 16.852002654364 & -80.7527983047662 & 0.0224931723383508 \tabularnewline
13 & 4050 & 4231.25488919558 & 17.5464379206668 & -181.254889195584 & -1.01551658591856 \tabularnewline
14 & 4100 & 4194.47707820287 & 17.2668909673523 & -94.4770782028688 & -0.811830279228569 \tabularnewline
15 & 4150 & 4184.71813274856 & 16.5502527125884 & -34.7181327485585 & -0.366864277450138 \tabularnewline
16 & 4350 & 4248.00757455813 & 18.192772343665 & 101.99242544187 & 0.627924864713137 \tabularnewline
17 & 4350 & 4264.31142644677 & 18.1277271178564 & 85.6885735532337 & -0.0262858795838957 \tabularnewline
18 & 4350 & 4274.41343367714 & 17.8854698772379 & 75.5865663228559 & -0.114500502578317 \tabularnewline
19 & 4000 & 4203.39475771203 & 15.5428432341872 & -203.394757712027 & -1.27977341158954 \tabularnewline
20 & 4050 & 4187.94592115869 & 14.7929461132079 & -137.945921158691 & -0.44690003672649 \tabularnewline
21 & 4350 & 4258.32914240028 & 16.0892218235003 & 91.670857599715 & 0.801193288684091 \tabularnewline
22 & 4750 & 4411.57363958341 & 19.2002476604414 & 338.426360416588 & 1.97389932183253 \tabularnewline
23 & 4750 & 4551.61686903276 & 21.7669285324417 & 198.383130967236 & 1.73590514499018 \tabularnewline
24 & 4700 & 4667.72169925474 & 23.5171264905992 & 32.2783007452556 & 1.35598848682611 \tabularnewline
25 & 4300 & 4613.68924412044 & 22.2742343974513 & -313.689244120444 & -1.12262351677728 \tabularnewline
26 & 4400 & 4561.98133856674 & 20.861347584203 & -161.981338566736 & -1.06241817583158 \tabularnewline
27 & 4450 & 4536.71958176469 & 19.696130217008 & -86.7195817646881 & -0.645626888098959 \tabularnewline
28 & 4600 & 4514.54888174339 & 18.4418496295223 & 85.4511182566065 & -0.578735559939311 \tabularnewline
29 & 4500 & 4457.18117193796 & 16.0455092800289 & 42.8188280620413 & -1.0565044114461 \tabularnewline
30 & 4500 & 4410.71999666955 & 14.1112596975781 & 89.2800033304456 & -0.883085624443554 \tabularnewline
31 & 4200 & 4403.97165071238 & 13.4996673460402 & -203.971650712384 & -0.297249886190276 \tabularnewline
32 & 4150 & 4390.70188334929 & 12.7585237515203 & -240.701883349293 & -0.382578923445225 \tabularnewline
33 & 4500 & 4449.98554452623 & 13.9836553201683 & 50.0144554737702 & 0.664730450087181 \tabularnewline
34 & 4850 & 4532.23199451296 & 15.6999520177651 & 317.768005487045 & 0.973854001626034 \tabularnewline
35 & 4900 & 4640.93608710667 & 17.9321394692134 & 259.063912893327 & 1.32539768358306 \tabularnewline
36 & 4850 & 4717.66860537927 & 19.2922163846177 & 132.331394620726 & 0.838488813639105 \tabularnewline
37 & 4500 & 4756.93256954816 & 19.7548041669039 & -256.932569548158 & 0.28497963345906 \tabularnewline
38 & 4650 & 4776.94374512553 & 19.7611213190423 & -126.943745125532 & 0.00364075583960229 \tabularnewline
39 & 4600 & 4728.87263267471 & 17.927738541488 & -128.87263267471 & -0.953803071260978 \tabularnewline
40 & 4700 & 4649.35231322787 & 15.0832265767716 & 50.6476867721307 & -1.36141882412217 \tabularnewline
41 & 4750 & 4643.88900492055 & 14.4591386329092 & 106.110995079447 & -0.287597277451357 \tabularnewline
42 & 4800 & 4669.43295211984 & 14.7971820124574 & 130.567047880162 & 0.156188880599103 \tabularnewline
43 & 4400 & 4652.97368531727 & 13.8630839182901 & -252.97368531727 & -0.442917879865092 \tabularnewline
44 & 4450 & 4692.57156313903 & 14.6080046261305 & -242.571563139026 & 0.365534092845166 \tabularnewline
45 & 4750 & 4738.82345600369 & 15.4927821144251 & 11.1765439963112 & 0.449351292770004 \tabularnewline
46 & 5100 & 4803.03070401005 & 16.8117962580512 & 296.969295989954 & 0.690975648267956 \tabularnewline
47 & 5200 & 4897.31155667004 & 18.8574344868902 & 302.688443329964 & 1.09826529691779 \tabularnewline
48 & 4850 & 4849.97803220724 & 17.1297484046602 & 0.0219677927610888 & -0.938765794915414 \tabularnewline
49 & 4600 & 4838.54609692139 & 16.3778626563904 & -238.546096921395 & -0.40503210388585 \tabularnewline
50 & 4650 & 4788.7380830447 & 14.5842238374178 & -138.738083044697 & -0.93609631214715 \tabularnewline
51 & 4850 & 4838.21474286205 & 15.567993107492 & 11.7852571379533 & 0.491209918686898 \tabularnewline
52 & 5000 & 4896.22149774061 & 16.808324790848 & 103.778502259387 & 0.595470271714621 \tabularnewline
53 & 5050 & 4934.10458778785 & 17.4382155267028 & 115.895412212151 & 0.295837355838922 \tabularnewline
54 & 5150 & 4980.28012530524 & 18.302337592251 & 169.719874694764 & 0.404707198934914 \tabularnewline
55 & 4650 & 4975.6828306254 & 17.6190716790574 & -325.682830625404 & -0.323554462707924 \tabularnewline
56 & 4700 & 4982.60262227951 & 17.3050587185967 & -282.602622279508 & -0.151403329991564 \tabularnewline
57 & 5100 & 5052.94532112894 & 18.8309835412636 & 47.0546788710587 & 0.750391620496079 \tabularnewline
58 & 5450 & 5126.51706331023 & 20.3768601135735 & 323.482936689773 & 0.773914305321377 \tabularnewline
59 & 5550 & 5177.85444094211 & 21.2396037045307 & 372.145559057892 & 0.437596057091849 \tabularnewline
60 & 5300 & 5234.59359992901 & 22.2240999399059 & 65.406400070992 & 0.501893283341567 \tabularnewline
61 & 5200 & 5329.4200196517 & 24.2484040928803 & -129.420019651704 & 1.02636376863001 \tabularnewline
62 & 5400 & 5459.83070062813 & 27.2508911114384 & -59.8307006281311 & 1.49871764308614 \tabularnewline
63 & 5500 & 5521.11137918867 & 28.2315099548508 & -21.1113791886729 & 0.479281026211779 \tabularnewline
64 & 5500 & 5497.3692178095 & 26.7073116921107 & 2.63078219050517 & -0.730721402324604 \tabularnewline
65 & 5650 & 5522.18724805824 & 26.6512447524558 & 127.812751941764 & -0.0265639944994492 \tabularnewline
66 & 5500 & 5451.98446204306 & 23.7649478600573 & 48.0155379569438 & -1.36399480948641 \tabularnewline
67 & 4850 & 5335.9539213361 & 19.6118462835474 & -485.9539213361 & -1.97229542346544 \tabularnewline
68 & 5050 & 5340.17503539079 & 19.1583847712418 & -290.175035390789 & -0.217334423387048 \tabularnewline
69 & 5550 & 5437.19371639466 & 21.428129006001 & 112.806283605335 & 1.09935924593951 \tabularnewline
70 & 6050 & 5602.31008140623 & 25.5747457256525 & 447.689918593765 & 2.02790996519612 \tabularnewline
71 & 6050 & 5697.08676850269 & 27.5576790023591 & 352.913231497309 & 0.976516339116714 \tabularnewline
72 & 5850 & 5792.16284154083 & 29.4877111105363 & 57.8371584591735 & 0.952938363751932 \tabularnewline
73 & 5600 & 5822.59899281277 & 29.5148979493521 & -222.598992812767 & 0.0133859547822774 \tabularnewline
74 & 5700 & 5813.88314472999 & 28.4112717271628 & -113.883144729992 & -0.539200459864454 \tabularnewline
75 & 5700 & 5765.05451038344 & 26.1609537018733 & -65.0545103834401 & -1.08806196278058 \tabularnewline
76 & 5750 & 5741.13506704077 & 24.6890631836332 & 8.86493295922631 & -0.704802968589251 \tabularnewline
77 & 5950 & 5741.64442926018 & 23.9740002534896 & 208.355570739821 & -0.34028023449129 \tabularnewline
78 & 5850 & 5745.24996773487 & 23.3701608949076 & 104.750032265128 & -0.28687636075913 \tabularnewline
79 & 5150 & 5720.22660174051 & 21.9373203197377 & -570.226601740512 & -0.682254213058413 \tabularnewline
80 & 5250 & 5686.47066001462 & 20.2951131988924 & -436.470660014617 & -0.78556587987503 \tabularnewline
81 & 5900 & 5776.30675629782 & 22.3343740565206 & 123.693243702176 & 0.980834906202164 \tabularnewline
82 & 6350 & 5880.63182214765 & 24.7259406520729 & 469.368177852347 & 1.15612448668493 \tabularnewline
83 & 6400 & 5994.87752571138 & 27.3272958169773 & 405.122474288616 & 1.2621741732268 \tabularnewline
84 & 6200 & 6081.58090054206 & 29.0504240352989 & 118.419099457937 & 0.83726434371258 \tabularnewline
85 & 5850 & 6084.76672677909 & 28.2988166918016 & -234.766726779093 & -0.364727645403339 \tabularnewline
86 & 5950 & 6060.66267847126 & 26.7707117177943 & -110.662678471257 & -0.73870469463292 \tabularnewline
87 & 6150 & 6114.66753996235 & 27.5685249665392 & 35.3324600376476 & 0.383669334440197 \tabularnewline
88 & 6250 & 6178.90791237199 & 28.6475782920508 & 71.0920876280104 & 0.516359109258458 \tabularnewline
89 & 6250 & 6132.5487699367 & 26.4334439924736 & 117.451230063301 & -1.05608288199271 \tabularnewline
90 & 6200 & 6102.91766216862 & 24.7761851258792 & 97.0823378313751 & -0.789701378571293 \tabularnewline
91 & 5200 & 5965.15198953533 & 19.9740082873543 & -765.151989535333 & -2.29068480928701 \tabularnewline
92 & 5750 & 6069.9467370098 & 22.4748924560211 & -319.946737009803 & 1.19570757456292 \tabularnewline
93 & 6200 & 6135.79971332404 & 23.7502731296039 & 64.2002866759595 & 0.611477427946004 \tabularnewline
94 & 6650 & 6203.51866933731 & 25.0394415890614 & 446.481330662688 & 0.619708590626368 \tabularnewline
95 & 6700 & 6274.59985436849 & 26.386703930706 & 425.400145631515 & 0.648890627102786 \tabularnewline
96 & 6550 & 6353.61014680719 & 27.9254165998754 & 196.38985319281 & 0.741703326000884 \tabularnewline
97 & 6100 & 6361.9101844292 & 27.3512180554531 & -261.910184429203 & -0.276619123070611 \tabularnewline
98 & 6250 & 6379.49981046592 & 27.0651230032637 & -129.499810465924 & -0.137567214244059 \tabularnewline
99 & 6300 & 6341.67501814278 & 25.1589471249359 & -41.6750181427777 & -0.914177100632568 \tabularnewline
100 & 6500 & 6350.55608358944 & 24.6796997770552 & 149.443916410563 & -0.22926025827636 \tabularnewline
101 & 6250 & 6242.61331485954 & 20.768580191238 & 7.38668514045978 & -1.86779729779018 \tabularnewline
102 & 6500 & 6268.88483631629 & 20.9309876848883 & 231.115163683712 & 0.0775169121019482 \tabularnewline
103 & 5400 & 6267.83484833553 & 20.2824060933064 & -867.834848335535 & -0.309719454801266 \tabularnewline
104 & 6100 & 6357.86663063595 & 22.3384106726622 & -257.866630635947 & 0.98294573642113 \tabularnewline
105 & 6550 & 6456.26794661296 & 24.5773226490385 & 93.7320533870427 & 1.07190365344606 \tabularnewline
106 & 6950 & 6520.56752422996 & 25.7448764372071 & 429.432475770038 & 0.559731007944282 \tabularnewline
107 & 7150 & 6637.83066492511 & 28.4320441124558 & 512.169335074885 & 1.28955029236939 \tabularnewline
108 & 7150 & 6795.27512713674 & 32.2185305471434 & 354.724872863261 & 1.81793830649555 \tabularnewline
109 & 6700 & 6895.84022949941 & 34.2250388508598 & -195.840229499412 & 0.9631109697454 \tabularnewline
110 & 6950 & 6981.16708427397 & 35.7265443463375 & -31.1670842739749 & 0.720051559786364 \tabularnewline
111 & 7050 & 7038.14360628552 & 36.3516429318604 & 11.8563937144849 & 0.299373176984811 \tabularnewline
112 & 7050 & 6971.97653244193 & 33.3324589069425 & 78.0234675580681 & -1.44407915492947 \tabularnewline
113 & 7100 & 7024.30306931623 & 33.8923177429866 & 75.6969306837719 & 0.267542450443964 \tabularnewline
114 & 7250 & 7051.77208202662 & 33.70291077394 & 198.227917973384 & -0.0904852215538867 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301586&T=1

[TABLE]
[ROW][C]Structural Time Series Model -- Interpolation[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Level[/C][C]Slope[/C][C]Seasonal[/C][C]Stand. Residuals[/C][/ROW]
[ROW][C]1[/C][C]3650[/C][C]3650[/C][C]0[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]3700[/C][C]3677.45960047066[/C][C]0.794117049208448[/C][C]22.5403995293449[/C][C]0.332886750970293[/C][/ROW]
[ROW][C]3[/C][C]3750[/C][C]3723.05751453397[/C][C]3.61228699679859[/C][C]26.9424854660334[/C][C]0.467477079915969[/C][/ROW]
[ROW][C]4[/C][C]3850[/C][C]3788.07404152692[/C][C]6.89496898616727[/C][C]61.9259584730776[/C][C]0.800276530227124[/C][/ROW]
[ROW][C]5[/C][C]3950[/C][C]3872.01587236732[/C][C]9.64731619766805[/C][C]77.9841276326831[/C][C]1.10301136932683[/C][/ROW]
[ROW][C]6[/C][C]3900[/C][C]3904.22281296113[/C][C]10.1872180797063[/C][C]-4.2228129611284[/C][C]0.329269386294564[/C][/ROW]
[ROW][C]7[/C][C]3700[/C][C]3822.7442625035[/C][C]8.43225984911154[/C][C]-122.744262503495[/C][C]-1.3397554000085[/C][/ROW]
[ROW][C]8[/C][C]3700[/C][C]3747.01878871105[/C][C]6.88155700704509[/C][C]-47.0187887110495[/C][C]-1.22790699103924[/C][/ROW]
[ROW][C]9[/C][C]4000[/C][C]3836.54662490226[/C][C]8.4727304925907[/C][C]163.453375097744[/C][C]1.20330365108141[/C][/ROW]
[ROW][C]10[/C][C]4350[/C][C]4082.81155362784[/C][C]13.3015873270365[/C][C]267.188446372156[/C][C]3.45606046093453[/C][/ROW]
[ROW][C]11[/C][C]4350[/C][C]4262.38345476291[/C][C]16.8182540254382[/C][C]87.6165452370892[/C][C]2.41347007800194[/C][/ROW]
[ROW][C]12[/C][C]4200[/C][C]4280.75279830477[/C][C]16.852002654364[/C][C]-80.7527983047662[/C][C]0.0224931723383508[/C][/ROW]
[ROW][C]13[/C][C]4050[/C][C]4231.25488919558[/C][C]17.5464379206668[/C][C]-181.254889195584[/C][C]-1.01551658591856[/C][/ROW]
[ROW][C]14[/C][C]4100[/C][C]4194.47707820287[/C][C]17.2668909673523[/C][C]-94.4770782028688[/C][C]-0.811830279228569[/C][/ROW]
[ROW][C]15[/C][C]4150[/C][C]4184.71813274856[/C][C]16.5502527125884[/C][C]-34.7181327485585[/C][C]-0.366864277450138[/C][/ROW]
[ROW][C]16[/C][C]4350[/C][C]4248.00757455813[/C][C]18.192772343665[/C][C]101.99242544187[/C][C]0.627924864713137[/C][/ROW]
[ROW][C]17[/C][C]4350[/C][C]4264.31142644677[/C][C]18.1277271178564[/C][C]85.6885735532337[/C][C]-0.0262858795838957[/C][/ROW]
[ROW][C]18[/C][C]4350[/C][C]4274.41343367714[/C][C]17.8854698772379[/C][C]75.5865663228559[/C][C]-0.114500502578317[/C][/ROW]
[ROW][C]19[/C][C]4000[/C][C]4203.39475771203[/C][C]15.5428432341872[/C][C]-203.394757712027[/C][C]-1.27977341158954[/C][/ROW]
[ROW][C]20[/C][C]4050[/C][C]4187.94592115869[/C][C]14.7929461132079[/C][C]-137.945921158691[/C][C]-0.44690003672649[/C][/ROW]
[ROW][C]21[/C][C]4350[/C][C]4258.32914240028[/C][C]16.0892218235003[/C][C]91.670857599715[/C][C]0.801193288684091[/C][/ROW]
[ROW][C]22[/C][C]4750[/C][C]4411.57363958341[/C][C]19.2002476604414[/C][C]338.426360416588[/C][C]1.97389932183253[/C][/ROW]
[ROW][C]23[/C][C]4750[/C][C]4551.61686903276[/C][C]21.7669285324417[/C][C]198.383130967236[/C][C]1.73590514499018[/C][/ROW]
[ROW][C]24[/C][C]4700[/C][C]4667.72169925474[/C][C]23.5171264905992[/C][C]32.2783007452556[/C][C]1.35598848682611[/C][/ROW]
[ROW][C]25[/C][C]4300[/C][C]4613.68924412044[/C][C]22.2742343974513[/C][C]-313.689244120444[/C][C]-1.12262351677728[/C][/ROW]
[ROW][C]26[/C][C]4400[/C][C]4561.98133856674[/C][C]20.861347584203[/C][C]-161.981338566736[/C][C]-1.06241817583158[/C][/ROW]
[ROW][C]27[/C][C]4450[/C][C]4536.71958176469[/C][C]19.696130217008[/C][C]-86.7195817646881[/C][C]-0.645626888098959[/C][/ROW]
[ROW][C]28[/C][C]4600[/C][C]4514.54888174339[/C][C]18.4418496295223[/C][C]85.4511182566065[/C][C]-0.578735559939311[/C][/ROW]
[ROW][C]29[/C][C]4500[/C][C]4457.18117193796[/C][C]16.0455092800289[/C][C]42.8188280620413[/C][C]-1.0565044114461[/C][/ROW]
[ROW][C]30[/C][C]4500[/C][C]4410.71999666955[/C][C]14.1112596975781[/C][C]89.2800033304456[/C][C]-0.883085624443554[/C][/ROW]
[ROW][C]31[/C][C]4200[/C][C]4403.97165071238[/C][C]13.4996673460402[/C][C]-203.971650712384[/C][C]-0.297249886190276[/C][/ROW]
[ROW][C]32[/C][C]4150[/C][C]4390.70188334929[/C][C]12.7585237515203[/C][C]-240.701883349293[/C][C]-0.382578923445225[/C][/ROW]
[ROW][C]33[/C][C]4500[/C][C]4449.98554452623[/C][C]13.9836553201683[/C][C]50.0144554737702[/C][C]0.664730450087181[/C][/ROW]
[ROW][C]34[/C][C]4850[/C][C]4532.23199451296[/C][C]15.6999520177651[/C][C]317.768005487045[/C][C]0.973854001626034[/C][/ROW]
[ROW][C]35[/C][C]4900[/C][C]4640.93608710667[/C][C]17.9321394692134[/C][C]259.063912893327[/C][C]1.32539768358306[/C][/ROW]
[ROW][C]36[/C][C]4850[/C][C]4717.66860537927[/C][C]19.2922163846177[/C][C]132.331394620726[/C][C]0.838488813639105[/C][/ROW]
[ROW][C]37[/C][C]4500[/C][C]4756.93256954816[/C][C]19.7548041669039[/C][C]-256.932569548158[/C][C]0.28497963345906[/C][/ROW]
[ROW][C]38[/C][C]4650[/C][C]4776.94374512553[/C][C]19.7611213190423[/C][C]-126.943745125532[/C][C]0.00364075583960229[/C][/ROW]
[ROW][C]39[/C][C]4600[/C][C]4728.87263267471[/C][C]17.927738541488[/C][C]-128.87263267471[/C][C]-0.953803071260978[/C][/ROW]
[ROW][C]40[/C][C]4700[/C][C]4649.35231322787[/C][C]15.0832265767716[/C][C]50.6476867721307[/C][C]-1.36141882412217[/C][/ROW]
[ROW][C]41[/C][C]4750[/C][C]4643.88900492055[/C][C]14.4591386329092[/C][C]106.110995079447[/C][C]-0.287597277451357[/C][/ROW]
[ROW][C]42[/C][C]4800[/C][C]4669.43295211984[/C][C]14.7971820124574[/C][C]130.567047880162[/C][C]0.156188880599103[/C][/ROW]
[ROW][C]43[/C][C]4400[/C][C]4652.97368531727[/C][C]13.8630839182901[/C][C]-252.97368531727[/C][C]-0.442917879865092[/C][/ROW]
[ROW][C]44[/C][C]4450[/C][C]4692.57156313903[/C][C]14.6080046261305[/C][C]-242.571563139026[/C][C]0.365534092845166[/C][/ROW]
[ROW][C]45[/C][C]4750[/C][C]4738.82345600369[/C][C]15.4927821144251[/C][C]11.1765439963112[/C][C]0.449351292770004[/C][/ROW]
[ROW][C]46[/C][C]5100[/C][C]4803.03070401005[/C][C]16.8117962580512[/C][C]296.969295989954[/C][C]0.690975648267956[/C][/ROW]
[ROW][C]47[/C][C]5200[/C][C]4897.31155667004[/C][C]18.8574344868902[/C][C]302.688443329964[/C][C]1.09826529691779[/C][/ROW]
[ROW][C]48[/C][C]4850[/C][C]4849.97803220724[/C][C]17.1297484046602[/C][C]0.0219677927610888[/C][C]-0.938765794915414[/C][/ROW]
[ROW][C]49[/C][C]4600[/C][C]4838.54609692139[/C][C]16.3778626563904[/C][C]-238.546096921395[/C][C]-0.40503210388585[/C][/ROW]
[ROW][C]50[/C][C]4650[/C][C]4788.7380830447[/C][C]14.5842238374178[/C][C]-138.738083044697[/C][C]-0.93609631214715[/C][/ROW]
[ROW][C]51[/C][C]4850[/C][C]4838.21474286205[/C][C]15.567993107492[/C][C]11.7852571379533[/C][C]0.491209918686898[/C][/ROW]
[ROW][C]52[/C][C]5000[/C][C]4896.22149774061[/C][C]16.808324790848[/C][C]103.778502259387[/C][C]0.595470271714621[/C][/ROW]
[ROW][C]53[/C][C]5050[/C][C]4934.10458778785[/C][C]17.4382155267028[/C][C]115.895412212151[/C][C]0.295837355838922[/C][/ROW]
[ROW][C]54[/C][C]5150[/C][C]4980.28012530524[/C][C]18.302337592251[/C][C]169.719874694764[/C][C]0.404707198934914[/C][/ROW]
[ROW][C]55[/C][C]4650[/C][C]4975.6828306254[/C][C]17.6190716790574[/C][C]-325.682830625404[/C][C]-0.323554462707924[/C][/ROW]
[ROW][C]56[/C][C]4700[/C][C]4982.60262227951[/C][C]17.3050587185967[/C][C]-282.602622279508[/C][C]-0.151403329991564[/C][/ROW]
[ROW][C]57[/C][C]5100[/C][C]5052.94532112894[/C][C]18.8309835412636[/C][C]47.0546788710587[/C][C]0.750391620496079[/C][/ROW]
[ROW][C]58[/C][C]5450[/C][C]5126.51706331023[/C][C]20.3768601135735[/C][C]323.482936689773[/C][C]0.773914305321377[/C][/ROW]
[ROW][C]59[/C][C]5550[/C][C]5177.85444094211[/C][C]21.2396037045307[/C][C]372.145559057892[/C][C]0.437596057091849[/C][/ROW]
[ROW][C]60[/C][C]5300[/C][C]5234.59359992901[/C][C]22.2240999399059[/C][C]65.406400070992[/C][C]0.501893283341567[/C][/ROW]
[ROW][C]61[/C][C]5200[/C][C]5329.4200196517[/C][C]24.2484040928803[/C][C]-129.420019651704[/C][C]1.02636376863001[/C][/ROW]
[ROW][C]62[/C][C]5400[/C][C]5459.83070062813[/C][C]27.2508911114384[/C][C]-59.8307006281311[/C][C]1.49871764308614[/C][/ROW]
[ROW][C]63[/C][C]5500[/C][C]5521.11137918867[/C][C]28.2315099548508[/C][C]-21.1113791886729[/C][C]0.479281026211779[/C][/ROW]
[ROW][C]64[/C][C]5500[/C][C]5497.3692178095[/C][C]26.7073116921107[/C][C]2.63078219050517[/C][C]-0.730721402324604[/C][/ROW]
[ROW][C]65[/C][C]5650[/C][C]5522.18724805824[/C][C]26.6512447524558[/C][C]127.812751941764[/C][C]-0.0265639944994492[/C][/ROW]
[ROW][C]66[/C][C]5500[/C][C]5451.98446204306[/C][C]23.7649478600573[/C][C]48.0155379569438[/C][C]-1.36399480948641[/C][/ROW]
[ROW][C]67[/C][C]4850[/C][C]5335.9539213361[/C][C]19.6118462835474[/C][C]-485.9539213361[/C][C]-1.97229542346544[/C][/ROW]
[ROW][C]68[/C][C]5050[/C][C]5340.17503539079[/C][C]19.1583847712418[/C][C]-290.175035390789[/C][C]-0.217334423387048[/C][/ROW]
[ROW][C]69[/C][C]5550[/C][C]5437.19371639466[/C][C]21.428129006001[/C][C]112.806283605335[/C][C]1.09935924593951[/C][/ROW]
[ROW][C]70[/C][C]6050[/C][C]5602.31008140623[/C][C]25.5747457256525[/C][C]447.689918593765[/C][C]2.02790996519612[/C][/ROW]
[ROW][C]71[/C][C]6050[/C][C]5697.08676850269[/C][C]27.5576790023591[/C][C]352.913231497309[/C][C]0.976516339116714[/C][/ROW]
[ROW][C]72[/C][C]5850[/C][C]5792.16284154083[/C][C]29.4877111105363[/C][C]57.8371584591735[/C][C]0.952938363751932[/C][/ROW]
[ROW][C]73[/C][C]5600[/C][C]5822.59899281277[/C][C]29.5148979493521[/C][C]-222.598992812767[/C][C]0.0133859547822774[/C][/ROW]
[ROW][C]74[/C][C]5700[/C][C]5813.88314472999[/C][C]28.4112717271628[/C][C]-113.883144729992[/C][C]-0.539200459864454[/C][/ROW]
[ROW][C]75[/C][C]5700[/C][C]5765.05451038344[/C][C]26.1609537018733[/C][C]-65.0545103834401[/C][C]-1.08806196278058[/C][/ROW]
[ROW][C]76[/C][C]5750[/C][C]5741.13506704077[/C][C]24.6890631836332[/C][C]8.86493295922631[/C][C]-0.704802968589251[/C][/ROW]
[ROW][C]77[/C][C]5950[/C][C]5741.64442926018[/C][C]23.9740002534896[/C][C]208.355570739821[/C][C]-0.34028023449129[/C][/ROW]
[ROW][C]78[/C][C]5850[/C][C]5745.24996773487[/C][C]23.3701608949076[/C][C]104.750032265128[/C][C]-0.28687636075913[/C][/ROW]
[ROW][C]79[/C][C]5150[/C][C]5720.22660174051[/C][C]21.9373203197377[/C][C]-570.226601740512[/C][C]-0.682254213058413[/C][/ROW]
[ROW][C]80[/C][C]5250[/C][C]5686.47066001462[/C][C]20.2951131988924[/C][C]-436.470660014617[/C][C]-0.78556587987503[/C][/ROW]
[ROW][C]81[/C][C]5900[/C][C]5776.30675629782[/C][C]22.3343740565206[/C][C]123.693243702176[/C][C]0.980834906202164[/C][/ROW]
[ROW][C]82[/C][C]6350[/C][C]5880.63182214765[/C][C]24.7259406520729[/C][C]469.368177852347[/C][C]1.15612448668493[/C][/ROW]
[ROW][C]83[/C][C]6400[/C][C]5994.87752571138[/C][C]27.3272958169773[/C][C]405.122474288616[/C][C]1.2621741732268[/C][/ROW]
[ROW][C]84[/C][C]6200[/C][C]6081.58090054206[/C][C]29.0504240352989[/C][C]118.419099457937[/C][C]0.83726434371258[/C][/ROW]
[ROW][C]85[/C][C]5850[/C][C]6084.76672677909[/C][C]28.2988166918016[/C][C]-234.766726779093[/C][C]-0.364727645403339[/C][/ROW]
[ROW][C]86[/C][C]5950[/C][C]6060.66267847126[/C][C]26.7707117177943[/C][C]-110.662678471257[/C][C]-0.73870469463292[/C][/ROW]
[ROW][C]87[/C][C]6150[/C][C]6114.66753996235[/C][C]27.5685249665392[/C][C]35.3324600376476[/C][C]0.383669334440197[/C][/ROW]
[ROW][C]88[/C][C]6250[/C][C]6178.90791237199[/C][C]28.6475782920508[/C][C]71.0920876280104[/C][C]0.516359109258458[/C][/ROW]
[ROW][C]89[/C][C]6250[/C][C]6132.5487699367[/C][C]26.4334439924736[/C][C]117.451230063301[/C][C]-1.05608288199271[/C][/ROW]
[ROW][C]90[/C][C]6200[/C][C]6102.91766216862[/C][C]24.7761851258792[/C][C]97.0823378313751[/C][C]-0.789701378571293[/C][/ROW]
[ROW][C]91[/C][C]5200[/C][C]5965.15198953533[/C][C]19.9740082873543[/C][C]-765.151989535333[/C][C]-2.29068480928701[/C][/ROW]
[ROW][C]92[/C][C]5750[/C][C]6069.9467370098[/C][C]22.4748924560211[/C][C]-319.946737009803[/C][C]1.19570757456292[/C][/ROW]
[ROW][C]93[/C][C]6200[/C][C]6135.79971332404[/C][C]23.7502731296039[/C][C]64.2002866759595[/C][C]0.611477427946004[/C][/ROW]
[ROW][C]94[/C][C]6650[/C][C]6203.51866933731[/C][C]25.0394415890614[/C][C]446.481330662688[/C][C]0.619708590626368[/C][/ROW]
[ROW][C]95[/C][C]6700[/C][C]6274.59985436849[/C][C]26.386703930706[/C][C]425.400145631515[/C][C]0.648890627102786[/C][/ROW]
[ROW][C]96[/C][C]6550[/C][C]6353.61014680719[/C][C]27.9254165998754[/C][C]196.38985319281[/C][C]0.741703326000884[/C][/ROW]
[ROW][C]97[/C][C]6100[/C][C]6361.9101844292[/C][C]27.3512180554531[/C][C]-261.910184429203[/C][C]-0.276619123070611[/C][/ROW]
[ROW][C]98[/C][C]6250[/C][C]6379.49981046592[/C][C]27.0651230032637[/C][C]-129.499810465924[/C][C]-0.137567214244059[/C][/ROW]
[ROW][C]99[/C][C]6300[/C][C]6341.67501814278[/C][C]25.1589471249359[/C][C]-41.6750181427777[/C][C]-0.914177100632568[/C][/ROW]
[ROW][C]100[/C][C]6500[/C][C]6350.55608358944[/C][C]24.6796997770552[/C][C]149.443916410563[/C][C]-0.22926025827636[/C][/ROW]
[ROW][C]101[/C][C]6250[/C][C]6242.61331485954[/C][C]20.768580191238[/C][C]7.38668514045978[/C][C]-1.86779729779018[/C][/ROW]
[ROW][C]102[/C][C]6500[/C][C]6268.88483631629[/C][C]20.9309876848883[/C][C]231.115163683712[/C][C]0.0775169121019482[/C][/ROW]
[ROW][C]103[/C][C]5400[/C][C]6267.83484833553[/C][C]20.2824060933064[/C][C]-867.834848335535[/C][C]-0.309719454801266[/C][/ROW]
[ROW][C]104[/C][C]6100[/C][C]6357.86663063595[/C][C]22.3384106726622[/C][C]-257.866630635947[/C][C]0.98294573642113[/C][/ROW]
[ROW][C]105[/C][C]6550[/C][C]6456.26794661296[/C][C]24.5773226490385[/C][C]93.7320533870427[/C][C]1.07190365344606[/C][/ROW]
[ROW][C]106[/C][C]6950[/C][C]6520.56752422996[/C][C]25.7448764372071[/C][C]429.432475770038[/C][C]0.559731007944282[/C][/ROW]
[ROW][C]107[/C][C]7150[/C][C]6637.83066492511[/C][C]28.4320441124558[/C][C]512.169335074885[/C][C]1.28955029236939[/C][/ROW]
[ROW][C]108[/C][C]7150[/C][C]6795.27512713674[/C][C]32.2185305471434[/C][C]354.724872863261[/C][C]1.81793830649555[/C][/ROW]
[ROW][C]109[/C][C]6700[/C][C]6895.84022949941[/C][C]34.2250388508598[/C][C]-195.840229499412[/C][C]0.9631109697454[/C][/ROW]
[ROW][C]110[/C][C]6950[/C][C]6981.16708427397[/C][C]35.7265443463375[/C][C]-31.1670842739749[/C][C]0.720051559786364[/C][/ROW]
[ROW][C]111[/C][C]7050[/C][C]7038.14360628552[/C][C]36.3516429318604[/C][C]11.8563937144849[/C][C]0.299373176984811[/C][/ROW]
[ROW][C]112[/C][C]7050[/C][C]6971.97653244193[/C][C]33.3324589069425[/C][C]78.0234675580681[/C][C]-1.44407915492947[/C][/ROW]
[ROW][C]113[/C][C]7100[/C][C]7024.30306931623[/C][C]33.8923177429866[/C][C]75.6969306837719[/C][C]0.267542450443964[/C][/ROW]
[ROW][C]114[/C][C]7250[/C][C]7051.77208202662[/C][C]33.70291077394[/C][C]198.227917973384[/C][C]-0.0904852215538867[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301586&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301586&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Structural Time Series Model -- Interpolation
tObservedLevelSlopeSeasonalStand. Residuals
136503650000
237003677.459600470660.79411704920844822.54039952934490.332886750970293
337503723.057514533973.6122869967985926.94248546603340.467477079915969
438503788.074041526926.8949689861672761.92595847307760.800276530227124
539503872.015872367329.6473161976680577.98412763268311.10301136932683
639003904.2228129611310.1872180797063-4.22281296112840.329269386294564
737003822.74426250358.43225984911154-122.744262503495-1.3397554000085
837003747.018788711056.88155700704509-47.0187887110495-1.22790699103924
940003836.546624902268.4727304925907163.4533750977441.20330365108141
1043504082.8115536278413.3015873270365267.1884463721563.45606046093453
1143504262.3834547629116.818254025438287.61654523708922.41347007800194
1242004280.7527983047716.852002654364-80.75279830476620.0224931723383508
1340504231.2548891955817.5464379206668-181.254889195584-1.01551658591856
1441004194.4770782028717.2668909673523-94.4770782028688-0.811830279228569
1541504184.7181327485616.5502527125884-34.7181327485585-0.366864277450138
1643504248.0075745581318.192772343665101.992425441870.627924864713137
1743504264.3114264467718.127727117856485.6885735532337-0.0262858795838957
1843504274.4134336771417.885469877237975.5865663228559-0.114500502578317
1940004203.3947577120315.5428432341872-203.394757712027-1.27977341158954
2040504187.9459211586914.7929461132079-137.945921158691-0.44690003672649
2143504258.3291424002816.089221823500391.6708575997150.801193288684091
2247504411.5736395834119.2002476604414338.4263604165881.97389932183253
2347504551.6168690327621.7669285324417198.3831309672361.73590514499018
2447004667.7216992547423.517126490599232.27830074525561.35598848682611
2543004613.6892441204422.2742343974513-313.689244120444-1.12262351677728
2644004561.9813385667420.861347584203-161.981338566736-1.06241817583158
2744504536.7195817646919.696130217008-86.7195817646881-0.645626888098959
2846004514.5488817433918.441849629522385.4511182566065-0.578735559939311
2945004457.1811719379616.045509280028942.8188280620413-1.0565044114461
3045004410.7199966695514.111259697578189.2800033304456-0.883085624443554
3142004403.9716507123813.4996673460402-203.971650712384-0.297249886190276
3241504390.7018833492912.7585237515203-240.701883349293-0.382578923445225
3345004449.9855445262313.983655320168350.01445547377020.664730450087181
3448504532.2319945129615.6999520177651317.7680054870450.973854001626034
3549004640.9360871066717.9321394692134259.0639128933271.32539768358306
3648504717.6686053792719.2922163846177132.3313946207260.838488813639105
3745004756.9325695481619.7548041669039-256.9325695481580.28497963345906
3846504776.9437451255319.7611213190423-126.9437451255320.00364075583960229
3946004728.8726326747117.927738541488-128.87263267471-0.953803071260978
4047004649.3523132278715.083226576771650.6476867721307-1.36141882412217
4147504643.8890049205514.4591386329092106.110995079447-0.287597277451357
4248004669.4329521198414.7971820124574130.5670478801620.156188880599103
4344004652.9736853172713.8630839182901-252.97368531727-0.442917879865092
4444504692.5715631390314.6080046261305-242.5715631390260.365534092845166
4547504738.8234560036915.492782114425111.17654399631120.449351292770004
4651004803.0307040100516.8117962580512296.9692959899540.690975648267956
4752004897.3115566700418.8574344868902302.6884433299641.09826529691779
4848504849.9780322072417.12974840466020.0219677927610888-0.938765794915414
4946004838.5460969213916.3778626563904-238.546096921395-0.40503210388585
5046504788.738083044714.5842238374178-138.738083044697-0.93609631214715
5148504838.2147428620515.56799310749211.78525713795330.491209918686898
5250004896.2214977406116.808324790848103.7785022593870.595470271714621
5350504934.1045877878517.4382155267028115.8954122121510.295837355838922
5451504980.2801253052418.302337592251169.7198746947640.404707198934914
5546504975.682830625417.6190716790574-325.682830625404-0.323554462707924
5647004982.6026222795117.3050587185967-282.602622279508-0.151403329991564
5751005052.9453211289418.830983541263647.05467887105870.750391620496079
5854505126.5170633102320.3768601135735323.4829366897730.773914305321377
5955505177.8544409421121.2396037045307372.1455590578920.437596057091849
6053005234.5935999290122.224099939905965.4064000709920.501893283341567
6152005329.420019651724.2484040928803-129.4200196517041.02636376863001
6254005459.8307006281327.2508911114384-59.83070062813111.49871764308614
6355005521.1113791886728.2315099548508-21.11137918867290.479281026211779
6455005497.369217809526.70731169211072.63078219050517-0.730721402324604
6556505522.1872480582426.6512447524558127.812751941764-0.0265639944994492
6655005451.9844620430623.764947860057348.0155379569438-1.36399480948641
6748505335.953921336119.6118462835474-485.9539213361-1.97229542346544
6850505340.1750353907919.1583847712418-290.175035390789-0.217334423387048
6955505437.1937163946621.428129006001112.8062836053351.09935924593951
7060505602.3100814062325.5747457256525447.6899185937652.02790996519612
7160505697.0867685026927.5576790023591352.9132314973090.976516339116714
7258505792.1628415408329.487711110536357.83715845917350.952938363751932
7356005822.5989928127729.5148979493521-222.5989928127670.0133859547822774
7457005813.8831447299928.4112717271628-113.883144729992-0.539200459864454
7557005765.0545103834426.1609537018733-65.0545103834401-1.08806196278058
7657505741.1350670407724.68906318363328.86493295922631-0.704802968589251
7759505741.6444292601823.9740002534896208.355570739821-0.34028023449129
7858505745.2499677348723.3701608949076104.750032265128-0.28687636075913
7951505720.2266017405121.9373203197377-570.226601740512-0.682254213058413
8052505686.4706600146220.2951131988924-436.470660014617-0.78556587987503
8159005776.3067562978222.3343740565206123.6932437021760.980834906202164
8263505880.6318221476524.7259406520729469.3681778523471.15612448668493
8364005994.8775257113827.3272958169773405.1224742886161.2621741732268
8462006081.5809005420629.0504240352989118.4190994579370.83726434371258
8558506084.7667267790928.2988166918016-234.766726779093-0.364727645403339
8659506060.6626784712626.7707117177943-110.662678471257-0.73870469463292
8761506114.6675399623527.568524966539235.33246003764760.383669334440197
8862506178.9079123719928.647578292050871.09208762801040.516359109258458
8962506132.548769936726.4334439924736117.451230063301-1.05608288199271
9062006102.9176621686224.776185125879297.0823378313751-0.789701378571293
9152005965.1519895353319.9740082873543-765.151989535333-2.29068480928701
9257506069.946737009822.4748924560211-319.9467370098031.19570757456292
9362006135.7997133240423.750273129603964.20028667595950.611477427946004
9466506203.5186693373125.0394415890614446.4813306626880.619708590626368
9567006274.5998543684926.386703930706425.4001456315150.648890627102786
9665506353.6101468071927.9254165998754196.389853192810.741703326000884
9761006361.910184429227.3512180554531-261.910184429203-0.276619123070611
9862506379.4998104659227.0651230032637-129.499810465924-0.137567214244059
9963006341.6750181427825.1589471249359-41.6750181427777-0.914177100632568
10065006350.5560835894424.6796997770552149.443916410563-0.22926025827636
10162506242.6133148595420.7685801912387.38668514045978-1.86779729779018
10265006268.8848363162920.9309876848883231.1151636837120.0775169121019482
10354006267.8348483355320.2824060933064-867.834848335535-0.309719454801266
10461006357.8666306359522.3384106726622-257.8666306359470.98294573642113
10565506456.2679466129624.577322649038593.73205338704271.07190365344606
10669506520.5675242299625.7448764372071429.4324757700380.559731007944282
10771506637.8306649251128.4320441124558512.1693350748851.28955029236939
10871506795.2751271367432.2185305471434354.7248728632611.81793830649555
10967006895.8402294994134.2250388508598-195.8402294994120.9631109697454
11069506981.1670842739735.7265443463375-31.16708427397490.720051559786364
11170507038.1436062855236.351642931860411.85639371448490.299373176984811
11270506971.9765324419333.332458906942578.0234675580681-1.44407915492947
11371007024.3030693162333.892317742986675.69693068377190.267542450443964
11472507051.7720820266233.70291077394198.227917973384-0.0904852215538867







Structural Time Series Model -- Extrapolation
tObservedLevelSeasonal
16152.490738437127096.23887796515-943.748139528028
26797.433386393547131.08999755573-333.656611162192
37195.738349897977165.9411171463229.7972327516518
47540.642883445697200.79223673691339.850646708779
57658.411485657737235.64335632749422.768129330237
67581.723036480487270.49447591808311.228560562395
77092.634699914057305.34559550867-212.710895594618
87327.488656558067340.19671509926-12.7080585411986
97444.352162536887375.0478346898469.3043278470411
107478.756152699397409.8989542804368.8571984189584
117517.155441452557444.7500738710272.4053675815355
127668.213435087047479.6011934616188.612241625439

\begin{tabular}{lllllllll}
\hline
Structural Time Series Model -- Extrapolation \tabularnewline
t & Observed & Level & Seasonal \tabularnewline
1 & 6152.49073843712 & 7096.23887796515 & -943.748139528028 \tabularnewline
2 & 6797.43338639354 & 7131.08999755573 & -333.656611162192 \tabularnewline
3 & 7195.73834989797 & 7165.94111714632 & 29.7972327516518 \tabularnewline
4 & 7540.64288344569 & 7200.79223673691 & 339.850646708779 \tabularnewline
5 & 7658.41148565773 & 7235.64335632749 & 422.768129330237 \tabularnewline
6 & 7581.72303648048 & 7270.49447591808 & 311.228560562395 \tabularnewline
7 & 7092.63469991405 & 7305.34559550867 & -212.710895594618 \tabularnewline
8 & 7327.48865655806 & 7340.19671509926 & -12.7080585411986 \tabularnewline
9 & 7444.35216253688 & 7375.04783468984 & 69.3043278470411 \tabularnewline
10 & 7478.75615269939 & 7409.89895428043 & 68.8571984189584 \tabularnewline
11 & 7517.15544145255 & 7444.75007387102 & 72.4053675815355 \tabularnewline
12 & 7668.21343508704 & 7479.6011934616 & 188.612241625439 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301586&T=2

[TABLE]
[ROW][C]Structural Time Series Model -- Extrapolation[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Level[/C][C]Seasonal[/C][/ROW]
[ROW][C]1[/C][C]6152.49073843712[/C][C]7096.23887796515[/C][C]-943.748139528028[/C][/ROW]
[ROW][C]2[/C][C]6797.43338639354[/C][C]7131.08999755573[/C][C]-333.656611162192[/C][/ROW]
[ROW][C]3[/C][C]7195.73834989797[/C][C]7165.94111714632[/C][C]29.7972327516518[/C][/ROW]
[ROW][C]4[/C][C]7540.64288344569[/C][C]7200.79223673691[/C][C]339.850646708779[/C][/ROW]
[ROW][C]5[/C][C]7658.41148565773[/C][C]7235.64335632749[/C][C]422.768129330237[/C][/ROW]
[ROW][C]6[/C][C]7581.72303648048[/C][C]7270.49447591808[/C][C]311.228560562395[/C][/ROW]
[ROW][C]7[/C][C]7092.63469991405[/C][C]7305.34559550867[/C][C]-212.710895594618[/C][/ROW]
[ROW][C]8[/C][C]7327.48865655806[/C][C]7340.19671509926[/C][C]-12.7080585411986[/C][/ROW]
[ROW][C]9[/C][C]7444.35216253688[/C][C]7375.04783468984[/C][C]69.3043278470411[/C][/ROW]
[ROW][C]10[/C][C]7478.75615269939[/C][C]7409.89895428043[/C][C]68.8571984189584[/C][/ROW]
[ROW][C]11[/C][C]7517.15544145255[/C][C]7444.75007387102[/C][C]72.4053675815355[/C][/ROW]
[ROW][C]12[/C][C]7668.21343508704[/C][C]7479.6011934616[/C][C]188.612241625439[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301586&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301586&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Structural Time Series Model -- Extrapolation
tObservedLevelSeasonal
16152.490738437127096.23887796515-943.748139528028
26797.433386393547131.08999755573-333.656611162192
37195.738349897977165.9411171463229.7972327516518
47540.642883445697200.79223673691339.850646708779
57658.411485657737235.64335632749422.768129330237
67581.723036480487270.49447591808311.228560562395
77092.634699914057305.34559550867-212.710895594618
87327.488656558067340.19671509926-12.7080585411986
97444.352162536887375.0478346898469.3043278470411
107478.756152699397409.8989542804368.8571984189584
117517.155441452557444.7500738710272.4053675815355
127668.213435087047479.6011934616188.612241625439



Parameters (Session):
par1 = 12 ; par2 = 12 ; par3 = BFGS ;
Parameters (R input):
par1 = 12 ; par2 = 12 ; par3 = BFGS ;
R code (references can be found in the software module):
require('stsm')
require('stsm.class')
require('KFKSDS')
par1 <- as.numeric(par1)
par2 <- as.numeric(par2)
nx <- length(x)
x <- ts(x,frequency=par1)
m <- StructTS(x,type='BSM')
print(m$coef)
print(m$fitted)
print(m$resid)
mylevel <- as.numeric(m$fitted[,'level'])
myslope <- as.numeric(m$fitted[,'slope'])
myseas <- as.numeric(m$fitted[,'sea'])
myresid <- as.numeric(m$resid)
myfit <- mylevel+myseas
mm <- stsm.model(model = 'BSM', y = x, transPars = 'StructTS')
fit2 <- stsmFit(mm, stsm.method = 'maxlik.td.optim', method = par3, KF.args = list(P0cov = TRUE))
(fit2.comps <- tsSmooth(fit2, P0cov = FALSE)$states)
m2 <- set.pars(mm, pmax(fit2$par, .Machine$double.eps))
(ss <- char2numeric(m2))
(pred <- predict(ss, x, n.ahead = par2))
mylagmax <- nx/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(mylevel,na.action=na.pass,lag.max = mylagmax,main='Level')
acf(myseas,na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(myresid,na.action=na.pass,lag.max = mylagmax,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(mylevel,main='Level')
spectrum(myseas,main='Seasonal')
spectrum(myresid,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(mylevel,main='Level')
cpgram(myseas,main='Seasonal')
cpgram(myresid,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test1.png')
plot(as.numeric(m$resid),main='Standardized Residuals',ylab='Residuals',xlab='time',type='b')
grid()
dev.off()
bitmap(file='test5.png')
op <- par(mfrow = c(2,2))
hist(m$resid,main='Residual Histogram')
plot(density(m$resid),main='Residual Kernel Density')
qqnorm(m$resid,main='Residual Normal QQ Plot')
qqline(m$resid)
plot(m$resid^2, myfit^2,main='Sq.Resid vs. Sq.Fit',xlab='Squared residuals',ylab='Squared Fit')
par(op)
dev.off()
bitmap(file='test6.png')
par(mfrow = c(3,1), mar = c(3,3,3,3))
plot(cbind(x, pred$pred), type = 'n', plot.type = 'single', ylab = '')
lines(x)
polygon(c(time(pred$pred), rev(time(pred$pred))), c(pred$pred + 2 * pred$se, rev(pred$pred)), col = 'gray85', border = NA)
polygon(c(time(pred$pred), rev(time(pred$pred))), c(pred$pred - 2 * pred$se, rev(pred$pred)), col = ' gray85', border = NA)
lines(pred$pred, col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the observed series', side = 3, adj = 0)
plot(cbind(x, pred$a[,1]), type = 'n', plot.type = 'single', ylab = '')
lines(x)
polygon(c(time(pred$a[,1]), rev(time(pred$a[,1]))), c(pred$a[,1] + 2 * sqrt(pred$P[,1]), rev(pred$a[,1])), col = 'gray85', border = NA)
polygon(c(time(pred$a[,1]), rev(time(pred$a[,1]))), c(pred$a[,1] - 2 * sqrt(pred$P[,1]), rev(pred$a[,1])), col = ' gray85', border = NA)
lines(pred$a[,1], col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the level component', side = 3, adj = 0)
plot(cbind(fit2.comps[,3], pred$a[,3]), type = 'n', plot.type = 'single', ylab = '')
lines(fit2.comps[,3])
polygon(c(time(pred$a[,3]), rev(time(pred$a[,3]))), c(pred$a[,3] + 2 * sqrt(pred$P[,3]), rev(pred$a[,3])), col = 'gray85', border = NA)
polygon(c(time(pred$a[,3]), rev(time(pred$a[,3]))), c(pred$a[,3] - 2 * sqrt(pred$P[,3]), rev(pred$a[,3])), col = ' gray85', border = NA)
lines(pred$a[,3], col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the seasonal component', side = 3, adj = 0)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Structural Time Series Model -- Interpolation',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Level',header=TRUE)
a<-table.element(a,'Slope',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Stand. Residuals',header=TRUE)
a<-table.row.end(a)
for (i in 1:nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,mylevel[i])
a<-table.element(a,myslope[i])
a<-table.element(a,myseas[i])
a<-table.element(a,myresid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Structural Time Series Model -- Extrapolation',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Level',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.row.end(a)
for (i in 1:par2) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,pred$pred[i])
a<-table.element(a,pred$a[i,1])
a<-table.element(a,pred$a[i,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')