Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimabackwardselection.wasp
Title produced by softwareARIMA Backward Selection
Date of computationTue, 20 Dec 2016 01:35:34 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/20/t1482194476mctos1udyyi7ezp.htm/, Retrieved Fri, 01 Nov 2024 03:26:48 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=301551, Retrieved Fri, 01 Nov 2024 03:26:48 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact144
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [ARIMA Backward Selection] [arima backward] [2016-12-20 00:35:34] [1e2c9196efc58119c3757b6c78ac7c5f] [Current]
Feedback Forum

Post a new message
Dataseries X:
3647
1885
4791
3178
2849
4716
3085
2799
3573
2721
3355
5667
2856
1944
4188
2949
3567
4137
3494
2489
3244
2669
2529
3377
3366
2073
4133
4213
3710
5123
3141
3084
3804
3203
2757
2243
5229
2857
3395
4882
7140
8945
6866
4205
3217
3079
2263
4187
2665
2073
3540
3686
2384
4500
1679
868
1869
3710
6904
3415
938
3359
3551
2278
3033
2280
2901
4812
4882
7896
5048
3741
4418
3471
5055
7595
8124
2333
3008
2744
2833
2428
4269
3207
5170
7767
4544
3741
2193
3432
5282
6635
4222
7317
4132
5048
4383
3761
4081
6491
5859
7139
7682
8649
6146
7137
9948
15819
8370
13222
16711
19059
8303
20781
9638
13444
6072
13442
14457
17705
16463
19194
20688
14739
12702
15760




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time3 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301551&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]3 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=301551&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301551&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R ServerBig Analytics Cloud Computing Center







ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2ar3ma1
Estimates ( 1 )0.2068-0.1382-0.0051-0.7791
(p-val)(0.1231 )(0.1852 )(0.9632 )(0 )
Estimates ( 2 )0.2099-0.13770-0.7817
(p-val)(0.069 )(0.1841 )(NA )(0 )
Estimates ( 3 )0.236400-0.8331
(p-val)(0.0324 )(NA )(NA )(0 )
Estimates ( 4 )NANANANA
(p-val)(NA )(NA )(NA )(NA )
Estimates ( 5 )NANANANA
(p-val)(NA )(NA )(NA )(NA )
Estimates ( 6 )NANANANA
(p-val)(NA )(NA )(NA )(NA )
Estimates ( 7 )NANANANA
(p-val)(NA )(NA )(NA )(NA )

\begin{tabular}{lllllllll}
\hline
ARIMA Parameter Estimation and Backward Selection \tabularnewline
Iteration & ar1 & ar2 & ar3 & ma1 \tabularnewline
Estimates ( 1 ) & 0.2068 & -0.1382 & -0.0051 & -0.7791 \tabularnewline
(p-val) & (0.1231 ) & (0.1852 ) & (0.9632 ) & (0 ) \tabularnewline
Estimates ( 2 ) & 0.2099 & -0.1377 & 0 & -0.7817 \tabularnewline
(p-val) & (0.069 ) & (0.1841 ) & (NA ) & (0 ) \tabularnewline
Estimates ( 3 ) & 0.2364 & 0 & 0 & -0.8331 \tabularnewline
(p-val) & (0.0324 ) & (NA ) & (NA ) & (0 ) \tabularnewline
Estimates ( 4 ) & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 5 ) & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 6 ) & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 7 ) & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301551&T=1

[TABLE]
[ROW][C]ARIMA Parameter Estimation and Backward Selection[/C][/ROW]
[ROW][C]Iteration[/C][C]ar1[/C][C]ar2[/C][C]ar3[/C][C]ma1[/C][/ROW]
[ROW][C]Estimates ( 1 )[/C][C]0.2068[/C][C]-0.1382[/C][C]-0.0051[/C][C]-0.7791[/C][/ROW]
[ROW][C](p-val)[/C][C](0.1231 )[/C][C](0.1852 )[/C][C](0.9632 )[/C][C](0 )[/C][/ROW]
[ROW][C]Estimates ( 2 )[/C][C]0.2099[/C][C]-0.1377[/C][C]0[/C][C]-0.7817[/C][/ROW]
[ROW][C](p-val)[/C][C](0.069 )[/C][C](0.1841 )[/C][C](NA )[/C][C](0 )[/C][/ROW]
[ROW][C]Estimates ( 3 )[/C][C]0.2364[/C][C]0[/C][C]0[/C][C]-0.8331[/C][/ROW]
[ROW][C](p-val)[/C][C](0.0324 )[/C][C](NA )[/C][C](NA )[/C][C](0 )[/C][/ROW]
[ROW][C]Estimates ( 4 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 5 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 6 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 7 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301551&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301551&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2ar3ma1
Estimates ( 1 )0.2068-0.1382-0.0051-0.7791
(p-val)(0.1231 )(0.1852 )(0.9632 )(0 )
Estimates ( 2 )0.2099-0.13770-0.7817
(p-val)(0.069 )(0.1841 )(NA )(0 )
Estimates ( 3 )0.236400-0.8331
(p-val)(0.0324 )(NA )(NA )(0 )
Estimates ( 4 )NANANANA
(p-val)(NA )(NA )(NA )(NA )
Estimates ( 5 )NANANANA
(p-val)(NA )(NA )(NA )(NA )
Estimates ( 6 )NANANANA
(p-val)(NA )(NA )(NA )(NA )
Estimates ( 7 )NANANANA
(p-val)(NA )(NA )(NA )(NA )







Estimated ARIMA Residuals
Value
8.53923504772385e-05
0.0158265149189267
-0.0174850858560189
0.00570847490357869
0.0014545709876169
-0.0107955730699951
0.00551142431377622
0.00286752891211336
-0.00336870625057765
0.00641485614022276
-0.00310710029764859
-0.0129543744046196
0.00884599944739872
0.0128070959033101
-0.0112078363120444
0.00633148936510596
-0.00493027335811055
-0.00528047349069627
0.000236295228635629
0.00803659029531939
-0.00239062011394218
0.00627470155012663
0.00430584333253322
-0.00413983020694765
-0.00127739697763366
0.0115840041440783
-0.0127231763192204
-0.00456008490244132
-0.00289161620592642
-0.0108318779644814
0.00580672950878704
0.00139202586483122
-0.00281438680766446
0.00348211181576694
0.00511506188286976
0.0096857380562717
-0.0152664858287094
0.0087725448692017
-0.00402824858797897
-0.00908483020876336
-0.0142815898330428
-0.0151978886067986
-0.00669519389330001
0.00419873571620765
0.00852011029443926
0.00793847427064169
0.0155962329801743
-0.00608086929742892
0.0118227343804306
0.0118009842328588
-0.00568309883873815
-0.00131920711305083
0.00900785431916948
-0.0124311146538604
0.0230466260184902
0.0334911197315479
-0.00197021536602033
-0.0120241672505641
-0.0234865163301714
-0.00141964951482132
0.0346605796390026
-0.0200879876046258
-0.0029021370141222
0.00467668213098157
-0.00721075413919073
0.0058183418025138
-0.00511418673613146
-0.0143302737998723
-0.00978091393677837
-0.0198577811725527
-0.00363483958033661
0.000954169331585653
-0.00356856125751151
0.00513094353134354
-0.00707128870238075
-0.0116550178295008
-0.0098852193159754
0.0218203950110477
0.00330060307940264
0.010811804518309
0.00604715670985209
0.00962449430633951
-0.00854011042370652
0.00437811569585095
-0.0120252785182434
-0.0147473998570868
0.000572143624661403
0.00153858052035954
0.0165565084471573
-0.00199413592803201
-0.00745628811907448
-0.010388852833145
0.00185086874227769
-0.0138534329856086
0.00616617930107828
-0.00440782708039872
0.00269918380850344
0.00454231178572564
0.00116791382716232
-0.00886417574752792
-0.00271662783099028
-0.00833538238639733
-0.00683028528714727
-0.00799387611654268
0.00115610420520652
-0.004120553954753
-0.0081888543329816
-0.0136616046744024
0.00170257258684593
-0.0107597499392866
-0.00896265446186605
-0.009446339953839
0.00723279721036157
-0.0137765542136072
0.00776212104814593
-0.00496303397893129
0.0147494910500704
-0.00811429135418117
-0.00218502321184685
-0.00691966283596132
-0.00370854188068936
-0.00604902103303294
-0.00520732152500925
0.00126689034631201
0.0022538767388068
-0.00170816395303706

\begin{tabular}{lllllllll}
\hline
Estimated ARIMA Residuals \tabularnewline
Value \tabularnewline
8.53923504772385e-05 \tabularnewline
0.0158265149189267 \tabularnewline
-0.0174850858560189 \tabularnewline
0.00570847490357869 \tabularnewline
0.0014545709876169 \tabularnewline
-0.0107955730699951 \tabularnewline
0.00551142431377622 \tabularnewline
0.00286752891211336 \tabularnewline
-0.00336870625057765 \tabularnewline
0.00641485614022276 \tabularnewline
-0.00310710029764859 \tabularnewline
-0.0129543744046196 \tabularnewline
0.00884599944739872 \tabularnewline
0.0128070959033101 \tabularnewline
-0.0112078363120444 \tabularnewline
0.00633148936510596 \tabularnewline
-0.00493027335811055 \tabularnewline
-0.00528047349069627 \tabularnewline
0.000236295228635629 \tabularnewline
0.00803659029531939 \tabularnewline
-0.00239062011394218 \tabularnewline
0.00627470155012663 \tabularnewline
0.00430584333253322 \tabularnewline
-0.00413983020694765 \tabularnewline
-0.00127739697763366 \tabularnewline
0.0115840041440783 \tabularnewline
-0.0127231763192204 \tabularnewline
-0.00456008490244132 \tabularnewline
-0.00289161620592642 \tabularnewline
-0.0108318779644814 \tabularnewline
0.00580672950878704 \tabularnewline
0.00139202586483122 \tabularnewline
-0.00281438680766446 \tabularnewline
0.00348211181576694 \tabularnewline
0.00511506188286976 \tabularnewline
0.0096857380562717 \tabularnewline
-0.0152664858287094 \tabularnewline
0.0087725448692017 \tabularnewline
-0.00402824858797897 \tabularnewline
-0.00908483020876336 \tabularnewline
-0.0142815898330428 \tabularnewline
-0.0151978886067986 \tabularnewline
-0.00669519389330001 \tabularnewline
0.00419873571620765 \tabularnewline
0.00852011029443926 \tabularnewline
0.00793847427064169 \tabularnewline
0.0155962329801743 \tabularnewline
-0.00608086929742892 \tabularnewline
0.0118227343804306 \tabularnewline
0.0118009842328588 \tabularnewline
-0.00568309883873815 \tabularnewline
-0.00131920711305083 \tabularnewline
0.00900785431916948 \tabularnewline
-0.0124311146538604 \tabularnewline
0.0230466260184902 \tabularnewline
0.0334911197315479 \tabularnewline
-0.00197021536602033 \tabularnewline
-0.0120241672505641 \tabularnewline
-0.0234865163301714 \tabularnewline
-0.00141964951482132 \tabularnewline
0.0346605796390026 \tabularnewline
-0.0200879876046258 \tabularnewline
-0.0029021370141222 \tabularnewline
0.00467668213098157 \tabularnewline
-0.00721075413919073 \tabularnewline
0.0058183418025138 \tabularnewline
-0.00511418673613146 \tabularnewline
-0.0143302737998723 \tabularnewline
-0.00978091393677837 \tabularnewline
-0.0198577811725527 \tabularnewline
-0.00363483958033661 \tabularnewline
0.000954169331585653 \tabularnewline
-0.00356856125751151 \tabularnewline
0.00513094353134354 \tabularnewline
-0.00707128870238075 \tabularnewline
-0.0116550178295008 \tabularnewline
-0.0098852193159754 \tabularnewline
0.0218203950110477 \tabularnewline
0.00330060307940264 \tabularnewline
0.010811804518309 \tabularnewline
0.00604715670985209 \tabularnewline
0.00962449430633951 \tabularnewline
-0.00854011042370652 \tabularnewline
0.00437811569585095 \tabularnewline
-0.0120252785182434 \tabularnewline
-0.0147473998570868 \tabularnewline
0.000572143624661403 \tabularnewline
0.00153858052035954 \tabularnewline
0.0165565084471573 \tabularnewline
-0.00199413592803201 \tabularnewline
-0.00745628811907448 \tabularnewline
-0.010388852833145 \tabularnewline
0.00185086874227769 \tabularnewline
-0.0138534329856086 \tabularnewline
0.00616617930107828 \tabularnewline
-0.00440782708039872 \tabularnewline
0.00269918380850344 \tabularnewline
0.00454231178572564 \tabularnewline
0.00116791382716232 \tabularnewline
-0.00886417574752792 \tabularnewline
-0.00271662783099028 \tabularnewline
-0.00833538238639733 \tabularnewline
-0.00683028528714727 \tabularnewline
-0.00799387611654268 \tabularnewline
0.00115610420520652 \tabularnewline
-0.004120553954753 \tabularnewline
-0.0081888543329816 \tabularnewline
-0.0136616046744024 \tabularnewline
0.00170257258684593 \tabularnewline
-0.0107597499392866 \tabularnewline
-0.00896265446186605 \tabularnewline
-0.009446339953839 \tabularnewline
0.00723279721036157 \tabularnewline
-0.0137765542136072 \tabularnewline
0.00776212104814593 \tabularnewline
-0.00496303397893129 \tabularnewline
0.0147494910500704 \tabularnewline
-0.00811429135418117 \tabularnewline
-0.00218502321184685 \tabularnewline
-0.00691966283596132 \tabularnewline
-0.00370854188068936 \tabularnewline
-0.00604902103303294 \tabularnewline
-0.00520732152500925 \tabularnewline
0.00126689034631201 \tabularnewline
0.0022538767388068 \tabularnewline
-0.00170816395303706 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301551&T=2

[TABLE]
[ROW][C]Estimated ARIMA Residuals[/C][/ROW]
[ROW][C]Value[/C][/ROW]
[ROW][C]8.53923504772385e-05[/C][/ROW]
[ROW][C]0.0158265149189267[/C][/ROW]
[ROW][C]-0.0174850858560189[/C][/ROW]
[ROW][C]0.00570847490357869[/C][/ROW]
[ROW][C]0.0014545709876169[/C][/ROW]
[ROW][C]-0.0107955730699951[/C][/ROW]
[ROW][C]0.00551142431377622[/C][/ROW]
[ROW][C]0.00286752891211336[/C][/ROW]
[ROW][C]-0.00336870625057765[/C][/ROW]
[ROW][C]0.00641485614022276[/C][/ROW]
[ROW][C]-0.00310710029764859[/C][/ROW]
[ROW][C]-0.0129543744046196[/C][/ROW]
[ROW][C]0.00884599944739872[/C][/ROW]
[ROW][C]0.0128070959033101[/C][/ROW]
[ROW][C]-0.0112078363120444[/C][/ROW]
[ROW][C]0.00633148936510596[/C][/ROW]
[ROW][C]-0.00493027335811055[/C][/ROW]
[ROW][C]-0.00528047349069627[/C][/ROW]
[ROW][C]0.000236295228635629[/C][/ROW]
[ROW][C]0.00803659029531939[/C][/ROW]
[ROW][C]-0.00239062011394218[/C][/ROW]
[ROW][C]0.00627470155012663[/C][/ROW]
[ROW][C]0.00430584333253322[/C][/ROW]
[ROW][C]-0.00413983020694765[/C][/ROW]
[ROW][C]-0.00127739697763366[/C][/ROW]
[ROW][C]0.0115840041440783[/C][/ROW]
[ROW][C]-0.0127231763192204[/C][/ROW]
[ROW][C]-0.00456008490244132[/C][/ROW]
[ROW][C]-0.00289161620592642[/C][/ROW]
[ROW][C]-0.0108318779644814[/C][/ROW]
[ROW][C]0.00580672950878704[/C][/ROW]
[ROW][C]0.00139202586483122[/C][/ROW]
[ROW][C]-0.00281438680766446[/C][/ROW]
[ROW][C]0.00348211181576694[/C][/ROW]
[ROW][C]0.00511506188286976[/C][/ROW]
[ROW][C]0.0096857380562717[/C][/ROW]
[ROW][C]-0.0152664858287094[/C][/ROW]
[ROW][C]0.0087725448692017[/C][/ROW]
[ROW][C]-0.00402824858797897[/C][/ROW]
[ROW][C]-0.00908483020876336[/C][/ROW]
[ROW][C]-0.0142815898330428[/C][/ROW]
[ROW][C]-0.0151978886067986[/C][/ROW]
[ROW][C]-0.00669519389330001[/C][/ROW]
[ROW][C]0.00419873571620765[/C][/ROW]
[ROW][C]0.00852011029443926[/C][/ROW]
[ROW][C]0.00793847427064169[/C][/ROW]
[ROW][C]0.0155962329801743[/C][/ROW]
[ROW][C]-0.00608086929742892[/C][/ROW]
[ROW][C]0.0118227343804306[/C][/ROW]
[ROW][C]0.0118009842328588[/C][/ROW]
[ROW][C]-0.00568309883873815[/C][/ROW]
[ROW][C]-0.00131920711305083[/C][/ROW]
[ROW][C]0.00900785431916948[/C][/ROW]
[ROW][C]-0.0124311146538604[/C][/ROW]
[ROW][C]0.0230466260184902[/C][/ROW]
[ROW][C]0.0334911197315479[/C][/ROW]
[ROW][C]-0.00197021536602033[/C][/ROW]
[ROW][C]-0.0120241672505641[/C][/ROW]
[ROW][C]-0.0234865163301714[/C][/ROW]
[ROW][C]-0.00141964951482132[/C][/ROW]
[ROW][C]0.0346605796390026[/C][/ROW]
[ROW][C]-0.0200879876046258[/C][/ROW]
[ROW][C]-0.0029021370141222[/C][/ROW]
[ROW][C]0.00467668213098157[/C][/ROW]
[ROW][C]-0.00721075413919073[/C][/ROW]
[ROW][C]0.0058183418025138[/C][/ROW]
[ROW][C]-0.00511418673613146[/C][/ROW]
[ROW][C]-0.0143302737998723[/C][/ROW]
[ROW][C]-0.00978091393677837[/C][/ROW]
[ROW][C]-0.0198577811725527[/C][/ROW]
[ROW][C]-0.00363483958033661[/C][/ROW]
[ROW][C]0.000954169331585653[/C][/ROW]
[ROW][C]-0.00356856125751151[/C][/ROW]
[ROW][C]0.00513094353134354[/C][/ROW]
[ROW][C]-0.00707128870238075[/C][/ROW]
[ROW][C]-0.0116550178295008[/C][/ROW]
[ROW][C]-0.0098852193159754[/C][/ROW]
[ROW][C]0.0218203950110477[/C][/ROW]
[ROW][C]0.00330060307940264[/C][/ROW]
[ROW][C]0.010811804518309[/C][/ROW]
[ROW][C]0.00604715670985209[/C][/ROW]
[ROW][C]0.00962449430633951[/C][/ROW]
[ROW][C]-0.00854011042370652[/C][/ROW]
[ROW][C]0.00437811569585095[/C][/ROW]
[ROW][C]-0.0120252785182434[/C][/ROW]
[ROW][C]-0.0147473998570868[/C][/ROW]
[ROW][C]0.000572143624661403[/C][/ROW]
[ROW][C]0.00153858052035954[/C][/ROW]
[ROW][C]0.0165565084471573[/C][/ROW]
[ROW][C]-0.00199413592803201[/C][/ROW]
[ROW][C]-0.00745628811907448[/C][/ROW]
[ROW][C]-0.010388852833145[/C][/ROW]
[ROW][C]0.00185086874227769[/C][/ROW]
[ROW][C]-0.0138534329856086[/C][/ROW]
[ROW][C]0.00616617930107828[/C][/ROW]
[ROW][C]-0.00440782708039872[/C][/ROW]
[ROW][C]0.00269918380850344[/C][/ROW]
[ROW][C]0.00454231178572564[/C][/ROW]
[ROW][C]0.00116791382716232[/C][/ROW]
[ROW][C]-0.00886417574752792[/C][/ROW]
[ROW][C]-0.00271662783099028[/C][/ROW]
[ROW][C]-0.00833538238639733[/C][/ROW]
[ROW][C]-0.00683028528714727[/C][/ROW]
[ROW][C]-0.00799387611654268[/C][/ROW]
[ROW][C]0.00115610420520652[/C][/ROW]
[ROW][C]-0.004120553954753[/C][/ROW]
[ROW][C]-0.0081888543329816[/C][/ROW]
[ROW][C]-0.0136616046744024[/C][/ROW]
[ROW][C]0.00170257258684593[/C][/ROW]
[ROW][C]-0.0107597499392866[/C][/ROW]
[ROW][C]-0.00896265446186605[/C][/ROW]
[ROW][C]-0.009446339953839[/C][/ROW]
[ROW][C]0.00723279721036157[/C][/ROW]
[ROW][C]-0.0137765542136072[/C][/ROW]
[ROW][C]0.00776212104814593[/C][/ROW]
[ROW][C]-0.00496303397893129[/C][/ROW]
[ROW][C]0.0147494910500704[/C][/ROW]
[ROW][C]-0.00811429135418117[/C][/ROW]
[ROW][C]-0.00218502321184685[/C][/ROW]
[ROW][C]-0.00691966283596132[/C][/ROW]
[ROW][C]-0.00370854188068936[/C][/ROW]
[ROW][C]-0.00604902103303294[/C][/ROW]
[ROW][C]-0.00520732152500925[/C][/ROW]
[ROW][C]0.00126689034631201[/C][/ROW]
[ROW][C]0.0022538767388068[/C][/ROW]
[ROW][C]-0.00170816395303706[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301551&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301551&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimated ARIMA Residuals
Value
8.53923504772385e-05
0.0158265149189267
-0.0174850858560189
0.00570847490357869
0.0014545709876169
-0.0107955730699951
0.00551142431377622
0.00286752891211336
-0.00336870625057765
0.00641485614022276
-0.00310710029764859
-0.0129543744046196
0.00884599944739872
0.0128070959033101
-0.0112078363120444
0.00633148936510596
-0.00493027335811055
-0.00528047349069627
0.000236295228635629
0.00803659029531939
-0.00239062011394218
0.00627470155012663
0.00430584333253322
-0.00413983020694765
-0.00127739697763366
0.0115840041440783
-0.0127231763192204
-0.00456008490244132
-0.00289161620592642
-0.0108318779644814
0.00580672950878704
0.00139202586483122
-0.00281438680766446
0.00348211181576694
0.00511506188286976
0.0096857380562717
-0.0152664858287094
0.0087725448692017
-0.00402824858797897
-0.00908483020876336
-0.0142815898330428
-0.0151978886067986
-0.00669519389330001
0.00419873571620765
0.00852011029443926
0.00793847427064169
0.0155962329801743
-0.00608086929742892
0.0118227343804306
0.0118009842328588
-0.00568309883873815
-0.00131920711305083
0.00900785431916948
-0.0124311146538604
0.0230466260184902
0.0334911197315479
-0.00197021536602033
-0.0120241672505641
-0.0234865163301714
-0.00141964951482132
0.0346605796390026
-0.0200879876046258
-0.0029021370141222
0.00467668213098157
-0.00721075413919073
0.0058183418025138
-0.00511418673613146
-0.0143302737998723
-0.00978091393677837
-0.0198577811725527
-0.00363483958033661
0.000954169331585653
-0.00356856125751151
0.00513094353134354
-0.00707128870238075
-0.0116550178295008
-0.0098852193159754
0.0218203950110477
0.00330060307940264
0.010811804518309
0.00604715670985209
0.00962449430633951
-0.00854011042370652
0.00437811569585095
-0.0120252785182434
-0.0147473998570868
0.000572143624661403
0.00153858052035954
0.0165565084471573
-0.00199413592803201
-0.00745628811907448
-0.010388852833145
0.00185086874227769
-0.0138534329856086
0.00616617930107828
-0.00440782708039872
0.00269918380850344
0.00454231178572564
0.00116791382716232
-0.00886417574752792
-0.00271662783099028
-0.00833538238639733
-0.00683028528714727
-0.00799387611654268
0.00115610420520652
-0.004120553954753
-0.0081888543329816
-0.0136616046744024
0.00170257258684593
-0.0107597499392866
-0.00896265446186605
-0.009446339953839
0.00723279721036157
-0.0137765542136072
0.00776212104814593
-0.00496303397893129
0.0147494910500704
-0.00811429135418117
-0.00218502321184685
-0.00691966283596132
-0.00370854188068936
-0.00604902103303294
-0.00520732152500925
0.00126689034631201
0.0022538767388068
-0.00170816395303706



Parameters (Session):
par1 = FALSE ; par2 = -0.3 ; par3 = 1 ; par4 = 0 ; par5 = 1 ; par6 = 3 ; par7 = 1 ; par8 = 0 ; par9 = 0 ;
Parameters (R input):
par1 = FALSE ; par2 = -0.3 ; par3 = 1 ; par4 = 0 ; par5 = 1 ; par6 = 3 ; par7 = 1 ; par8 = 0 ; par9 = 0 ;
R code (references can be found in the software module):
library(lattice)
if (par1 == 'TRUE') par1 <- TRUE
if (par1 == 'FALSE') par1 <- FALSE
par2 <- as.numeric(par2) #Box-Cox lambda transformation parameter
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #degree (p) of the non-seasonal AR(p) polynomial
par7 <- as.numeric(par7) #degree (q) of the non-seasonal MA(q) polynomial
par8 <- as.numeric(par8) #degree (P) of the seasonal AR(P) polynomial
par9 <- as.numeric(par9) #degree (Q) of the seasonal MA(Q) polynomial
armaGR <- function(arima.out, names, n){
try1 <- arima.out$coef
try2 <- sqrt(diag(arima.out$var.coef))
try.data.frame <- data.frame(matrix(NA,ncol=4,nrow=length(names)))
dimnames(try.data.frame) <- list(names,c('coef','std','tstat','pv'))
try.data.frame[,1] <- try1
for(i in 1:length(try2)) try.data.frame[which(rownames(try.data.frame)==names(try2)[i]),2] <- try2[i]
try.data.frame[,3] <- try.data.frame[,1] / try.data.frame[,2]
try.data.frame[,4] <- round((1-pt(abs(try.data.frame[,3]),df=n-(length(try2)+1)))*2,5)
vector <- rep(NA,length(names))
vector[is.na(try.data.frame[,4])] <- 0
maxi <- which.max(try.data.frame[,4])
continue <- max(try.data.frame[,4],na.rm=TRUE) > .05
vector[maxi] <- 0
list(summary=try.data.frame,next.vector=vector,continue=continue)
}
arimaSelect <- function(series, order=c(13,0,0), seasonal=list(order=c(2,0,0),period=12), include.mean=F){
nrc <- order[1]+order[3]+seasonal$order[1]+seasonal$order[3]
coeff <- matrix(NA, nrow=nrc*2, ncol=nrc)
pval <- matrix(NA, nrow=nrc*2, ncol=nrc)
mylist <- rep(list(NULL), nrc)
names <- NULL
if(order[1] > 0) names <- paste('ar',1:order[1],sep='')
if(order[3] > 0) names <- c( names , paste('ma',1:order[3],sep='') )
if(seasonal$order[1] > 0) names <- c(names, paste('sar',1:seasonal$order[1],sep=''))
if(seasonal$order[3] > 0) names <- c(names, paste('sma',1:seasonal$order[3],sep=''))
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML')
mylist[[1]] <- arima.out
last.arma <- armaGR(arima.out, names, length(series))
mystop <- FALSE
i <- 1
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- 2
aic <- arima.out$aic
while(!mystop){
mylist[[i]] <- arima.out
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML', fixed=last.arma$next.vector)
aic <- c(aic, arima.out$aic)
last.arma <- armaGR(arima.out, names, length(series))
mystop <- !last.arma$continue
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- i+1
}
list(coeff, pval, mylist, aic=aic)
}
arimaSelectplot <- function(arimaSelect.out,noms,choix){
noms <- names(arimaSelect.out[[3]][[1]]$coef)
coeff <- arimaSelect.out[[1]]
k <- min(which(is.na(coeff[,1])))-1
coeff <- coeff[1:k,]
pval <- arimaSelect.out[[2]][1:k,]
aic <- arimaSelect.out$aic[1:k]
coeff[coeff==0] <- NA
n <- ncol(coeff)
if(missing(choix)) choix <- k
layout(matrix(c(1,1,1,2,
3,3,3,2,
3,3,3,4,
5,6,7,7),nr=4),
widths=c(10,35,45,15),
heights=c(30,30,15,15))
couleurs <- rainbow(75)[1:50]#(50)
ticks <- pretty(coeff)
par(mar=c(1,1,3,1))
plot(aic,k:1-.5,type='o',pch=21,bg='blue',cex=2,axes=F,lty=2,xpd=NA)
points(aic[choix],k-choix+.5,pch=21,cex=4,bg=2,xpd=NA)
title('aic',line=2)
par(mar=c(3,0,0,0))
plot(0,axes=F,xlab='',ylab='',xlim=range(ticks),ylim=c(.1,1))
rect(xleft = min(ticks) + (0:49)/50*(max(ticks)-min(ticks)),
xright = min(ticks) + (1:50)/50*(max(ticks)-min(ticks)),
ytop = rep(1,50),
ybottom= rep(0,50),col=couleurs,border=NA)
axis(1,ticks)
rect(xleft=min(ticks),xright=max(ticks),ytop=1,ybottom=0)
text(mean(coeff,na.rm=T),.5,'coefficients',cex=2,font=2)
par(mar=c(1,1,3,1))
image(1:n,1:k,t(coeff[k:1,]),axes=F,col=couleurs,zlim=range(ticks))
for(i in 1:n) for(j in 1:k) if(!is.na(coeff[j,i])) {
if(pval[j,i]<.01) symb = 'green'
else if( (pval[j,i]<.05) & (pval[j,i]>=.01)) symb = 'orange'
else if( (pval[j,i]<.1) & (pval[j,i]>=.05)) symb = 'red'
else symb = 'black'
polygon(c(i+.5 ,i+.2 ,i+.5 ,i+.5),
c(k-j+0.5,k-j+0.5,k-j+0.8,k-j+0.5),
col=symb)
if(j==choix) {
rect(xleft=i-.5,
xright=i+.5,
ybottom=k-j+1.5,
ytop=k-j+.5,
lwd=4)
text(i,
k-j+1,
round(coeff[j,i],2),
cex=1.2,
font=2)
}
else{
rect(xleft=i-.5,xright=i+.5,ybottom=k-j+1.5,ytop=k-j+.5)
text(i,k-j+1,round(coeff[j,i],2),cex=1.2,font=1)
}
}
axis(3,1:n,noms)
par(mar=c(0.5,0,0,0.5))
plot(0,axes=F,xlab='',ylab='',type='n',xlim=c(0,8),ylim=c(-.2,.8))
cols <- c('green','orange','red','black')
niv <- c('0','0.01','0.05','0.1')
for(i in 0:3){
polygon(c(1+2*i ,1+2*i ,1+2*i-.5 ,1+2*i),
c(.4 ,.7 , .4 , .4),
col=cols[i+1])
text(2*i,0.5,niv[i+1],cex=1.5)
}
text(8,.5,1,cex=1.5)
text(4,0,'p-value',cex=2)
box()
residus <- arimaSelect.out[[3]][[choix]]$res
par(mar=c(1,2,4,1))
acf(residus,main='')
title('acf',line=.5)
par(mar=c(1,2,4,1))
pacf(residus,main='')
title('pacf',line=.5)
par(mar=c(2,2,4,1))
qqnorm(residus,main='')
title('qq-norm',line=.5)
qqline(residus)
residus
}
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
(selection <- arimaSelect(x, order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5)))
bitmap(file='test1.png')
resid <- arimaSelectplot(selection)
dev.off()
resid
bitmap(file='test2.png')
acf(resid,length(resid)/2, main='Residual Autocorrelation Function')
dev.off()
bitmap(file='test3.png')
pacf(resid,length(resid)/2, main='Residual Partial Autocorrelation Function')
dev.off()
bitmap(file='test4.png')
cpgram(resid, main='Residual Cumulative Periodogram')
dev.off()
bitmap(file='test5.png')
hist(resid, main='Residual Histogram', xlab='values of Residuals')
dev.off()
bitmap(file='test6.png')
densityplot(~resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test7.png')
qqnorm(resid, main='Residual Normal Q-Q Plot')
qqline(resid)
dev.off()
ncols <- length(selection[[1]][1,])
nrows <- length(selection[[2]][,1])-1
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ARIMA Parameter Estimation and Backward Selection', ncols+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Iteration', header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,names(selection[[3]][[1]]$coef)[i],header=TRUE)
}
a<-table.row.end(a)
for (j in 1:nrows) {
a<-table.row.start(a)
mydum <- 'Estimates ('
mydum <- paste(mydum,j)
mydum <- paste(mydum,')')
a<-table.element(a,mydum, header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,round(selection[[1]][j,i],4))
}
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'(p-val)', header=TRUE)
for (i in 1:ncols) {
mydum <- '('
mydum <- paste(mydum,round(selection[[2]][j,i],4),sep='')
mydum <- paste(mydum,')')
a<-table.element(a,mydum)
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimated ARIMA Residuals', 1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Value', 1,TRUE)
a<-table.row.end(a)
for (i in (par4*par5+par3):length(resid)) {
a<-table.row.start(a)
a<-table.element(a,resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')