Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimaforecasting.wasp
Title produced by softwareARIMA Forecasting
Date of computationMon, 19 Dec 2016 22:33:08 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/19/t1482183196kfkgj38e7wgw3sz.htm/, Retrieved Fri, 01 Nov 2024 03:27:35 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=301530, Retrieved Fri, 01 Nov 2024 03:27:35 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact110
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [ARIMA Forecasting] [] [2016-12-19 21:33:08] [2e11ca31a00cf8de75c33c1af2d59434] [Current]
Feedback Forum

Post a new message
Dataseries X:
2298.3
2424.67
2584.65
2639.42
2452.02
2537.49
2726.36
2843.85
2615.11
2778.08
2918.75
3023.41
2733.07
2933.31
3089.19
3256.6
2968.74
3101.7
3277.21
3420.1
3097.55
3286.21
3491.96
3608.53
3259.04
3492.27
3665.64
3808.02
3397.47
3644.83
3812.8
3958.78
3602.73
3845.49
4022.27
4195.29
3867.28
4142.62
4217.79
4487.61
4089.69
4431.36
4629.82
4832.81




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301530&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=301530&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301530&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[25])
213097.55-------
223286.21-------
233491.96-------
243608.53-------
253259.04-------
263492.273438.1873366.94353509.43040.0684111
273665.643627.93763546.97863708.89670.18070.99950.99951
283808.023770.52573673.5933867.45830.22420.9830.99951
293397.473407.88083300.14283515.61880.424900.99660.9966
303644.833605.20563464.85323745.5580.290.99810.94261
313812.83808.25383651.46483965.04280.47730.97950.96271
323958.783946.21593770.83534121.59660.44420.9320.93881
333602.733563.67373372.66133754.68610.344300.95590.9991
343845.493763.50013525.36294001.63730.24990.90710.83561
354022.273963.83793701.2234226.45290.33140.81150.87021
364195.294113.98283823.44084404.52480.29170.73190.85251
373867.283715.36323401.0194029.70730.17180.00140.75880.9978
384142.623926.29533563.75924288.83130.12110.62520.66890.9998
394217.794132.75213739.96814525.53610.33570.48040.70931
404487.614285.77883860.38654711.17120.17620.6230.66161
414089.693869.03953414.3394323.73990.17080.00380.5030.9957
424431.364086.29953576.14124596.45780.09250.49480.41430.9993
434629.824293.99283747.36444840.62130.11430.31120.60770.9999
444832.814455.01073869.23685040.78450.10310.27930.45661

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast \tabularnewline
time & Y[t] & F[t] & 95% LB & 95% UB & p-value(H0: Y[t] = F[t]) & P(F[t]>Y[t-1]) & P(F[t]>Y[t-s]) & P(F[t]>Y[25]) \tabularnewline
21 & 3097.55 & - & - & - & - & - & - & - \tabularnewline
22 & 3286.21 & - & - & - & - & - & - & - \tabularnewline
23 & 3491.96 & - & - & - & - & - & - & - \tabularnewline
24 & 3608.53 & - & - & - & - & - & - & - \tabularnewline
25 & 3259.04 & - & - & - & - & - & - & - \tabularnewline
26 & 3492.27 & 3438.187 & 3366.9435 & 3509.4304 & 0.0684 & 1 & 1 & 1 \tabularnewline
27 & 3665.64 & 3627.9376 & 3546.9786 & 3708.8967 & 0.1807 & 0.9995 & 0.9995 & 1 \tabularnewline
28 & 3808.02 & 3770.5257 & 3673.593 & 3867.4583 & 0.2242 & 0.983 & 0.9995 & 1 \tabularnewline
29 & 3397.47 & 3407.8808 & 3300.1428 & 3515.6188 & 0.4249 & 0 & 0.9966 & 0.9966 \tabularnewline
30 & 3644.83 & 3605.2056 & 3464.8532 & 3745.558 & 0.29 & 0.9981 & 0.9426 & 1 \tabularnewline
31 & 3812.8 & 3808.2538 & 3651.4648 & 3965.0428 & 0.4773 & 0.9795 & 0.9627 & 1 \tabularnewline
32 & 3958.78 & 3946.2159 & 3770.8353 & 4121.5966 & 0.4442 & 0.932 & 0.9388 & 1 \tabularnewline
33 & 3602.73 & 3563.6737 & 3372.6613 & 3754.6861 & 0.3443 & 0 & 0.9559 & 0.9991 \tabularnewline
34 & 3845.49 & 3763.5001 & 3525.3629 & 4001.6373 & 0.2499 & 0.9071 & 0.8356 & 1 \tabularnewline
35 & 4022.27 & 3963.8379 & 3701.223 & 4226.4529 & 0.3314 & 0.8115 & 0.8702 & 1 \tabularnewline
36 & 4195.29 & 4113.9828 & 3823.4408 & 4404.5248 & 0.2917 & 0.7319 & 0.8525 & 1 \tabularnewline
37 & 3867.28 & 3715.3632 & 3401.019 & 4029.7073 & 0.1718 & 0.0014 & 0.7588 & 0.9978 \tabularnewline
38 & 4142.62 & 3926.2953 & 3563.7592 & 4288.8313 & 0.1211 & 0.6252 & 0.6689 & 0.9998 \tabularnewline
39 & 4217.79 & 4132.7521 & 3739.9681 & 4525.5361 & 0.3357 & 0.4804 & 0.7093 & 1 \tabularnewline
40 & 4487.61 & 4285.7788 & 3860.3865 & 4711.1712 & 0.1762 & 0.623 & 0.6616 & 1 \tabularnewline
41 & 4089.69 & 3869.0395 & 3414.339 & 4323.7399 & 0.1708 & 0.0038 & 0.503 & 0.9957 \tabularnewline
42 & 4431.36 & 4086.2995 & 3576.1412 & 4596.4578 & 0.0925 & 0.4948 & 0.4143 & 0.9993 \tabularnewline
43 & 4629.82 & 4293.9928 & 3747.3644 & 4840.6213 & 0.1143 & 0.3112 & 0.6077 & 0.9999 \tabularnewline
44 & 4832.81 & 4455.0107 & 3869.2368 & 5040.7845 & 0.1031 & 0.2793 & 0.4566 & 1 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301530&T=1

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast[/C][/ROW]
[ROW][C]time[/C][C]Y[t][/C][C]F[t][/C][C]95% LB[/C][C]95% UB[/C][C]p-value(H0: Y[t] = F[t])[/C][C]P(F[t]>Y[t-1])[/C][C]P(F[t]>Y[t-s])[/C][C]P(F[t]>Y[25])[/C][/ROW]
[ROW][C]21[/C][C]3097.55[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]22[/C][C]3286.21[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]23[/C][C]3491.96[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]24[/C][C]3608.53[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]25[/C][C]3259.04[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]26[/C][C]3492.27[/C][C]3438.187[/C][C]3366.9435[/C][C]3509.4304[/C][C]0.0684[/C][C]1[/C][C]1[/C][C]1[/C][/ROW]
[ROW][C]27[/C][C]3665.64[/C][C]3627.9376[/C][C]3546.9786[/C][C]3708.8967[/C][C]0.1807[/C][C]0.9995[/C][C]0.9995[/C][C]1[/C][/ROW]
[ROW][C]28[/C][C]3808.02[/C][C]3770.5257[/C][C]3673.593[/C][C]3867.4583[/C][C]0.2242[/C][C]0.983[/C][C]0.9995[/C][C]1[/C][/ROW]
[ROW][C]29[/C][C]3397.47[/C][C]3407.8808[/C][C]3300.1428[/C][C]3515.6188[/C][C]0.4249[/C][C]0[/C][C]0.9966[/C][C]0.9966[/C][/ROW]
[ROW][C]30[/C][C]3644.83[/C][C]3605.2056[/C][C]3464.8532[/C][C]3745.558[/C][C]0.29[/C][C]0.9981[/C][C]0.9426[/C][C]1[/C][/ROW]
[ROW][C]31[/C][C]3812.8[/C][C]3808.2538[/C][C]3651.4648[/C][C]3965.0428[/C][C]0.4773[/C][C]0.9795[/C][C]0.9627[/C][C]1[/C][/ROW]
[ROW][C]32[/C][C]3958.78[/C][C]3946.2159[/C][C]3770.8353[/C][C]4121.5966[/C][C]0.4442[/C][C]0.932[/C][C]0.9388[/C][C]1[/C][/ROW]
[ROW][C]33[/C][C]3602.73[/C][C]3563.6737[/C][C]3372.6613[/C][C]3754.6861[/C][C]0.3443[/C][C]0[/C][C]0.9559[/C][C]0.9991[/C][/ROW]
[ROW][C]34[/C][C]3845.49[/C][C]3763.5001[/C][C]3525.3629[/C][C]4001.6373[/C][C]0.2499[/C][C]0.9071[/C][C]0.8356[/C][C]1[/C][/ROW]
[ROW][C]35[/C][C]4022.27[/C][C]3963.8379[/C][C]3701.223[/C][C]4226.4529[/C][C]0.3314[/C][C]0.8115[/C][C]0.8702[/C][C]1[/C][/ROW]
[ROW][C]36[/C][C]4195.29[/C][C]4113.9828[/C][C]3823.4408[/C][C]4404.5248[/C][C]0.2917[/C][C]0.7319[/C][C]0.8525[/C][C]1[/C][/ROW]
[ROW][C]37[/C][C]3867.28[/C][C]3715.3632[/C][C]3401.019[/C][C]4029.7073[/C][C]0.1718[/C][C]0.0014[/C][C]0.7588[/C][C]0.9978[/C][/ROW]
[ROW][C]38[/C][C]4142.62[/C][C]3926.2953[/C][C]3563.7592[/C][C]4288.8313[/C][C]0.1211[/C][C]0.6252[/C][C]0.6689[/C][C]0.9998[/C][/ROW]
[ROW][C]39[/C][C]4217.79[/C][C]4132.7521[/C][C]3739.9681[/C][C]4525.5361[/C][C]0.3357[/C][C]0.4804[/C][C]0.7093[/C][C]1[/C][/ROW]
[ROW][C]40[/C][C]4487.61[/C][C]4285.7788[/C][C]3860.3865[/C][C]4711.1712[/C][C]0.1762[/C][C]0.623[/C][C]0.6616[/C][C]1[/C][/ROW]
[ROW][C]41[/C][C]4089.69[/C][C]3869.0395[/C][C]3414.339[/C][C]4323.7399[/C][C]0.1708[/C][C]0.0038[/C][C]0.503[/C][C]0.9957[/C][/ROW]
[ROW][C]42[/C][C]4431.36[/C][C]4086.2995[/C][C]3576.1412[/C][C]4596.4578[/C][C]0.0925[/C][C]0.4948[/C][C]0.4143[/C][C]0.9993[/C][/ROW]
[ROW][C]43[/C][C]4629.82[/C][C]4293.9928[/C][C]3747.3644[/C][C]4840.6213[/C][C]0.1143[/C][C]0.3112[/C][C]0.6077[/C][C]0.9999[/C][/ROW]
[ROW][C]44[/C][C]4832.81[/C][C]4455.0107[/C][C]3869.2368[/C][C]5040.7845[/C][C]0.1031[/C][C]0.2793[/C][C]0.4566[/C][C]1[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301530&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301530&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[25])
213097.55-------
223286.21-------
233491.96-------
243608.53-------
253259.04-------
263492.273438.1873366.94353509.43040.0684111
273665.643627.93763546.97863708.89670.18070.99950.99951
283808.023770.52573673.5933867.45830.22420.9830.99951
293397.473407.88083300.14283515.61880.424900.99660.9966
303644.833605.20563464.85323745.5580.290.99810.94261
313812.83808.25383651.46483965.04280.47730.97950.96271
323958.783946.21593770.83534121.59660.44420.9320.93881
333602.733563.67373372.66133754.68610.344300.95590.9991
343845.493763.50013525.36294001.63730.24990.90710.83561
354022.273963.83793701.2234226.45290.33140.81150.87021
364195.294113.98283823.44084404.52480.29170.73190.85251
373867.283715.36323401.0194029.70730.17180.00140.75880.9978
384142.623926.29533563.75924288.83130.12110.62520.66890.9998
394217.794132.75213739.96814525.53610.33570.48040.70931
404487.614285.77883860.38654711.17120.17620.6230.66161
414089.693869.03953414.3394323.73990.17080.00380.5030.9957
424431.364086.29953576.14124596.45780.09250.49480.41430.9993
434629.824293.99283747.36444840.62130.11430.31120.60770.9999
444832.814455.01073869.23685040.78450.10310.27930.45661







Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
260.01060.01550.01550.01562924.9763000.22510.2251
270.01140.01030.01290.0131421.46912173.222746.61780.15690.191
280.01310.00980.01190.01191405.82451917.423343.78840.1560.1793
290.0161-0.00310.00970.0097108.38441465.163638.2775-0.04330.1453
300.01990.01090.00990.011570.0941486.149738.55060.16490.1492
310.0210.00120.00850.008520.6681241.902735.24060.01890.1275
320.02270.00320.00770.0077157.85571087.038932.97030.05230.1168
330.02730.01080.00810.00811525.39711141.833633.7910.16250.1225
340.03230.02130.00960.00966722.34011761.889941.97490.34120.1468
350.03380.01450.01010.01013414.30791927.131743.89910.24320.1564
360.0360.01940.01090.0116610.85822352.92548.5070.33830.173
370.04320.03930.01330.013423078.7274080.075263.87550.63220.2112
380.04710.05220.01630.016546796.38947365.945585.82510.90020.2642
390.04850.02020.01650.01687231.4397356.337985.76910.35390.2706
400.05060.0450.01840.018740735.81419581.636397.88580.83990.3086
410.060.0540.02070.02148686.654512025.7109.66180.91820.3467
420.06370.07790.0240.0246119066.768818322.2334135.35961.43590.4107
430.06490.07250.02670.0274112779.878423569.8804153.52491.39750.4656
440.06710.07820.02940.0302142732.347829841.5892172.74721.57210.5238

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast Performance \tabularnewline
time & % S.E. & PE & MAPE & sMAPE & Sq.E & MSE & RMSE & ScaledE & MASE \tabularnewline
26 & 0.0106 & 0.0155 & 0.0155 & 0.0156 & 2924.9763 & 0 & 0 & 0.2251 & 0.2251 \tabularnewline
27 & 0.0114 & 0.0103 & 0.0129 & 0.013 & 1421.4691 & 2173.2227 & 46.6178 & 0.1569 & 0.191 \tabularnewline
28 & 0.0131 & 0.0098 & 0.0119 & 0.0119 & 1405.8245 & 1917.4233 & 43.7884 & 0.156 & 0.1793 \tabularnewline
29 & 0.0161 & -0.0031 & 0.0097 & 0.0097 & 108.3844 & 1465.1636 & 38.2775 & -0.0433 & 0.1453 \tabularnewline
30 & 0.0199 & 0.0109 & 0.0099 & 0.01 & 1570.094 & 1486.1497 & 38.5506 & 0.1649 & 0.1492 \tabularnewline
31 & 0.021 & 0.0012 & 0.0085 & 0.0085 & 20.668 & 1241.9027 & 35.2406 & 0.0189 & 0.1275 \tabularnewline
32 & 0.0227 & 0.0032 & 0.0077 & 0.0077 & 157.8557 & 1087.0389 & 32.9703 & 0.0523 & 0.1168 \tabularnewline
33 & 0.0273 & 0.0108 & 0.0081 & 0.0081 & 1525.3971 & 1141.8336 & 33.791 & 0.1625 & 0.1225 \tabularnewline
34 & 0.0323 & 0.0213 & 0.0096 & 0.0096 & 6722.3401 & 1761.8899 & 41.9749 & 0.3412 & 0.1468 \tabularnewline
35 & 0.0338 & 0.0145 & 0.0101 & 0.0101 & 3414.3079 & 1927.1317 & 43.8991 & 0.2432 & 0.1564 \tabularnewline
36 & 0.036 & 0.0194 & 0.0109 & 0.011 & 6610.8582 & 2352.925 & 48.507 & 0.3383 & 0.173 \tabularnewline
37 & 0.0432 & 0.0393 & 0.0133 & 0.0134 & 23078.727 & 4080.0752 & 63.8755 & 0.6322 & 0.2112 \tabularnewline
38 & 0.0471 & 0.0522 & 0.0163 & 0.0165 & 46796.3894 & 7365.9455 & 85.8251 & 0.9002 & 0.2642 \tabularnewline
39 & 0.0485 & 0.0202 & 0.0165 & 0.0168 & 7231.439 & 7356.3379 & 85.7691 & 0.3539 & 0.2706 \tabularnewline
40 & 0.0506 & 0.045 & 0.0184 & 0.0187 & 40735.8141 & 9581.6363 & 97.8858 & 0.8399 & 0.3086 \tabularnewline
41 & 0.06 & 0.054 & 0.0207 & 0.021 & 48686.6545 & 12025.7 & 109.6618 & 0.9182 & 0.3467 \tabularnewline
42 & 0.0637 & 0.0779 & 0.024 & 0.0246 & 119066.7688 & 18322.2334 & 135.3596 & 1.4359 & 0.4107 \tabularnewline
43 & 0.0649 & 0.0725 & 0.0267 & 0.0274 & 112779.8784 & 23569.8804 & 153.5249 & 1.3975 & 0.4656 \tabularnewline
44 & 0.0671 & 0.0782 & 0.0294 & 0.0302 & 142732.3478 & 29841.5892 & 172.7472 & 1.5721 & 0.5238 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301530&T=2

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast Performance[/C][/ROW]
[ROW][C]time[/C][C]% S.E.[/C][C]PE[/C][C]MAPE[/C][C]sMAPE[/C][C]Sq.E[/C][C]MSE[/C][C]RMSE[/C][C]ScaledE[/C][C]MASE[/C][/ROW]
[ROW][C]26[/C][C]0.0106[/C][C]0.0155[/C][C]0.0155[/C][C]0.0156[/C][C]2924.9763[/C][C]0[/C][C]0[/C][C]0.2251[/C][C]0.2251[/C][/ROW]
[ROW][C]27[/C][C]0.0114[/C][C]0.0103[/C][C]0.0129[/C][C]0.013[/C][C]1421.4691[/C][C]2173.2227[/C][C]46.6178[/C][C]0.1569[/C][C]0.191[/C][/ROW]
[ROW][C]28[/C][C]0.0131[/C][C]0.0098[/C][C]0.0119[/C][C]0.0119[/C][C]1405.8245[/C][C]1917.4233[/C][C]43.7884[/C][C]0.156[/C][C]0.1793[/C][/ROW]
[ROW][C]29[/C][C]0.0161[/C][C]-0.0031[/C][C]0.0097[/C][C]0.0097[/C][C]108.3844[/C][C]1465.1636[/C][C]38.2775[/C][C]-0.0433[/C][C]0.1453[/C][/ROW]
[ROW][C]30[/C][C]0.0199[/C][C]0.0109[/C][C]0.0099[/C][C]0.01[/C][C]1570.094[/C][C]1486.1497[/C][C]38.5506[/C][C]0.1649[/C][C]0.1492[/C][/ROW]
[ROW][C]31[/C][C]0.021[/C][C]0.0012[/C][C]0.0085[/C][C]0.0085[/C][C]20.668[/C][C]1241.9027[/C][C]35.2406[/C][C]0.0189[/C][C]0.1275[/C][/ROW]
[ROW][C]32[/C][C]0.0227[/C][C]0.0032[/C][C]0.0077[/C][C]0.0077[/C][C]157.8557[/C][C]1087.0389[/C][C]32.9703[/C][C]0.0523[/C][C]0.1168[/C][/ROW]
[ROW][C]33[/C][C]0.0273[/C][C]0.0108[/C][C]0.0081[/C][C]0.0081[/C][C]1525.3971[/C][C]1141.8336[/C][C]33.791[/C][C]0.1625[/C][C]0.1225[/C][/ROW]
[ROW][C]34[/C][C]0.0323[/C][C]0.0213[/C][C]0.0096[/C][C]0.0096[/C][C]6722.3401[/C][C]1761.8899[/C][C]41.9749[/C][C]0.3412[/C][C]0.1468[/C][/ROW]
[ROW][C]35[/C][C]0.0338[/C][C]0.0145[/C][C]0.0101[/C][C]0.0101[/C][C]3414.3079[/C][C]1927.1317[/C][C]43.8991[/C][C]0.2432[/C][C]0.1564[/C][/ROW]
[ROW][C]36[/C][C]0.036[/C][C]0.0194[/C][C]0.0109[/C][C]0.011[/C][C]6610.8582[/C][C]2352.925[/C][C]48.507[/C][C]0.3383[/C][C]0.173[/C][/ROW]
[ROW][C]37[/C][C]0.0432[/C][C]0.0393[/C][C]0.0133[/C][C]0.0134[/C][C]23078.727[/C][C]4080.0752[/C][C]63.8755[/C][C]0.6322[/C][C]0.2112[/C][/ROW]
[ROW][C]38[/C][C]0.0471[/C][C]0.0522[/C][C]0.0163[/C][C]0.0165[/C][C]46796.3894[/C][C]7365.9455[/C][C]85.8251[/C][C]0.9002[/C][C]0.2642[/C][/ROW]
[ROW][C]39[/C][C]0.0485[/C][C]0.0202[/C][C]0.0165[/C][C]0.0168[/C][C]7231.439[/C][C]7356.3379[/C][C]85.7691[/C][C]0.3539[/C][C]0.2706[/C][/ROW]
[ROW][C]40[/C][C]0.0506[/C][C]0.045[/C][C]0.0184[/C][C]0.0187[/C][C]40735.8141[/C][C]9581.6363[/C][C]97.8858[/C][C]0.8399[/C][C]0.3086[/C][/ROW]
[ROW][C]41[/C][C]0.06[/C][C]0.054[/C][C]0.0207[/C][C]0.021[/C][C]48686.6545[/C][C]12025.7[/C][C]109.6618[/C][C]0.9182[/C][C]0.3467[/C][/ROW]
[ROW][C]42[/C][C]0.0637[/C][C]0.0779[/C][C]0.024[/C][C]0.0246[/C][C]119066.7688[/C][C]18322.2334[/C][C]135.3596[/C][C]1.4359[/C][C]0.4107[/C][/ROW]
[ROW][C]43[/C][C]0.0649[/C][C]0.0725[/C][C]0.0267[/C][C]0.0274[/C][C]112779.8784[/C][C]23569.8804[/C][C]153.5249[/C][C]1.3975[/C][C]0.4656[/C][/ROW]
[ROW][C]44[/C][C]0.0671[/C][C]0.0782[/C][C]0.0294[/C][C]0.0302[/C][C]142732.3478[/C][C]29841.5892[/C][C]172.7472[/C][C]1.5721[/C][C]0.5238[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301530&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301530&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
260.01060.01550.01550.01562924.9763000.22510.2251
270.01140.01030.01290.0131421.46912173.222746.61780.15690.191
280.01310.00980.01190.01191405.82451917.423343.78840.1560.1793
290.0161-0.00310.00970.0097108.38441465.163638.2775-0.04330.1453
300.01990.01090.00990.011570.0941486.149738.55060.16490.1492
310.0210.00120.00850.008520.6681241.902735.24060.01890.1275
320.02270.00320.00770.0077157.85571087.038932.97030.05230.1168
330.02730.01080.00810.00811525.39711141.833633.7910.16250.1225
340.03230.02130.00960.00966722.34011761.889941.97490.34120.1468
350.03380.01450.01010.01013414.30791927.131743.89910.24320.1564
360.0360.01940.01090.0116610.85822352.92548.5070.33830.173
370.04320.03930.01330.013423078.7274080.075263.87550.63220.2112
380.04710.05220.01630.016546796.38947365.945585.82510.90020.2642
390.04850.02020.01650.01687231.4397356.337985.76910.35390.2706
400.05060.0450.01840.018740735.81419581.636397.88580.83990.3086
410.060.0540.02070.02148686.654512025.7109.66180.91820.3467
420.06370.07790.0240.0246119066.768818322.2334135.35961.43590.4107
430.06490.07250.02670.0274112779.878423569.8804153.52491.39750.4656
440.06710.07820.02940.0302142732.347829841.5892172.74721.57210.5238



Parameters (Session):
par1 = 12 ;
Parameters (R input):
par1 = 19 ; par2 = 1 ; par3 = 1 ; par4 = 1 ; par5 = 4 ; par6 = 1 ; par7 = 0 ; par8 = 2 ; par9 = 1 ; par10 = FALSE ;
R code (references can be found in the software module):
par1 <- as.numeric(par1) #cut off periods
par2 <- as.numeric(par2) #lambda
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #p
par7 <- as.numeric(par7) #q
par8 <- as.numeric(par8) #P
par9 <- as.numeric(par9) #Q
if (par10 == 'TRUE') par10 <- TRUE
if (par10 == 'FALSE') par10 <- FALSE
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
lx <- length(x)
first <- lx - 2*par1
nx <- lx - par1
nx1 <- nx + 1
fx <- lx - nx
if (fx < 1) {
fx <- par5*2
nx1 <- lx + fx - 1
first <- lx - 2*fx
}
first <- 1
if (fx < 3) fx <- round(lx/10,0)
(arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML'))
(forecast <- predict(arima.out,fx))
(lb <- forecast$pred - 1.96 * forecast$se)
(ub <- forecast$pred + 1.96 * forecast$se)
if (par2 == 0) {
x <- exp(x)
forecast$pred <- exp(forecast$pred)
lb <- exp(lb)
ub <- exp(ub)
}
if (par2 != 0) {
x <- x^(1/par2)
forecast$pred <- forecast$pred^(1/par2)
lb <- lb^(1/par2)
ub <- ub^(1/par2)
}
if (par2 < 0) {
olb <- lb
lb <- ub
ub <- olb
}
(actandfor <- c(x[1:nx], forecast$pred))
(perc.se <- (ub-forecast$pred)/1.96/forecast$pred)
bitmap(file='test1.png')
opar <- par(mar=c(4,4,2,2),las=1)
ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub))
plot(x,ylim=ylim,type='n',xlim=c(first,lx))
usr <- par('usr')
rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon')
rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender')
abline(h= (-3:3)*2 , col ='gray', lty =3)
polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA)
lines(nx1:lx, lb , lty=2)
lines(nx1:lx, ub , lty=2)
lines(x, lwd=2)
lines(nx1:lx, forecast$pred , lwd=2 , col ='white')
box()
par(opar)
dev.off()
prob.dec <- array(NA, dim=fx)
prob.sdec <- array(NA, dim=fx)
prob.ldec <- array(NA, dim=fx)
prob.pval <- array(NA, dim=fx)
perf.pe <- array(0, dim=fx)
perf.spe <- array(0, dim=fx)
perf.scalederr <- array(0, dim=fx)
perf.mase <- array(0, dim=fx)
perf.mase1 <- array(0, dim=fx)
perf.mape <- array(0, dim=fx)
perf.smape <- array(0, dim=fx)
perf.mape1 <- array(0, dim=fx)
perf.smape1 <- array(0,dim=fx)
perf.se <- array(0, dim=fx)
perf.mse <- array(0, dim=fx)
perf.mse1 <- array(0, dim=fx)
perf.rmse <- array(0, dim=fx)
perf.scaleddenom <- 0
for (i in 2:fx) {
perf.scaleddenom = perf.scaleddenom + abs(x[nx+i] - x[nx+i-1])
}
perf.scaleddenom = perf.scaleddenom / (fx-1)
for (i in 1:fx) {
locSD <- (ub[i] - forecast$pred[i]) / 1.96
perf.scalederr[i] = (x[nx+i] - forecast$pred[i]) / perf.scaleddenom
perf.pe[i] = (x[nx+i] - forecast$pred[i]) / x[nx+i]
perf.spe[i] = 2*(x[nx+i] - forecast$pred[i]) / (x[nx+i] + forecast$pred[i])
perf.se[i] = (x[nx+i] - forecast$pred[i])^2
prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD)
prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD)
prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD)
prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD)
}
perf.mape[1] = abs(perf.pe[1])
perf.smape[1] = abs(perf.spe[1])
perf.mape1[1] = perf.mape[1]
perf.smape1[1] = perf.smape[1]
perf.mse[1] = perf.se[1]
perf.mase[1] = abs(perf.scalederr[1])
perf.mase1[1] = perf.mase[1]
for (i in 2:fx) {
perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i])
perf.mape1[i] = perf.mape[i] / i
perf.smape[i] = perf.smape[i-1] + abs(perf.spe[i])
perf.smape1[i] = perf.smape[i] / i
perf.mse[i] = perf.mse[i-1] + perf.se[i]
perf.mse1[i] = perf.mse[i] / i
perf.mase[i] = perf.mase[i-1] + abs(perf.scalederr[i])
perf.mase1[i] = perf.mase[i] / i
}
perf.rmse = sqrt(perf.mse1)
bitmap(file='test2.png')
plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub)))
dum <- forecast$pred
dum[1:par1] <- x[(nx+1):lx]
lines(dum, lty=1)
lines(ub,lty=3)
lines(lb,lty=3)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'Y[t]',1,header=TRUE)
a<-table.element(a,'F[t]',1,header=TRUE)
a<-table.element(a,'95% LB',1,header=TRUE)
a<-table.element(a,'95% UB',1,header=TRUE)
a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE)
mylab <- paste('P(F[t]>Y[',nx,sep='')
mylab <- paste(mylab,'])',sep='')
a<-table.element(a,mylab,1,header=TRUE)
a<-table.row.end(a)
for (i in (nx-par5):nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.row.end(a)
}
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(x[nx+i],4))
a<-table.element(a,round(forecast$pred[i],4))
a<-table.element(a,round(lb[i],4))
a<-table.element(a,round(ub[i],4))
a<-table.element(a,round((1-prob.pval[i]),4))
a<-table.element(a,round((1-prob.dec[i]),4))
a<-table.element(a,round((1-prob.sdec[i]),4))
a<-table.element(a,round((1-prob.ldec[i]),4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',10,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'% S.E.',1,header=TRUE)
a<-table.element(a,'PE',1,header=TRUE)
a<-table.element(a,'MAPE',1,header=TRUE)
a<-table.element(a,'sMAPE',1,header=TRUE)
a<-table.element(a,'Sq.E',1,header=TRUE)
a<-table.element(a,'MSE',1,header=TRUE)
a<-table.element(a,'RMSE',1,header=TRUE)
a<-table.element(a,'ScaledE',1,header=TRUE)
a<-table.element(a,'MASE',1,header=TRUE)
a<-table.row.end(a)
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(perc.se[i],4))
a<-table.element(a,round(perf.pe[i],4))
a<-table.element(a,round(perf.mape1[i],4))
a<-table.element(a,round(perf.smape1[i],4))
a<-table.element(a,round(perf.se[i],4))
a<-table.element(a,round(perf.mse1[i],4))
a<-table.element(a,round(perf.rmse[i],4))
a<-table.element(a,round(perf.scalederr[i],4))
a<-table.element(a,round(perf.mase1[i],4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')