Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_autocorrelation.wasp
Title produced by software(Partial) Autocorrelation Function
Date of computationMon, 19 Dec 2016 22:26:10 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/19/t1482182810wd96ad7hh3frwy0.htm/, Retrieved Fri, 01 Nov 2024 03:37:00 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=301526, Retrieved Fri, 01 Nov 2024 03:37:00 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact94
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [(Partial) Autocorrelation Function] [] [2016-12-19 21:26:10] [2e11ca31a00cf8de75c33c1af2d59434] [Current]
Feedback Forum

Post a new message
Dataseries X:
2298.3
2424.67
2584.65
2639.42
2452.02
2537.49
2726.36
2843.85
2615.11
2778.08
2918.75
3023.41
2733.07
2933.31
3089.19
3256.6
2968.74
3101.7
3277.21
3420.1
3097.55
3286.21
3491.96
3608.53
3259.04
3492.27
3665.64
3808.02
3397.47
3644.83
3812.8
3958.78
3602.73
3845.49
4022.27
4195.29
3867.28
4142.62
4217.79
4487.61
4089.69
4431.36
4629.82
4832.81




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301526&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=301526&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301526&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.8514925.64821e-06
20.7571525.02244e-06
30.7066134.68711.3e-05
40.7177684.76111.1e-05
50.5834023.86990.000178
60.5014283.32610.000892
70.457223.03290.002027
80.4674613.10080.001681
90.3458632.29420.013305
100.2707821.79620.039668
110.2374031.57480.061239
120.2529471.67790.050232
130.141680.93980.176225
140.0741520.49190.31263
150.046060.30550.380702
160.0665850.44170.330443

\begin{tabular}{lllllllll}
\hline
Autocorrelation Function \tabularnewline
Time lag k & ACF(k) & T-STAT & P-value \tabularnewline
1 & 0.851492 & 5.6482 & 1e-06 \tabularnewline
2 & 0.757152 & 5.0224 & 4e-06 \tabularnewline
3 & 0.706613 & 4.6871 & 1.3e-05 \tabularnewline
4 & 0.717768 & 4.7611 & 1.1e-05 \tabularnewline
5 & 0.583402 & 3.8699 & 0.000178 \tabularnewline
6 & 0.501428 & 3.3261 & 0.000892 \tabularnewline
7 & 0.45722 & 3.0329 & 0.002027 \tabularnewline
8 & 0.467461 & 3.1008 & 0.001681 \tabularnewline
9 & 0.345863 & 2.2942 & 0.013305 \tabularnewline
10 & 0.270782 & 1.7962 & 0.039668 \tabularnewline
11 & 0.237403 & 1.5748 & 0.061239 \tabularnewline
12 & 0.252947 & 1.6779 & 0.050232 \tabularnewline
13 & 0.14168 & 0.9398 & 0.176225 \tabularnewline
14 & 0.074152 & 0.4919 & 0.31263 \tabularnewline
15 & 0.04606 & 0.3055 & 0.380702 \tabularnewline
16 & 0.066585 & 0.4417 & 0.330443 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301526&T=1

[TABLE]
[ROW][C]Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]ACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.851492[/C][C]5.6482[/C][C]1e-06[/C][/ROW]
[ROW][C]2[/C][C]0.757152[/C][C]5.0224[/C][C]4e-06[/C][/ROW]
[ROW][C]3[/C][C]0.706613[/C][C]4.6871[/C][C]1.3e-05[/C][/ROW]
[ROW][C]4[/C][C]0.717768[/C][C]4.7611[/C][C]1.1e-05[/C][/ROW]
[ROW][C]5[/C][C]0.583402[/C][C]3.8699[/C][C]0.000178[/C][/ROW]
[ROW][C]6[/C][C]0.501428[/C][C]3.3261[/C][C]0.000892[/C][/ROW]
[ROW][C]7[/C][C]0.45722[/C][C]3.0329[/C][C]0.002027[/C][/ROW]
[ROW][C]8[/C][C]0.467461[/C][C]3.1008[/C][C]0.001681[/C][/ROW]
[ROW][C]9[/C][C]0.345863[/C][C]2.2942[/C][C]0.013305[/C][/ROW]
[ROW][C]10[/C][C]0.270782[/C][C]1.7962[/C][C]0.039668[/C][/ROW]
[ROW][C]11[/C][C]0.237403[/C][C]1.5748[/C][C]0.061239[/C][/ROW]
[ROW][C]12[/C][C]0.252947[/C][C]1.6779[/C][C]0.050232[/C][/ROW]
[ROW][C]13[/C][C]0.14168[/C][C]0.9398[/C][C]0.176225[/C][/ROW]
[ROW][C]14[/C][C]0.074152[/C][C]0.4919[/C][C]0.31263[/C][/ROW]
[ROW][C]15[/C][C]0.04606[/C][C]0.3055[/C][C]0.380702[/C][/ROW]
[ROW][C]16[/C][C]0.066585[/C][C]0.4417[/C][C]0.330443[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301526&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301526&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.8514925.64821e-06
20.7571525.02244e-06
30.7066134.68711.3e-05
40.7177684.76111.1e-05
50.5834023.86990.000178
60.5014283.32610.000892
70.457223.03290.002027
80.4674613.10080.001681
90.3458632.29420.013305
100.2707821.79620.039668
110.2374031.57480.061239
120.2529471.67790.050232
130.141680.93980.176225
140.0741520.49190.31263
150.046060.30550.380702
160.0665850.44170.330443







Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.8514925.64821e-06
20.1167910.77470.221329
30.1392060.92340.180421
40.2637871.74980.043565
5-0.43531-2.88750.003
60.0694190.46050.323721
70.054510.36160.359699
80.0693540.460.323876
9-0.237346-1.57440.061282
100.0149540.09920.460718
110.054710.36290.359207
120.0196780.13050.448372
13-0.177895-1.180.122166
140.0041630.02760.489048
150.0133830.08880.464832
160.0116860.07750.469283

\begin{tabular}{lllllllll}
\hline
Partial Autocorrelation Function \tabularnewline
Time lag k & PACF(k) & T-STAT & P-value \tabularnewline
1 & 0.851492 & 5.6482 & 1e-06 \tabularnewline
2 & 0.116791 & 0.7747 & 0.221329 \tabularnewline
3 & 0.139206 & 0.9234 & 0.180421 \tabularnewline
4 & 0.263787 & 1.7498 & 0.043565 \tabularnewline
5 & -0.43531 & -2.8875 & 0.003 \tabularnewline
6 & 0.069419 & 0.4605 & 0.323721 \tabularnewline
7 & 0.05451 & 0.3616 & 0.359699 \tabularnewline
8 & 0.069354 & 0.46 & 0.323876 \tabularnewline
9 & -0.237346 & -1.5744 & 0.061282 \tabularnewline
10 & 0.014954 & 0.0992 & 0.460718 \tabularnewline
11 & 0.05471 & 0.3629 & 0.359207 \tabularnewline
12 & 0.019678 & 0.1305 & 0.448372 \tabularnewline
13 & -0.177895 & -1.18 & 0.122166 \tabularnewline
14 & 0.004163 & 0.0276 & 0.489048 \tabularnewline
15 & 0.013383 & 0.0888 & 0.464832 \tabularnewline
16 & 0.011686 & 0.0775 & 0.469283 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301526&T=2

[TABLE]
[ROW][C]Partial Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]PACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.851492[/C][C]5.6482[/C][C]1e-06[/C][/ROW]
[ROW][C]2[/C][C]0.116791[/C][C]0.7747[/C][C]0.221329[/C][/ROW]
[ROW][C]3[/C][C]0.139206[/C][C]0.9234[/C][C]0.180421[/C][/ROW]
[ROW][C]4[/C][C]0.263787[/C][C]1.7498[/C][C]0.043565[/C][/ROW]
[ROW][C]5[/C][C]-0.43531[/C][C]-2.8875[/C][C]0.003[/C][/ROW]
[ROW][C]6[/C][C]0.069419[/C][C]0.4605[/C][C]0.323721[/C][/ROW]
[ROW][C]7[/C][C]0.05451[/C][C]0.3616[/C][C]0.359699[/C][/ROW]
[ROW][C]8[/C][C]0.069354[/C][C]0.46[/C][C]0.323876[/C][/ROW]
[ROW][C]9[/C][C]-0.237346[/C][C]-1.5744[/C][C]0.061282[/C][/ROW]
[ROW][C]10[/C][C]0.014954[/C][C]0.0992[/C][C]0.460718[/C][/ROW]
[ROW][C]11[/C][C]0.05471[/C][C]0.3629[/C][C]0.359207[/C][/ROW]
[ROW][C]12[/C][C]0.019678[/C][C]0.1305[/C][C]0.448372[/C][/ROW]
[ROW][C]13[/C][C]-0.177895[/C][C]-1.18[/C][C]0.122166[/C][/ROW]
[ROW][C]14[/C][C]0.004163[/C][C]0.0276[/C][C]0.489048[/C][/ROW]
[ROW][C]15[/C][C]0.013383[/C][C]0.0888[/C][C]0.464832[/C][/ROW]
[ROW][C]16[/C][C]0.011686[/C][C]0.0775[/C][C]0.469283[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301526&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301526&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.8514925.64821e-06
20.1167910.77470.221329
30.1392060.92340.180421
40.2637871.74980.043565
5-0.43531-2.88750.003
60.0694190.46050.323721
70.054510.36160.359699
80.0693540.460.323876
9-0.237346-1.57440.061282
100.0149540.09920.460718
110.054710.36290.359207
120.0196780.13050.448372
13-0.177895-1.180.122166
140.0041630.02760.489048
150.0133830.08880.464832
160.0116860.07750.469283



Parameters (Session):
par1 = 12 ;
Parameters (R input):
par1 = Default ; par2 = 1 ; par3 = 0 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ; par8 = ;
R code (references can be found in the software module):
if (par1 == 'Default') {
par1 = 10*log10(length(x))
} else {
par1 <- as.numeric(par1)
}
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
par5 <- as.numeric(par5)
if (par6 == 'White Noise') par6 <- 'white' else par6 <- 'ma'
par7 <- as.numeric(par7)
if (par8 != '') par8 <- as.numeric(par8)
x <- na.omit(x)
ox <- x
if (par8 == '') {
if (par2 == 0) {
x <- log(x)
} else {
x <- (x ^ par2 - 1) / par2
}
} else {
x <- log(x,base=par8)
}
if (par3 > 0) x <- diff(x,lag=1,difference=par3)
if (par4 > 0) x <- diff(x,lag=par5,difference=par4)
bitmap(file='picts.png')
op <- par(mfrow=c(2,1))
plot(ox,type='l',main='Original Time Series',xlab='time',ylab='value')
if (par8=='') {
mytitle <- paste('Working Time Series (lambda=',par2,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(lambda=',par2,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
} else {
mytitle <- paste('Working Time Series (base=',par8,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(base=',par8,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
}
plot(x,type='l', main=mytitle,xlab='time',ylab='value')
par(op)
dev.off()
bitmap(file='pic1.png')
racf <- acf(x, par1, main='Autocorrelation', xlab='time lag', ylab='ACF', ci.type=par6, ci=par7, sub=mysub)
dev.off()
bitmap(file='pic2.png')
rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF',sub=mysub)
dev.off()
(myacf <- c(racf$acf))
(mypacf <- c(rpacf$acf))
lengthx <- length(x)
sqrtn <- sqrt(lengthx)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'ACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 2:(par1+1)) {
a<-table.row.start(a)
a<-table.element(a,i-1,header=TRUE)
a<-table.element(a,round(myacf[i],6))
mytstat <- myacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Partial Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'PACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:par1) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,round(mypacf[i],6))
mytstat <- mypacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')