Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_smp.wasp
Title produced by softwareStandard Deviation-Mean Plot
Date of computationMon, 19 Dec 2016 22:24:37 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/19/t1482182696cchf3e8gofr2yld.htm/, Retrieved Fri, 01 Nov 2024 03:26:51 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=301524, Retrieved Fri, 01 Nov 2024 03:26:51 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact111
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Standard Deviation-Mean Plot] [] [2016-12-19 21:24:37] [2e11ca31a00cf8de75c33c1af2d59434] [Current]
Feedback Forum

Post a new message
Dataseries X:
2298.3
2424.67
2584.65
2639.42
2452.02
2537.49
2726.36
2843.85
2615.11
2778.08
2918.75
3023.41
2733.07
2933.31
3089.19
3256.6
2968.74
3101.7
3277.21
3420.1
3097.55
3286.21
3491.96
3608.53
3259.04
3492.27
3665.64
3808.02
3397.47
3644.83
3812.8
3958.78
3602.73
3845.49
4022.27
4195.29
3867.28
4142.62
4217.79
4487.61
4089.69
4431.36
4629.82
4832.81




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time0 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time0 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301524&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]0 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=301524&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301524&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time0 seconds
R ServerBig Analytics Cloud Computing Center







Standard Deviation-Mean Plot
SectionMeanStandard DeviationRange
12486.76155.198654848122341.12
22639.93177.817915295394391.83
32833.8375177.104943912736408.3
43003.0425223.204368143487523.53
53191.9375197.728311979679451.36
63371.0625225.84364316565510.98
73556.2425236.489273382536548.98
83703.47240.977796072584561.31
93916.445253.249006513352592.56
104178.825255.106210887413620.329999999999
114495.92316.551674875788743.12

\begin{tabular}{lllllllll}
\hline
Standard Deviation-Mean Plot \tabularnewline
Section & Mean & Standard Deviation & Range \tabularnewline
1 & 2486.76 & 155.198654848122 & 341.12 \tabularnewline
2 & 2639.93 & 177.817915295394 & 391.83 \tabularnewline
3 & 2833.8375 & 177.104943912736 & 408.3 \tabularnewline
4 & 3003.0425 & 223.204368143487 & 523.53 \tabularnewline
5 & 3191.9375 & 197.728311979679 & 451.36 \tabularnewline
6 & 3371.0625 & 225.84364316565 & 510.98 \tabularnewline
7 & 3556.2425 & 236.489273382536 & 548.98 \tabularnewline
8 & 3703.47 & 240.977796072584 & 561.31 \tabularnewline
9 & 3916.445 & 253.249006513352 & 592.56 \tabularnewline
10 & 4178.825 & 255.106210887413 & 620.329999999999 \tabularnewline
11 & 4495.92 & 316.551674875788 & 743.12 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301524&T=1

[TABLE]
[ROW][C]Standard Deviation-Mean Plot[/C][/ROW]
[ROW][C]Section[/C][C]Mean[/C][C]Standard Deviation[/C][C]Range[/C][/ROW]
[ROW][C]1[/C][C]2486.76[/C][C]155.198654848122[/C][C]341.12[/C][/ROW]
[ROW][C]2[/C][C]2639.93[/C][C]177.817915295394[/C][C]391.83[/C][/ROW]
[ROW][C]3[/C][C]2833.8375[/C][C]177.104943912736[/C][C]408.3[/C][/ROW]
[ROW][C]4[/C][C]3003.0425[/C][C]223.204368143487[/C][C]523.53[/C][/ROW]
[ROW][C]5[/C][C]3191.9375[/C][C]197.728311979679[/C][C]451.36[/C][/ROW]
[ROW][C]6[/C][C]3371.0625[/C][C]225.84364316565[/C][C]510.98[/C][/ROW]
[ROW][C]7[/C][C]3556.2425[/C][C]236.489273382536[/C][C]548.98[/C][/ROW]
[ROW][C]8[/C][C]3703.47[/C][C]240.977796072584[/C][C]561.31[/C][/ROW]
[ROW][C]9[/C][C]3916.445[/C][C]253.249006513352[/C][C]592.56[/C][/ROW]
[ROW][C]10[/C][C]4178.825[/C][C]255.106210887413[/C][C]620.329999999999[/C][/ROW]
[ROW][C]11[/C][C]4495.92[/C][C]316.551674875788[/C][C]743.12[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301524&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301524&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Standard Deviation-Mean Plot
SectionMeanStandard DeviationRange
12486.76155.198654848122341.12
22639.93177.817915295394391.83
32833.8375177.104943912736408.3
43003.0425223.204368143487523.53
53191.9375197.728311979679451.36
63371.0625225.84364316565510.98
73556.2425236.489273382536548.98
83703.47240.977796072584561.31
93916.445253.249006513352592.56
104178.825255.106210887413620.329999999999
114495.92316.551674875788743.12







Regression: S.E.(k) = alpha + beta * Mean(k)
alpha-5.50128513427357
beta0.0674145619544969
S.D.0.00705001130756057
T-STAT9.56233387628757
p-value5.18672789230228e-06

\begin{tabular}{lllllllll}
\hline
Regression: S.E.(k) = alpha + beta * Mean(k) \tabularnewline
alpha & -5.50128513427357 \tabularnewline
beta & 0.0674145619544969 \tabularnewline
S.D. & 0.00705001130756057 \tabularnewline
T-STAT & 9.56233387628757 \tabularnewline
p-value & 5.18672789230228e-06 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301524&T=2

[TABLE]
[ROW][C]Regression: S.E.(k) = alpha + beta * Mean(k)[/C][/ROW]
[ROW][C]alpha[/C][C]-5.50128513427357[/C][/ROW]
[ROW][C]beta[/C][C]0.0674145619544969[/C][/ROW]
[ROW][C]S.D.[/C][C]0.00705001130756057[/C][/ROW]
[ROW][C]T-STAT[/C][C]9.56233387628757[/C][/ROW]
[ROW][C]p-value[/C][C]5.18672789230228e-06[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301524&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301524&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Regression: S.E.(k) = alpha + beta * Mean(k)
alpha-5.50128513427357
beta0.0674145619544969
S.D.0.00705001130756057
T-STAT9.56233387628757
p-value5.18672789230228e-06







Regression: ln S.E.(k) = alpha + beta * ln Mean(k)
alpha-2.9165301649229
beta1.02377868684436
S.D.0.104170832455741
T-STAT9.82788236121025
p-value4.13378095069959e-06
Lambda-0.023778686844363

\begin{tabular}{lllllllll}
\hline
Regression: ln S.E.(k) = alpha + beta * ln Mean(k) \tabularnewline
alpha & -2.9165301649229 \tabularnewline
beta & 1.02377868684436 \tabularnewline
S.D. & 0.104170832455741 \tabularnewline
T-STAT & 9.82788236121025 \tabularnewline
p-value & 4.13378095069959e-06 \tabularnewline
Lambda & -0.023778686844363 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301524&T=3

[TABLE]
[ROW][C]Regression: ln S.E.(k) = alpha + beta * ln Mean(k)[/C][/ROW]
[ROW][C]alpha[/C][C]-2.9165301649229[/C][/ROW]
[ROW][C]beta[/C][C]1.02377868684436[/C][/ROW]
[ROW][C]S.D.[/C][C]0.104170832455741[/C][/ROW]
[ROW][C]T-STAT[/C][C]9.82788236121025[/C][/ROW]
[ROW][C]p-value[/C][C]4.13378095069959e-06[/C][/ROW]
[ROW][C]Lambda[/C][C]-0.023778686844363[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301524&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301524&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Regression: ln S.E.(k) = alpha + beta * ln Mean(k)
alpha-2.9165301649229
beta1.02377868684436
S.D.0.104170832455741
T-STAT9.82788236121025
p-value4.13378095069959e-06
Lambda-0.023778686844363



Parameters (Session):
par1 = 12 ;
Parameters (R input):
par1 = 4 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
(n <- length(x))
(np <- floor(n / par1))
arr <- array(NA,dim=c(par1,np))
j <- 0
k <- 1
for (i in 1:(np*par1))
{
j = j + 1
arr[j,k] <- x[i]
if (j == par1) {
j = 0
k=k+1
}
}
arr
arr.mean <- array(NA,dim=np)
arr.sd <- array(NA,dim=np)
arr.range <- array(NA,dim=np)
for (j in 1:np)
{
arr.mean[j] <- mean(arr[,j],na.rm=TRUE)
arr.sd[j] <- sd(arr[,j],na.rm=TRUE)
arr.range[j] <- max(arr[,j],na.rm=TRUE) - min(arr[,j],na.rm=TRUE)
}
arr.mean
arr.sd
arr.range
(lm1 <- lm(arr.sd~arr.mean))
(lnlm1 <- lm(log(arr.sd)~log(arr.mean)))
(lm2 <- lm(arr.range~arr.mean))
bitmap(file='test1.png')
plot(arr.mean,arr.sd,main='Standard Deviation-Mean Plot',xlab='mean',ylab='standard deviation')
dev.off()
bitmap(file='test2.png')
plot(arr.mean,arr.range,main='Range-Mean Plot',xlab='mean',ylab='range')
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Standard Deviation-Mean Plot',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Section',header=TRUE)
a<-table.element(a,'Mean',header=TRUE)
a<-table.element(a,'Standard Deviation',header=TRUE)
a<-table.element(a,'Range',header=TRUE)
a<-table.row.end(a)
for (j in 1:np) {
a<-table.row.start(a)
a<-table.element(a,j,header=TRUE)
a<-table.element(a,arr.mean[j])
a<-table.element(a,arr.sd[j] )
a<-table.element(a,arr.range[j] )
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Regression: S.E.(k) = alpha + beta * Mean(k)',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,lm1$coefficients[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,lm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,4])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Regression: ln S.E.(k) = alpha + beta * ln Mean(k)',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,lnlm1$coefficients[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,lnlm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,4])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Lambda',header=TRUE)
a<-table.element(a,1-lnlm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable2.tab')