Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_autocorrelation.wasp
Title produced by software(Partial) Autocorrelation Function
Date of computationMon, 19 Dec 2016 22:00:23 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/19/t1482181282ogn27a76x5830k3.htm/, Retrieved Fri, 01 Nov 2024 03:35:19 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=301505, Retrieved Fri, 01 Nov 2024 03:35:19 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact112
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [(Partial) Autocorrelation Function] [ACF] [2016-12-19 21:00:23] [2e11ca31a00cf8de75c33c1af2d59434] [Current]
Feedback Forum

Post a new message
Dataseries X:
3894.5
3850
3823
4091
4145.5
4432.5
4245
4172
3815
3565.5
3560
3477.5
3597
3685.5
4012.5
4422
4548.5
4599
4675
4583
4755.5
5001
5113
5131
5336
5276
5431
5479
5550
5601.5
5681.5
6191.5
6433.5
6489.5
6609
6673
6877
6972
6993
7032
7125.5
7233
7109
6935.5




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301505&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=301505&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301505&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.3366382.20750.016333
20.1971761.2930.101462
3-0.039065-0.25620.399522
4-0.13706-0.89880.186892
5-0.053352-0.34990.364078
6-0.194944-1.27830.103994
7-0.104403-0.68460.24863
8-0.079151-0.5190.303202
90.0290060.19020.425021
100.1550671.01680.157458
11-0.006541-0.04290.482993
12-0.148673-0.97490.167529
13-0.135427-0.88810.189725
14-0.105903-0.69450.245567
15-0.01435-0.09410.462734
160.1304330.85530.198562

\begin{tabular}{lllllllll}
\hline
Autocorrelation Function \tabularnewline
Time lag k & ACF(k) & T-STAT & P-value \tabularnewline
1 & 0.336638 & 2.2075 & 0.016333 \tabularnewline
2 & 0.197176 & 1.293 & 0.101462 \tabularnewline
3 & -0.039065 & -0.2562 & 0.399522 \tabularnewline
4 & -0.13706 & -0.8988 & 0.186892 \tabularnewline
5 & -0.053352 & -0.3499 & 0.364078 \tabularnewline
6 & -0.194944 & -1.2783 & 0.103994 \tabularnewline
7 & -0.104403 & -0.6846 & 0.24863 \tabularnewline
8 & -0.079151 & -0.519 & 0.303202 \tabularnewline
9 & 0.029006 & 0.1902 & 0.425021 \tabularnewline
10 & 0.155067 & 1.0168 & 0.157458 \tabularnewline
11 & -0.006541 & -0.0429 & 0.482993 \tabularnewline
12 & -0.148673 & -0.9749 & 0.167529 \tabularnewline
13 & -0.135427 & -0.8881 & 0.189725 \tabularnewline
14 & -0.105903 & -0.6945 & 0.245567 \tabularnewline
15 & -0.01435 & -0.0941 & 0.462734 \tabularnewline
16 & 0.130433 & 0.8553 & 0.198562 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301505&T=1

[TABLE]
[ROW][C]Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]ACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.336638[/C][C]2.2075[/C][C]0.016333[/C][/ROW]
[ROW][C]2[/C][C]0.197176[/C][C]1.293[/C][C]0.101462[/C][/ROW]
[ROW][C]3[/C][C]-0.039065[/C][C]-0.2562[/C][C]0.399522[/C][/ROW]
[ROW][C]4[/C][C]-0.13706[/C][C]-0.8988[/C][C]0.186892[/C][/ROW]
[ROW][C]5[/C][C]-0.053352[/C][C]-0.3499[/C][C]0.364078[/C][/ROW]
[ROW][C]6[/C][C]-0.194944[/C][C]-1.2783[/C][C]0.103994[/C][/ROW]
[ROW][C]7[/C][C]-0.104403[/C][C]-0.6846[/C][C]0.24863[/C][/ROW]
[ROW][C]8[/C][C]-0.079151[/C][C]-0.519[/C][C]0.303202[/C][/ROW]
[ROW][C]9[/C][C]0.029006[/C][C]0.1902[/C][C]0.425021[/C][/ROW]
[ROW][C]10[/C][C]0.155067[/C][C]1.0168[/C][C]0.157458[/C][/ROW]
[ROW][C]11[/C][C]-0.006541[/C][C]-0.0429[/C][C]0.482993[/C][/ROW]
[ROW][C]12[/C][C]-0.148673[/C][C]-0.9749[/C][C]0.167529[/C][/ROW]
[ROW][C]13[/C][C]-0.135427[/C][C]-0.8881[/C][C]0.189725[/C][/ROW]
[ROW][C]14[/C][C]-0.105903[/C][C]-0.6945[/C][C]0.245567[/C][/ROW]
[ROW][C]15[/C][C]-0.01435[/C][C]-0.0941[/C][C]0.462734[/C][/ROW]
[ROW][C]16[/C][C]0.130433[/C][C]0.8553[/C][C]0.198562[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301505&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301505&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.3366382.20750.016333
20.1971761.2930.101462
3-0.039065-0.25620.399522
4-0.13706-0.89880.186892
5-0.053352-0.34990.364078
6-0.194944-1.27830.103994
7-0.104403-0.68460.24863
8-0.079151-0.5190.303202
90.0290060.19020.425021
100.1550671.01680.157458
11-0.006541-0.04290.482993
12-0.148673-0.97490.167529
13-0.135427-0.88810.189725
14-0.105903-0.69450.245567
15-0.01435-0.09410.462734
160.1304330.85530.198562







Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.3366382.20750.016333
20.0945680.62010.269223
3-0.149076-0.97760.16688
4-0.11874-0.77860.22023
50.0660480.43310.333552
6-0.184524-1.210.116443
7-0.025182-0.16510.434809
80.0080040.05250.479193
90.0584860.38350.351613
100.1045960.68590.248235
11-0.135945-0.89150.188824
12-0.228809-1.50040.070409
130.0182050.11940.452765
140.0150420.09860.460943
15-0.00994-0.06520.474165
160.1921161.25980.10727

\begin{tabular}{lllllllll}
\hline
Partial Autocorrelation Function \tabularnewline
Time lag k & PACF(k) & T-STAT & P-value \tabularnewline
1 & 0.336638 & 2.2075 & 0.016333 \tabularnewline
2 & 0.094568 & 0.6201 & 0.269223 \tabularnewline
3 & -0.149076 & -0.9776 & 0.16688 \tabularnewline
4 & -0.11874 & -0.7786 & 0.22023 \tabularnewline
5 & 0.066048 & 0.4331 & 0.333552 \tabularnewline
6 & -0.184524 & -1.21 & 0.116443 \tabularnewline
7 & -0.025182 & -0.1651 & 0.434809 \tabularnewline
8 & 0.008004 & 0.0525 & 0.479193 \tabularnewline
9 & 0.058486 & 0.3835 & 0.351613 \tabularnewline
10 & 0.104596 & 0.6859 & 0.248235 \tabularnewline
11 & -0.135945 & -0.8915 & 0.188824 \tabularnewline
12 & -0.228809 & -1.5004 & 0.070409 \tabularnewline
13 & 0.018205 & 0.1194 & 0.452765 \tabularnewline
14 & 0.015042 & 0.0986 & 0.460943 \tabularnewline
15 & -0.00994 & -0.0652 & 0.474165 \tabularnewline
16 & 0.192116 & 1.2598 & 0.10727 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301505&T=2

[TABLE]
[ROW][C]Partial Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]PACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.336638[/C][C]2.2075[/C][C]0.016333[/C][/ROW]
[ROW][C]2[/C][C]0.094568[/C][C]0.6201[/C][C]0.269223[/C][/ROW]
[ROW][C]3[/C][C]-0.149076[/C][C]-0.9776[/C][C]0.16688[/C][/ROW]
[ROW][C]4[/C][C]-0.11874[/C][C]-0.7786[/C][C]0.22023[/C][/ROW]
[ROW][C]5[/C][C]0.066048[/C][C]0.4331[/C][C]0.333552[/C][/ROW]
[ROW][C]6[/C][C]-0.184524[/C][C]-1.21[/C][C]0.116443[/C][/ROW]
[ROW][C]7[/C][C]-0.025182[/C][C]-0.1651[/C][C]0.434809[/C][/ROW]
[ROW][C]8[/C][C]0.008004[/C][C]0.0525[/C][C]0.479193[/C][/ROW]
[ROW][C]9[/C][C]0.058486[/C][C]0.3835[/C][C]0.351613[/C][/ROW]
[ROW][C]10[/C][C]0.104596[/C][C]0.6859[/C][C]0.248235[/C][/ROW]
[ROW][C]11[/C][C]-0.135945[/C][C]-0.8915[/C][C]0.188824[/C][/ROW]
[ROW][C]12[/C][C]-0.228809[/C][C]-1.5004[/C][C]0.070409[/C][/ROW]
[ROW][C]13[/C][C]0.018205[/C][C]0.1194[/C][C]0.452765[/C][/ROW]
[ROW][C]14[/C][C]0.015042[/C][C]0.0986[/C][C]0.460943[/C][/ROW]
[ROW][C]15[/C][C]-0.00994[/C][C]-0.0652[/C][C]0.474165[/C][/ROW]
[ROW][C]16[/C][C]0.192116[/C][C]1.2598[/C][C]0.10727[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301505&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301505&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.3366382.20750.016333
20.0945680.62010.269223
3-0.149076-0.97760.16688
4-0.11874-0.77860.22023
50.0660480.43310.333552
6-0.184524-1.210.116443
7-0.025182-0.16510.434809
80.0080040.05250.479193
90.0584860.38350.351613
100.1045960.68590.248235
11-0.135945-0.89150.188824
12-0.228809-1.50040.070409
130.0182050.11940.452765
140.0150420.09860.460943
15-0.00994-0.06520.474165
160.1921161.25980.10727



Parameters (Session):
par1 = 12 ;
Parameters (R input):
par1 = Default ; par2 = 1 ; par3 = 1 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ; par8 = ;
R code (references can be found in the software module):
par8 <- ''
par7 <- '0.95'
par6 <- 'White Noise'
par5 <- '12'
par4 <- '0'
par3 <- '0'
par2 <- '1'
par1 <- 'Default'
if (par1 == 'Default') {
par1 = 10*log10(length(x))
} else {
par1 <- as.numeric(par1)
}
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
par5 <- as.numeric(par5)
if (par6 == 'White Noise') par6 <- 'white' else par6 <- 'ma'
par7 <- as.numeric(par7)
if (par8 != '') par8 <- as.numeric(par8)
x <- na.omit(x)
ox <- x
if (par8 == '') {
if (par2 == 0) {
x <- log(x)
} else {
x <- (x ^ par2 - 1) / par2
}
} else {
x <- log(x,base=par8)
}
if (par3 > 0) x <- diff(x,lag=1,difference=par3)
if (par4 > 0) x <- diff(x,lag=par5,difference=par4)
bitmap(file='picts.png')
op <- par(mfrow=c(2,1))
plot(ox,type='l',main='Original Time Series',xlab='time',ylab='value')
if (par8=='') {
mytitle <- paste('Working Time Series (lambda=',par2,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(lambda=',par2,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
} else {
mytitle <- paste('Working Time Series (base=',par8,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(base=',par8,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
}
plot(x,type='l', main=mytitle,xlab='time',ylab='value')
par(op)
dev.off()
bitmap(file='pic1.png')
racf <- acf(x, par1, main='Autocorrelation', xlab='time lag', ylab='ACF', ci.type=par6, ci=par7, sub=mysub)
dev.off()
bitmap(file='pic2.png')
rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF',sub=mysub)
dev.off()
(myacf <- c(racf$acf))
(mypacf <- c(rpacf$acf))
lengthx <- length(x)
sqrtn <- sqrt(lengthx)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'ACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 2:(par1+1)) {
a<-table.row.start(a)
a<-table.element(a,i-1,header=TRUE)
a<-table.element(a,round(myacf[i],6))
mytstat <- myacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Partial Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'PACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:par1) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,round(mypacf[i],6))
mytstat <- mypacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')