Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimaforecasting.wasp
Title produced by softwareARIMA Forecasting
Date of computationMon, 19 Dec 2016 21:50:23 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/19/t1482180671qvwtxi4vr1b82nk.htm/, Retrieved Fri, 01 Nov 2024 03:41:03 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=301498, Retrieved Fri, 01 Nov 2024 03:41:03 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact111
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [ARIMA Forecasting] [N2044 ARIMA forecast] [2016-12-19 20:50:23] [2e11ca31a00cf8de75c33c1af2d59434] [Current]
Feedback Forum

Post a new message
Dataseries X:
3880
3740
3990
3970
4100
3920
3850
4190
3990
4140
4080
3900
4070
3930
4210
4020
4120
4020
3910
4110
4130
4340
4200
4200
4160
3920
4280
3940
4190
4150
4070
4130
3960
4320
4110
4100
4280
3990
4360
4240
4450
4190
3950
4300
4150
4540
4240
4210
4390
4140
4460
4290
4430
4390
4340
4570
4470
4550
4420
4490
4480
4400
4770
4450
4610
4540
4520
4710
4580
4760
4450
4500
4660
4370
5030
4510
4740
4690
4580
4850
4730
4890
4740
4600
4740
4520
5000
4670
4940
4790
4820
5010
4870
5070
4770
4840
4850
4590
5050
4770
4720
4740
4400
4840
4650
4860
4580
4640
4800
4660
5020
4700
4800
4700
4560




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301498&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=301498&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301498&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[91])
794580-------
804850-------
814730-------
824890-------
834740-------
844600-------
854740-------
864520-------
875000-------
884670-------
894940-------
904790-------
914820-------
9250104961.41484786.00245136.82720.29360.9430.89340.943
9348704839.48684660.71435018.25930.3690.03080.8850.5846
9450705039.23144857.16085221.3020.37020.96580.94590.9909
9547704842.82344657.51335028.13340.22060.00810.86160.5954
9648404807.32314618.82924995.81690.3670.6510.98440.4476
9748504921.85784730.30995113.40570.23110.79890.96860.8514
9845904706.18754511.5654900.810.1210.07380.96960.1259
9950505150.21674952.56745347.8660.160210.93180.9995
10047704839.67464639.04425040.30490.2480.020.95130.5762
10147205048.40044844.83265251.96828e-040.99630.85170.9861
10247404942.32914735.86565148.79250.02740.98260.92590.8772
10344004885.25764675.93855094.576700.91310.72940.7294
10448405095.00624869.34695320.66550.013410.76980.9915
10546504973.07824743.11975203.03670.00290.87170.81020.904
10648605172.82284938.64415407.00150.004410.80530.9984
10745804976.41484738.09065214.7396e-040.83080.95520.9008
10846404940.91454698.51565183.31330.00750.99820.79270.8359
10948005055.44924809.04665301.85190.02110.99950.94890.9695
11046604839.77894589.44985090.1080.07960.62230.97470.5615
11150205283.80815029.61325538.0030.02110.96430.9998
11247004973.2664715.26325231.26880.01890.36130.93870.8779
11348005181.99184920.23665443.74710.00210.99980.99970.9966
11447005075.92054810.46585341.37520.00280.97920.99340.9706
11545605018.8494749.74575287.95234e-040.989910.9262

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast \tabularnewline
time & Y[t] & F[t] & 95% LB & 95% UB & p-value(H0: Y[t] = F[t]) & P(F[t]>Y[t-1]) & P(F[t]>Y[t-s]) & P(F[t]>Y[91]) \tabularnewline
79 & 4580 & - & - & - & - & - & - & - \tabularnewline
80 & 4850 & - & - & - & - & - & - & - \tabularnewline
81 & 4730 & - & - & - & - & - & - & - \tabularnewline
82 & 4890 & - & - & - & - & - & - & - \tabularnewline
83 & 4740 & - & - & - & - & - & - & - \tabularnewline
84 & 4600 & - & - & - & - & - & - & - \tabularnewline
85 & 4740 & - & - & - & - & - & - & - \tabularnewline
86 & 4520 & - & - & - & - & - & - & - \tabularnewline
87 & 5000 & - & - & - & - & - & - & - \tabularnewline
88 & 4670 & - & - & - & - & - & - & - \tabularnewline
89 & 4940 & - & - & - & - & - & - & - \tabularnewline
90 & 4790 & - & - & - & - & - & - & - \tabularnewline
91 & 4820 & - & - & - & - & - & - & - \tabularnewline
92 & 5010 & 4961.4148 & 4786.0024 & 5136.8272 & 0.2936 & 0.943 & 0.8934 & 0.943 \tabularnewline
93 & 4870 & 4839.4868 & 4660.7143 & 5018.2593 & 0.369 & 0.0308 & 0.885 & 0.5846 \tabularnewline
94 & 5070 & 5039.2314 & 4857.1608 & 5221.302 & 0.3702 & 0.9658 & 0.9459 & 0.9909 \tabularnewline
95 & 4770 & 4842.8234 & 4657.5133 & 5028.1334 & 0.2206 & 0.0081 & 0.8616 & 0.5954 \tabularnewline
96 & 4840 & 4807.3231 & 4618.8292 & 4995.8169 & 0.367 & 0.651 & 0.9844 & 0.4476 \tabularnewline
97 & 4850 & 4921.8578 & 4730.3099 & 5113.4057 & 0.2311 & 0.7989 & 0.9686 & 0.8514 \tabularnewline
98 & 4590 & 4706.1875 & 4511.565 & 4900.81 & 0.121 & 0.0738 & 0.9696 & 0.1259 \tabularnewline
99 & 5050 & 5150.2167 & 4952.5674 & 5347.866 & 0.1602 & 1 & 0.9318 & 0.9995 \tabularnewline
100 & 4770 & 4839.6746 & 4639.0442 & 5040.3049 & 0.248 & 0.02 & 0.9513 & 0.5762 \tabularnewline
101 & 4720 & 5048.4004 & 4844.8326 & 5251.9682 & 8e-04 & 0.9963 & 0.8517 & 0.9861 \tabularnewline
102 & 4740 & 4942.3291 & 4735.8656 & 5148.7925 & 0.0274 & 0.9826 & 0.9259 & 0.8772 \tabularnewline
103 & 4400 & 4885.2576 & 4675.9385 & 5094.5767 & 0 & 0.9131 & 0.7294 & 0.7294 \tabularnewline
104 & 4840 & 5095.0062 & 4869.3469 & 5320.6655 & 0.0134 & 1 & 0.7698 & 0.9915 \tabularnewline
105 & 4650 & 4973.0782 & 4743.1197 & 5203.0367 & 0.0029 & 0.8717 & 0.8102 & 0.904 \tabularnewline
106 & 4860 & 5172.8228 & 4938.6441 & 5407.0015 & 0.0044 & 1 & 0.8053 & 0.9984 \tabularnewline
107 & 4580 & 4976.4148 & 4738.0906 & 5214.739 & 6e-04 & 0.8308 & 0.9552 & 0.9008 \tabularnewline
108 & 4640 & 4940.9145 & 4698.5156 & 5183.3133 & 0.0075 & 0.9982 & 0.7927 & 0.8359 \tabularnewline
109 & 4800 & 5055.4492 & 4809.0466 & 5301.8519 & 0.0211 & 0.9995 & 0.9489 & 0.9695 \tabularnewline
110 & 4660 & 4839.7789 & 4589.4498 & 5090.108 & 0.0796 & 0.6223 & 0.9747 & 0.5615 \tabularnewline
111 & 5020 & 5283.8081 & 5029.6132 & 5538.003 & 0.021 & 1 & 0.9643 & 0.9998 \tabularnewline
112 & 4700 & 4973.266 & 4715.2632 & 5231.2688 & 0.0189 & 0.3613 & 0.9387 & 0.8779 \tabularnewline
113 & 4800 & 5181.9918 & 4920.2366 & 5443.7471 & 0.0021 & 0.9998 & 0.9997 & 0.9966 \tabularnewline
114 & 4700 & 5075.9205 & 4810.4658 & 5341.3752 & 0.0028 & 0.9792 & 0.9934 & 0.9706 \tabularnewline
115 & 4560 & 5018.849 & 4749.7457 & 5287.9523 & 4e-04 & 0.9899 & 1 & 0.9262 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301498&T=1

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast[/C][/ROW]
[ROW][C]time[/C][C]Y[t][/C][C]F[t][/C][C]95% LB[/C][C]95% UB[/C][C]p-value(H0: Y[t] = F[t])[/C][C]P(F[t]>Y[t-1])[/C][C]P(F[t]>Y[t-s])[/C][C]P(F[t]>Y[91])[/C][/ROW]
[ROW][C]79[/C][C]4580[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]80[/C][C]4850[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]81[/C][C]4730[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]82[/C][C]4890[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]83[/C][C]4740[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]84[/C][C]4600[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]85[/C][C]4740[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]86[/C][C]4520[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]87[/C][C]5000[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]88[/C][C]4670[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]89[/C][C]4940[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]90[/C][C]4790[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]91[/C][C]4820[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]92[/C][C]5010[/C][C]4961.4148[/C][C]4786.0024[/C][C]5136.8272[/C][C]0.2936[/C][C]0.943[/C][C]0.8934[/C][C]0.943[/C][/ROW]
[ROW][C]93[/C][C]4870[/C][C]4839.4868[/C][C]4660.7143[/C][C]5018.2593[/C][C]0.369[/C][C]0.0308[/C][C]0.885[/C][C]0.5846[/C][/ROW]
[ROW][C]94[/C][C]5070[/C][C]5039.2314[/C][C]4857.1608[/C][C]5221.302[/C][C]0.3702[/C][C]0.9658[/C][C]0.9459[/C][C]0.9909[/C][/ROW]
[ROW][C]95[/C][C]4770[/C][C]4842.8234[/C][C]4657.5133[/C][C]5028.1334[/C][C]0.2206[/C][C]0.0081[/C][C]0.8616[/C][C]0.5954[/C][/ROW]
[ROW][C]96[/C][C]4840[/C][C]4807.3231[/C][C]4618.8292[/C][C]4995.8169[/C][C]0.367[/C][C]0.651[/C][C]0.9844[/C][C]0.4476[/C][/ROW]
[ROW][C]97[/C][C]4850[/C][C]4921.8578[/C][C]4730.3099[/C][C]5113.4057[/C][C]0.2311[/C][C]0.7989[/C][C]0.9686[/C][C]0.8514[/C][/ROW]
[ROW][C]98[/C][C]4590[/C][C]4706.1875[/C][C]4511.565[/C][C]4900.81[/C][C]0.121[/C][C]0.0738[/C][C]0.9696[/C][C]0.1259[/C][/ROW]
[ROW][C]99[/C][C]5050[/C][C]5150.2167[/C][C]4952.5674[/C][C]5347.866[/C][C]0.1602[/C][C]1[/C][C]0.9318[/C][C]0.9995[/C][/ROW]
[ROW][C]100[/C][C]4770[/C][C]4839.6746[/C][C]4639.0442[/C][C]5040.3049[/C][C]0.248[/C][C]0.02[/C][C]0.9513[/C][C]0.5762[/C][/ROW]
[ROW][C]101[/C][C]4720[/C][C]5048.4004[/C][C]4844.8326[/C][C]5251.9682[/C][C]8e-04[/C][C]0.9963[/C][C]0.8517[/C][C]0.9861[/C][/ROW]
[ROW][C]102[/C][C]4740[/C][C]4942.3291[/C][C]4735.8656[/C][C]5148.7925[/C][C]0.0274[/C][C]0.9826[/C][C]0.9259[/C][C]0.8772[/C][/ROW]
[ROW][C]103[/C][C]4400[/C][C]4885.2576[/C][C]4675.9385[/C][C]5094.5767[/C][C]0[/C][C]0.9131[/C][C]0.7294[/C][C]0.7294[/C][/ROW]
[ROW][C]104[/C][C]4840[/C][C]5095.0062[/C][C]4869.3469[/C][C]5320.6655[/C][C]0.0134[/C][C]1[/C][C]0.7698[/C][C]0.9915[/C][/ROW]
[ROW][C]105[/C][C]4650[/C][C]4973.0782[/C][C]4743.1197[/C][C]5203.0367[/C][C]0.0029[/C][C]0.8717[/C][C]0.8102[/C][C]0.904[/C][/ROW]
[ROW][C]106[/C][C]4860[/C][C]5172.8228[/C][C]4938.6441[/C][C]5407.0015[/C][C]0.0044[/C][C]1[/C][C]0.8053[/C][C]0.9984[/C][/ROW]
[ROW][C]107[/C][C]4580[/C][C]4976.4148[/C][C]4738.0906[/C][C]5214.739[/C][C]6e-04[/C][C]0.8308[/C][C]0.9552[/C][C]0.9008[/C][/ROW]
[ROW][C]108[/C][C]4640[/C][C]4940.9145[/C][C]4698.5156[/C][C]5183.3133[/C][C]0.0075[/C][C]0.9982[/C][C]0.7927[/C][C]0.8359[/C][/ROW]
[ROW][C]109[/C][C]4800[/C][C]5055.4492[/C][C]4809.0466[/C][C]5301.8519[/C][C]0.0211[/C][C]0.9995[/C][C]0.9489[/C][C]0.9695[/C][/ROW]
[ROW][C]110[/C][C]4660[/C][C]4839.7789[/C][C]4589.4498[/C][C]5090.108[/C][C]0.0796[/C][C]0.6223[/C][C]0.9747[/C][C]0.5615[/C][/ROW]
[ROW][C]111[/C][C]5020[/C][C]5283.8081[/C][C]5029.6132[/C][C]5538.003[/C][C]0.021[/C][C]1[/C][C]0.9643[/C][C]0.9998[/C][/ROW]
[ROW][C]112[/C][C]4700[/C][C]4973.266[/C][C]4715.2632[/C][C]5231.2688[/C][C]0.0189[/C][C]0.3613[/C][C]0.9387[/C][C]0.8779[/C][/ROW]
[ROW][C]113[/C][C]4800[/C][C]5181.9918[/C][C]4920.2366[/C][C]5443.7471[/C][C]0.0021[/C][C]0.9998[/C][C]0.9997[/C][C]0.9966[/C][/ROW]
[ROW][C]114[/C][C]4700[/C][C]5075.9205[/C][C]4810.4658[/C][C]5341.3752[/C][C]0.0028[/C][C]0.9792[/C][C]0.9934[/C][C]0.9706[/C][/ROW]
[ROW][C]115[/C][C]4560[/C][C]5018.849[/C][C]4749.7457[/C][C]5287.9523[/C][C]4e-04[/C][C]0.9899[/C][C]1[/C][C]0.9262[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301498&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301498&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[91])
794580-------
804850-------
814730-------
824890-------
834740-------
844600-------
854740-------
864520-------
875000-------
884670-------
894940-------
904790-------
914820-------
9250104961.41484786.00245136.82720.29360.9430.89340.943
9348704839.48684660.71435018.25930.3690.03080.8850.5846
9450705039.23144857.16085221.3020.37020.96580.94590.9909
9547704842.82344657.51335028.13340.22060.00810.86160.5954
9648404807.32314618.82924995.81690.3670.6510.98440.4476
9748504921.85784730.30995113.40570.23110.79890.96860.8514
9845904706.18754511.5654900.810.1210.07380.96960.1259
9950505150.21674952.56745347.8660.160210.93180.9995
10047704839.67464639.04425040.30490.2480.020.95130.5762
10147205048.40044844.83265251.96828e-040.99630.85170.9861
10247404942.32914735.86565148.79250.02740.98260.92590.8772
10344004885.25764675.93855094.576700.91310.72940.7294
10448405095.00624869.34695320.66550.013410.76980.9915
10546504973.07824743.11975203.03670.00290.87170.81020.904
10648605172.82284938.64415407.00150.004410.80530.9984
10745804976.41484738.09065214.7396e-040.83080.95520.9008
10846404940.91454698.51565183.31330.00750.99820.79270.8359
10948005055.44924809.04665301.85190.02110.99950.94890.9695
11046604839.77894589.44985090.1080.07960.62230.97470.5615
11150205283.80815029.61325538.0030.02110.96430.9998
11247004973.2664715.26325231.26880.01890.36130.93870.8779
11348005181.99184920.23665443.74710.00210.99980.99970.9966
11447005075.92054810.46585341.37520.00280.97920.99340.9706
11545605018.8494749.74575287.95234e-040.989910.9262







Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
920.0180.00970.00970.00972360.5214000.24140.2414
930.01880.00630.0080.008931.05671645.78940.56830.15160.1965
940.01840.00610.00730.0074946.70641412.761537.58670.15280.1819
950.0195-0.01530.00930.00935303.24462385.382348.8404-0.36180.2269
960.020.00680.00880.00881067.78212121.862246.06370.16230.214
970.0199-0.01480.00980.00985163.54192628.808851.2719-0.3570.2378
980.0211-0.02530.0120.01213499.5364181.769964.6666-0.57720.2863
990.0196-0.01980.0130.012910043.38714914.47270.1033-0.49780.3127
1000.0212-0.01460.01320.01314854.54424907.813470.0558-0.34610.3164
1010.0206-0.06960.01880.0185107846.819715201.714123.2952-1.63140.4479
1020.0213-0.04270.0210.020640937.047217541.2897132.4435-1.00510.4986
1030.0219-0.11030.02840.0276235474.923635702.4259188.9509-2.41060.6579
1040.0226-0.05270.03030.029465028.177537958.2529194.8288-1.26680.7047
1050.0236-0.06950.03310.0321104379.526942702.6297206.6461-1.60490.769
1060.0231-0.06440.03520.034297858.124746379.6627215.3594-1.5540.8214
1070.0244-0.08660.03840.0372157144.699253302.4774230.8733-1.96920.8931
1080.025-0.06490.03990.038790549.531755493.4806235.5705-1.49480.9285
1090.0249-0.05320.04070.039465254.302256035.7485236.7187-1.2690.9474
1100.0264-0.03860.04060.039432320.463954787.5756234.0675-0.89310.9446
1110.0245-0.05260.04120.039969594.728455527.9333235.6437-1.31050.9629
1120.0265-0.05810.0420.040774674.299256439.665237.5703-1.35750.9817
1130.0258-0.07960.04370.0424145917.752560506.8508245.9814-1.89761.0233
1140.0267-0.080.04530.0439141316.210264020.3012253.0223-1.86741.06
1150.0274-0.10060.04760.046210542.415870125.3893264.812-2.27941.1108

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast Performance \tabularnewline
time & % S.E. & PE & MAPE & sMAPE & Sq.E & MSE & RMSE & ScaledE & MASE \tabularnewline
92 & 0.018 & 0.0097 & 0.0097 & 0.0097 & 2360.5214 & 0 & 0 & 0.2414 & 0.2414 \tabularnewline
93 & 0.0188 & 0.0063 & 0.008 & 0.008 & 931.0567 & 1645.789 & 40.5683 & 0.1516 & 0.1965 \tabularnewline
94 & 0.0184 & 0.0061 & 0.0073 & 0.0074 & 946.7064 & 1412.7615 & 37.5867 & 0.1528 & 0.1819 \tabularnewline
95 & 0.0195 & -0.0153 & 0.0093 & 0.0093 & 5303.2446 & 2385.3823 & 48.8404 & -0.3618 & 0.2269 \tabularnewline
96 & 0.02 & 0.0068 & 0.0088 & 0.0088 & 1067.7821 & 2121.8622 & 46.0637 & 0.1623 & 0.214 \tabularnewline
97 & 0.0199 & -0.0148 & 0.0098 & 0.0098 & 5163.5419 & 2628.8088 & 51.2719 & -0.357 & 0.2378 \tabularnewline
98 & 0.0211 & -0.0253 & 0.012 & 0.012 & 13499.536 & 4181.7699 & 64.6666 & -0.5772 & 0.2863 \tabularnewline
99 & 0.0196 & -0.0198 & 0.013 & 0.0129 & 10043.3871 & 4914.472 & 70.1033 & -0.4978 & 0.3127 \tabularnewline
100 & 0.0212 & -0.0146 & 0.0132 & 0.0131 & 4854.5442 & 4907.8134 & 70.0558 & -0.3461 & 0.3164 \tabularnewline
101 & 0.0206 & -0.0696 & 0.0188 & 0.0185 & 107846.8197 & 15201.714 & 123.2952 & -1.6314 & 0.4479 \tabularnewline
102 & 0.0213 & -0.0427 & 0.021 & 0.0206 & 40937.0472 & 17541.2897 & 132.4435 & -1.0051 & 0.4986 \tabularnewline
103 & 0.0219 & -0.1103 & 0.0284 & 0.0276 & 235474.9236 & 35702.4259 & 188.9509 & -2.4106 & 0.6579 \tabularnewline
104 & 0.0226 & -0.0527 & 0.0303 & 0.0294 & 65028.1775 & 37958.2529 & 194.8288 & -1.2668 & 0.7047 \tabularnewline
105 & 0.0236 & -0.0695 & 0.0331 & 0.0321 & 104379.5269 & 42702.6297 & 206.6461 & -1.6049 & 0.769 \tabularnewline
106 & 0.0231 & -0.0644 & 0.0352 & 0.0342 & 97858.1247 & 46379.6627 & 215.3594 & -1.554 & 0.8214 \tabularnewline
107 & 0.0244 & -0.0866 & 0.0384 & 0.0372 & 157144.6992 & 53302.4774 & 230.8733 & -1.9692 & 0.8931 \tabularnewline
108 & 0.025 & -0.0649 & 0.0399 & 0.0387 & 90549.5317 & 55493.4806 & 235.5705 & -1.4948 & 0.9285 \tabularnewline
109 & 0.0249 & -0.0532 & 0.0407 & 0.0394 & 65254.3022 & 56035.7485 & 236.7187 & -1.269 & 0.9474 \tabularnewline
110 & 0.0264 & -0.0386 & 0.0406 & 0.0394 & 32320.4639 & 54787.5756 & 234.0675 & -0.8931 & 0.9446 \tabularnewline
111 & 0.0245 & -0.0526 & 0.0412 & 0.0399 & 69594.7284 & 55527.9333 & 235.6437 & -1.3105 & 0.9629 \tabularnewline
112 & 0.0265 & -0.0581 & 0.042 & 0.0407 & 74674.2992 & 56439.665 & 237.5703 & -1.3575 & 0.9817 \tabularnewline
113 & 0.0258 & -0.0796 & 0.0437 & 0.0424 & 145917.7525 & 60506.8508 & 245.9814 & -1.8976 & 1.0233 \tabularnewline
114 & 0.0267 & -0.08 & 0.0453 & 0.0439 & 141316.2102 & 64020.3012 & 253.0223 & -1.8674 & 1.06 \tabularnewline
115 & 0.0274 & -0.1006 & 0.0476 & 0.046 & 210542.4158 & 70125.3893 & 264.812 & -2.2794 & 1.1108 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301498&T=2

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast Performance[/C][/ROW]
[ROW][C]time[/C][C]% S.E.[/C][C]PE[/C][C]MAPE[/C][C]sMAPE[/C][C]Sq.E[/C][C]MSE[/C][C]RMSE[/C][C]ScaledE[/C][C]MASE[/C][/ROW]
[ROW][C]92[/C][C]0.018[/C][C]0.0097[/C][C]0.0097[/C][C]0.0097[/C][C]2360.5214[/C][C]0[/C][C]0[/C][C]0.2414[/C][C]0.2414[/C][/ROW]
[ROW][C]93[/C][C]0.0188[/C][C]0.0063[/C][C]0.008[/C][C]0.008[/C][C]931.0567[/C][C]1645.789[/C][C]40.5683[/C][C]0.1516[/C][C]0.1965[/C][/ROW]
[ROW][C]94[/C][C]0.0184[/C][C]0.0061[/C][C]0.0073[/C][C]0.0074[/C][C]946.7064[/C][C]1412.7615[/C][C]37.5867[/C][C]0.1528[/C][C]0.1819[/C][/ROW]
[ROW][C]95[/C][C]0.0195[/C][C]-0.0153[/C][C]0.0093[/C][C]0.0093[/C][C]5303.2446[/C][C]2385.3823[/C][C]48.8404[/C][C]-0.3618[/C][C]0.2269[/C][/ROW]
[ROW][C]96[/C][C]0.02[/C][C]0.0068[/C][C]0.0088[/C][C]0.0088[/C][C]1067.7821[/C][C]2121.8622[/C][C]46.0637[/C][C]0.1623[/C][C]0.214[/C][/ROW]
[ROW][C]97[/C][C]0.0199[/C][C]-0.0148[/C][C]0.0098[/C][C]0.0098[/C][C]5163.5419[/C][C]2628.8088[/C][C]51.2719[/C][C]-0.357[/C][C]0.2378[/C][/ROW]
[ROW][C]98[/C][C]0.0211[/C][C]-0.0253[/C][C]0.012[/C][C]0.012[/C][C]13499.536[/C][C]4181.7699[/C][C]64.6666[/C][C]-0.5772[/C][C]0.2863[/C][/ROW]
[ROW][C]99[/C][C]0.0196[/C][C]-0.0198[/C][C]0.013[/C][C]0.0129[/C][C]10043.3871[/C][C]4914.472[/C][C]70.1033[/C][C]-0.4978[/C][C]0.3127[/C][/ROW]
[ROW][C]100[/C][C]0.0212[/C][C]-0.0146[/C][C]0.0132[/C][C]0.0131[/C][C]4854.5442[/C][C]4907.8134[/C][C]70.0558[/C][C]-0.3461[/C][C]0.3164[/C][/ROW]
[ROW][C]101[/C][C]0.0206[/C][C]-0.0696[/C][C]0.0188[/C][C]0.0185[/C][C]107846.8197[/C][C]15201.714[/C][C]123.2952[/C][C]-1.6314[/C][C]0.4479[/C][/ROW]
[ROW][C]102[/C][C]0.0213[/C][C]-0.0427[/C][C]0.021[/C][C]0.0206[/C][C]40937.0472[/C][C]17541.2897[/C][C]132.4435[/C][C]-1.0051[/C][C]0.4986[/C][/ROW]
[ROW][C]103[/C][C]0.0219[/C][C]-0.1103[/C][C]0.0284[/C][C]0.0276[/C][C]235474.9236[/C][C]35702.4259[/C][C]188.9509[/C][C]-2.4106[/C][C]0.6579[/C][/ROW]
[ROW][C]104[/C][C]0.0226[/C][C]-0.0527[/C][C]0.0303[/C][C]0.0294[/C][C]65028.1775[/C][C]37958.2529[/C][C]194.8288[/C][C]-1.2668[/C][C]0.7047[/C][/ROW]
[ROW][C]105[/C][C]0.0236[/C][C]-0.0695[/C][C]0.0331[/C][C]0.0321[/C][C]104379.5269[/C][C]42702.6297[/C][C]206.6461[/C][C]-1.6049[/C][C]0.769[/C][/ROW]
[ROW][C]106[/C][C]0.0231[/C][C]-0.0644[/C][C]0.0352[/C][C]0.0342[/C][C]97858.1247[/C][C]46379.6627[/C][C]215.3594[/C][C]-1.554[/C][C]0.8214[/C][/ROW]
[ROW][C]107[/C][C]0.0244[/C][C]-0.0866[/C][C]0.0384[/C][C]0.0372[/C][C]157144.6992[/C][C]53302.4774[/C][C]230.8733[/C][C]-1.9692[/C][C]0.8931[/C][/ROW]
[ROW][C]108[/C][C]0.025[/C][C]-0.0649[/C][C]0.0399[/C][C]0.0387[/C][C]90549.5317[/C][C]55493.4806[/C][C]235.5705[/C][C]-1.4948[/C][C]0.9285[/C][/ROW]
[ROW][C]109[/C][C]0.0249[/C][C]-0.0532[/C][C]0.0407[/C][C]0.0394[/C][C]65254.3022[/C][C]56035.7485[/C][C]236.7187[/C][C]-1.269[/C][C]0.9474[/C][/ROW]
[ROW][C]110[/C][C]0.0264[/C][C]-0.0386[/C][C]0.0406[/C][C]0.0394[/C][C]32320.4639[/C][C]54787.5756[/C][C]234.0675[/C][C]-0.8931[/C][C]0.9446[/C][/ROW]
[ROW][C]111[/C][C]0.0245[/C][C]-0.0526[/C][C]0.0412[/C][C]0.0399[/C][C]69594.7284[/C][C]55527.9333[/C][C]235.6437[/C][C]-1.3105[/C][C]0.9629[/C][/ROW]
[ROW][C]112[/C][C]0.0265[/C][C]-0.0581[/C][C]0.042[/C][C]0.0407[/C][C]74674.2992[/C][C]56439.665[/C][C]237.5703[/C][C]-1.3575[/C][C]0.9817[/C][/ROW]
[ROW][C]113[/C][C]0.0258[/C][C]-0.0796[/C][C]0.0437[/C][C]0.0424[/C][C]145917.7525[/C][C]60506.8508[/C][C]245.9814[/C][C]-1.8976[/C][C]1.0233[/C][/ROW]
[ROW][C]114[/C][C]0.0267[/C][C]-0.08[/C][C]0.0453[/C][C]0.0439[/C][C]141316.2102[/C][C]64020.3012[/C][C]253.0223[/C][C]-1.8674[/C][C]1.06[/C][/ROW]
[ROW][C]115[/C][C]0.0274[/C][C]-0.1006[/C][C]0.0476[/C][C]0.046[/C][C]210542.4158[/C][C]70125.3893[/C][C]264.812[/C][C]-2.2794[/C][C]1.1108[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301498&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301498&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
920.0180.00970.00970.00972360.5214000.24140.2414
930.01880.00630.0080.008931.05671645.78940.56830.15160.1965
940.01840.00610.00730.0074946.70641412.761537.58670.15280.1819
950.0195-0.01530.00930.00935303.24462385.382348.8404-0.36180.2269
960.020.00680.00880.00881067.78212121.862246.06370.16230.214
970.0199-0.01480.00980.00985163.54192628.808851.2719-0.3570.2378
980.0211-0.02530.0120.01213499.5364181.769964.6666-0.57720.2863
990.0196-0.01980.0130.012910043.38714914.47270.1033-0.49780.3127
1000.0212-0.01460.01320.01314854.54424907.813470.0558-0.34610.3164
1010.0206-0.06960.01880.0185107846.819715201.714123.2952-1.63140.4479
1020.0213-0.04270.0210.020640937.047217541.2897132.4435-1.00510.4986
1030.0219-0.11030.02840.0276235474.923635702.4259188.9509-2.41060.6579
1040.0226-0.05270.03030.029465028.177537958.2529194.8288-1.26680.7047
1050.0236-0.06950.03310.0321104379.526942702.6297206.6461-1.60490.769
1060.0231-0.06440.03520.034297858.124746379.6627215.3594-1.5540.8214
1070.0244-0.08660.03840.0372157144.699253302.4774230.8733-1.96920.8931
1080.025-0.06490.03990.038790549.531755493.4806235.5705-1.49480.9285
1090.0249-0.05320.04070.039465254.302256035.7485236.7187-1.2690.9474
1100.0264-0.03860.04060.039432320.463954787.5756234.0675-0.89310.9446
1110.0245-0.05260.04120.039969594.728455527.9333235.6437-1.31050.9629
1120.0265-0.05810.0420.040774674.299256439.665237.5703-1.35750.9817
1130.0258-0.07960.04370.0424145917.752560506.8508245.9814-1.89761.0233
1140.0267-0.080.04530.0439141316.210264020.3012253.0223-1.86741.06
1150.0274-0.10060.04760.046210542.415870125.3893264.812-2.27941.1108



Parameters (Session):
par1 = 12 ;
Parameters (R input):
par1 = 24 ; par2 = 1 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = 0 ; par7 = 1 ; par8 = 0 ; par9 = 1 ; par10 = FALSE ;
R code (references can be found in the software module):
par1 <- as.numeric(par1) #cut off periods
par2 <- as.numeric(par2) #lambda
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #p
par7 <- as.numeric(par7) #q
par8 <- as.numeric(par8) #P
par9 <- as.numeric(par9) #Q
if (par10 == 'TRUE') par10 <- TRUE
if (par10 == 'FALSE') par10 <- FALSE
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
lx <- length(x)
first <- lx - 2*par1
nx <- lx - par1
nx1 <- nx + 1
fx <- lx - nx
if (fx < 1) {
fx <- par5*2
nx1 <- lx + fx - 1
first <- lx - 2*fx
}
first <- 1
if (fx < 3) fx <- round(lx/10,0)
(arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML'))
(forecast <- predict(arima.out,fx))
(lb <- forecast$pred - 1.96 * forecast$se)
(ub <- forecast$pred + 1.96 * forecast$se)
if (par2 == 0) {
x <- exp(x)
forecast$pred <- exp(forecast$pred)
lb <- exp(lb)
ub <- exp(ub)
}
if (par2 != 0) {
x <- x^(1/par2)
forecast$pred <- forecast$pred^(1/par2)
lb <- lb^(1/par2)
ub <- ub^(1/par2)
}
if (par2 < 0) {
olb <- lb
lb <- ub
ub <- olb
}
(actandfor <- c(x[1:nx], forecast$pred))
(perc.se <- (ub-forecast$pred)/1.96/forecast$pred)
bitmap(file='test1.png')
opar <- par(mar=c(4,4,2,2),las=1)
ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub))
plot(x,ylim=ylim,type='n',xlim=c(first,lx))
usr <- par('usr')
rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon')
rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender')
abline(h= (-3:3)*2 , col ='gray', lty =3)
polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA)
lines(nx1:lx, lb , lty=2)
lines(nx1:lx, ub , lty=2)
lines(x, lwd=2)
lines(nx1:lx, forecast$pred , lwd=2 , col ='white')
box()
par(opar)
dev.off()
prob.dec <- array(NA, dim=fx)
prob.sdec <- array(NA, dim=fx)
prob.ldec <- array(NA, dim=fx)
prob.pval <- array(NA, dim=fx)
perf.pe <- array(0, dim=fx)
perf.spe <- array(0, dim=fx)
perf.scalederr <- array(0, dim=fx)
perf.mase <- array(0, dim=fx)
perf.mase1 <- array(0, dim=fx)
perf.mape <- array(0, dim=fx)
perf.smape <- array(0, dim=fx)
perf.mape1 <- array(0, dim=fx)
perf.smape1 <- array(0,dim=fx)
perf.se <- array(0, dim=fx)
perf.mse <- array(0, dim=fx)
perf.mse1 <- array(0, dim=fx)
perf.rmse <- array(0, dim=fx)
perf.scaleddenom <- 0
for (i in 2:fx) {
perf.scaleddenom = perf.scaleddenom + abs(x[nx+i] - x[nx+i-1])
}
perf.scaleddenom = perf.scaleddenom / (fx-1)
for (i in 1:fx) {
locSD <- (ub[i] - forecast$pred[i]) / 1.96
perf.scalederr[i] = (x[nx+i] - forecast$pred[i]) / perf.scaleddenom
perf.pe[i] = (x[nx+i] - forecast$pred[i]) / x[nx+i]
perf.spe[i] = 2*(x[nx+i] - forecast$pred[i]) / (x[nx+i] + forecast$pred[i])
perf.se[i] = (x[nx+i] - forecast$pred[i])^2
prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD)
prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD)
prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD)
prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD)
}
perf.mape[1] = abs(perf.pe[1])
perf.smape[1] = abs(perf.spe[1])
perf.mape1[1] = perf.mape[1]
perf.smape1[1] = perf.smape[1]
perf.mse[1] = perf.se[1]
perf.mase[1] = abs(perf.scalederr[1])
perf.mase1[1] = perf.mase[1]
for (i in 2:fx) {
perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i])
perf.mape1[i] = perf.mape[i] / i
perf.smape[i] = perf.smape[i-1] + abs(perf.spe[i])
perf.smape1[i] = perf.smape[i] / i
perf.mse[i] = perf.mse[i-1] + perf.se[i]
perf.mse1[i] = perf.mse[i] / i
perf.mase[i] = perf.mase[i-1] + abs(perf.scalederr[i])
perf.mase1[i] = perf.mase[i] / i
}
perf.rmse = sqrt(perf.mse1)
bitmap(file='test2.png')
plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub)))
dum <- forecast$pred
dum[1:par1] <- x[(nx+1):lx]
lines(dum, lty=1)
lines(ub,lty=3)
lines(lb,lty=3)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'Y[t]',1,header=TRUE)
a<-table.element(a,'F[t]',1,header=TRUE)
a<-table.element(a,'95% LB',1,header=TRUE)
a<-table.element(a,'95% UB',1,header=TRUE)
a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE)
mylab <- paste('P(F[t]>Y[',nx,sep='')
mylab <- paste(mylab,'])',sep='')
a<-table.element(a,mylab,1,header=TRUE)
a<-table.row.end(a)
for (i in (nx-par5):nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.row.end(a)
}
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(x[nx+i],4))
a<-table.element(a,round(forecast$pred[i],4))
a<-table.element(a,round(lb[i],4))
a<-table.element(a,round(ub[i],4))
a<-table.element(a,round((1-prob.pval[i]),4))
a<-table.element(a,round((1-prob.dec[i]),4))
a<-table.element(a,round((1-prob.sdec[i]),4))
a<-table.element(a,round((1-prob.ldec[i]),4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',10,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'% S.E.',1,header=TRUE)
a<-table.element(a,'PE',1,header=TRUE)
a<-table.element(a,'MAPE',1,header=TRUE)
a<-table.element(a,'sMAPE',1,header=TRUE)
a<-table.element(a,'Sq.E',1,header=TRUE)
a<-table.element(a,'MSE',1,header=TRUE)
a<-table.element(a,'RMSE',1,header=TRUE)
a<-table.element(a,'ScaledE',1,header=TRUE)
a<-table.element(a,'MASE',1,header=TRUE)
a<-table.row.end(a)
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(perc.se[i],4))
a<-table.element(a,round(perf.pe[i],4))
a<-table.element(a,round(perf.mape1[i],4))
a<-table.element(a,round(perf.smape1[i],4))
a<-table.element(a,round(perf.se[i],4))
a<-table.element(a,round(perf.mse1[i],4))
a<-table.element(a,round(perf.rmse[i],4))
a<-table.element(a,round(perf.scalederr[i],4))
a<-table.element(a,round(perf.mase1[i],4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')