Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_decompose.wasp
Title produced by softwareClassical Decomposition
Date of computationMon, 19 Dec 2016 21:38:27 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/19/t1482180021tqq98ikcigvd4eq.htm/, Retrieved Fri, 01 Nov 2024 03:44:44 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=301488, Retrieved Fri, 01 Nov 2024 03:44:44 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact89
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Classical Decomposition] [N2044 Classical d...] [2016-12-19 20:38:27] [2e11ca31a00cf8de75c33c1af2d59434] [Current]
Feedback Forum

Post a new message
Dataseries X:
3880
3740
3990
3970
4100
3920
3850
4190
3990
4140
4080
3900
4070
3930
4210
4020
4120
4020
3910
4110
4130
4340
4200
4200
4160
3920
4280
3940
4190
4150
4070
4130
3960
4320
4110
4100
4280
3990
4360
4240
4450
4190
3950
4300
4150
4540
4240
4210
4390
4140
4460
4290
4430
4390
4340
4570
4470
4550
4420
4490
4480
4400
4770
4450
4610
4540
4520
4710
4580
4760
4450
4500
4660
4370
5030
4510
4740
4690
4580
4850
4730
4890
4740
4600
4740
4520
5000
4670
4940
4790
4820
5010
4870
5070
4770
4840
4850
4590
5050
4770
4720
4740
4400
4840
4650
4860
4580
4640
4800
4660
5020
4700
4800
4700
4560




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301488&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=301488&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301488&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
13880NANA1.00789NA
23740NANA0.955494NA
33990NANA1.04622NA
43970NANA0.981268NA
54100NANA1.01691NA
63920NANA0.995718NA
738503858.613987.080.9677770.997769
841904094.684002.921.022921.02328
939903984.5340200.9911771.00137
1041404186.634031.251.038540.988863
1140803995.774034.170.9904831.02108
1239003980.964039.170.9855880.979664
1340704077.774045.831.007890.998095
1439303864.9840450.9554941.01682
1542104234.574047.51.046220.994197
1640203985.594061.670.9812681.00863
1741204143.9340751.016910.994226
1840204074.984092.50.9957180.986509
1939103976.354108.750.9677770.983313
2041104206.354112.081.022920.977095
2141304078.284114.580.9911771.01268
2243404272.744114.171.038541.01574
2342004074.64113.750.9904831.03078
2442004062.684122.080.9855881.0338
2541604166.84134.171.007890.998369
2639203957.344141.670.9554940.990564
2742804326.554135.421.046220.98924
2839404050.194127.50.9812680.972795
2941904192.654122.921.016910.999367
3041504097.3841150.9957181.01284
3140703983.214115.830.9677771.02179
3241304218.284123.751.022920.979072
3339604093.5641300.9911770.967373
3443204305.634145.831.038541.00334
3541104129.494169.170.9904830.995281
3641004121.44181.670.9855880.994807
3742804211.314178.331.007891.01631
3839903994.374180.420.9554940.998907
3943604389.334195.421.046220.993319
4042404133.594212.50.9812681.02574
4144504298.584227.081.016911.03522
4241904218.944237.080.9957180.99314
4339504109.424246.250.9677770.961206
4443004354.674257.081.022920.987445
4541504229.854267.50.9911770.981122
4645404438.474273.751.038541.02287
4742404234.3142750.9904831.00134
4842104220.784282.50.9855880.997445
4943904341.084307.081.007891.01127
5041404141.674334.580.9554940.999597
5144604560.644359.171.046220.977932
5242904291.014372.920.9812680.999766
5344304454.934380.831.016910.994403
5443904381.1644000.9957181.00202
5543404273.144415.420.9677771.01565
5645704531.5544301.022921.00848
5744704414.464453.750.9911771.01258
5845504645.754473.331.038540.97939
5944204444.794487.50.9904830.994423
6044904436.384501.250.9855881.01209
6144804550.6445151.007890.984477
6244004326.84528.330.9554941.01692
6347704748.534538.751.046221.00452
6444504466.824552.080.9812680.996235
6546104639.254562.081.016910.993695
6645404544.214563.750.9957180.999074
6745204424.354571.670.9677771.02162
6847104682.864577.921.022921.0058
6945804547.034587.50.9911771.00725
7047604778.164600.831.038540.996199
7144504564.894608.750.9904830.974833
7245004553.834620.420.9855880.988179
7346604665.714629.171.007890.998777
7443704431.114637.50.9554940.98621
7550304864.484649.581.046221.03403
7645104573.944661.250.9812680.986021
7747404757.894678.751.016910.99624
7846904674.946950.9957181.00323
7945804550.974702.50.9677771.00638
8048504820.14712.081.022921.0062
8147304675.474717.080.9911771.01166
8248904904.524722.51.038540.99704
8347404692.414737.50.9904831.01014
8446004681.5447500.9855880.982582
8547404801.774764.171.007890.987136
8645204568.064780.830.9554940.989479
8750005014.884793.331.046220.997033
8846704716.634806.670.9812680.990114
8949404896.874815.421.016911.00881
90479048064826.670.9957180.996671
9148204685.254841.250.9677771.02876
9250104959.94848.751.022921.0101
9348704810.934853.750.9911771.01228
9450705047.3248601.038541.00449
9547704808.7948550.9904830.991933
9648404773.944843.750.9855881.01384
9748504862.244824.171.007890.997482
9845904585.984799.580.9554941.00088
9950505004.424783.331.046221.00911
10047704676.154765.420.9812681.02007
10147204829.074748.751.016910.977413
10247404712.244732.50.9957181.00589
10344004569.924722.080.9677770.962817
10448404831.184722.921.022921.00182
10546504682.94724.580.9911770.992974
10648604902.364720.421.038540.99136
10745804675.94720.830.9904830.97949
10846404654.444722.50.9855880.996897
10948004764.814727.51.007891.00738
1104660NANA0.955494NA
1115020NANA1.04622NA
1124700NANA0.981268NA
1134800NANA1.01691NA
1144700NANA0.995718NA
1154560NANA0.967777NA

\begin{tabular}{lllllllll}
\hline
Classical Decomposition by Moving Averages \tabularnewline
t & Observations & Fit & Trend & Seasonal & Random \tabularnewline
1 & 3880 & NA & NA & 1.00789 & NA \tabularnewline
2 & 3740 & NA & NA & 0.955494 & NA \tabularnewline
3 & 3990 & NA & NA & 1.04622 & NA \tabularnewline
4 & 3970 & NA & NA & 0.981268 & NA \tabularnewline
5 & 4100 & NA & NA & 1.01691 & NA \tabularnewline
6 & 3920 & NA & NA & 0.995718 & NA \tabularnewline
7 & 3850 & 3858.61 & 3987.08 & 0.967777 & 0.997769 \tabularnewline
8 & 4190 & 4094.68 & 4002.92 & 1.02292 & 1.02328 \tabularnewline
9 & 3990 & 3984.53 & 4020 & 0.991177 & 1.00137 \tabularnewline
10 & 4140 & 4186.63 & 4031.25 & 1.03854 & 0.988863 \tabularnewline
11 & 4080 & 3995.77 & 4034.17 & 0.990483 & 1.02108 \tabularnewline
12 & 3900 & 3980.96 & 4039.17 & 0.985588 & 0.979664 \tabularnewline
13 & 4070 & 4077.77 & 4045.83 & 1.00789 & 0.998095 \tabularnewline
14 & 3930 & 3864.98 & 4045 & 0.955494 & 1.01682 \tabularnewline
15 & 4210 & 4234.57 & 4047.5 & 1.04622 & 0.994197 \tabularnewline
16 & 4020 & 3985.59 & 4061.67 & 0.981268 & 1.00863 \tabularnewline
17 & 4120 & 4143.93 & 4075 & 1.01691 & 0.994226 \tabularnewline
18 & 4020 & 4074.98 & 4092.5 & 0.995718 & 0.986509 \tabularnewline
19 & 3910 & 3976.35 & 4108.75 & 0.967777 & 0.983313 \tabularnewline
20 & 4110 & 4206.35 & 4112.08 & 1.02292 & 0.977095 \tabularnewline
21 & 4130 & 4078.28 & 4114.58 & 0.991177 & 1.01268 \tabularnewline
22 & 4340 & 4272.74 & 4114.17 & 1.03854 & 1.01574 \tabularnewline
23 & 4200 & 4074.6 & 4113.75 & 0.990483 & 1.03078 \tabularnewline
24 & 4200 & 4062.68 & 4122.08 & 0.985588 & 1.0338 \tabularnewline
25 & 4160 & 4166.8 & 4134.17 & 1.00789 & 0.998369 \tabularnewline
26 & 3920 & 3957.34 & 4141.67 & 0.955494 & 0.990564 \tabularnewline
27 & 4280 & 4326.55 & 4135.42 & 1.04622 & 0.98924 \tabularnewline
28 & 3940 & 4050.19 & 4127.5 & 0.981268 & 0.972795 \tabularnewline
29 & 4190 & 4192.65 & 4122.92 & 1.01691 & 0.999367 \tabularnewline
30 & 4150 & 4097.38 & 4115 & 0.995718 & 1.01284 \tabularnewline
31 & 4070 & 3983.21 & 4115.83 & 0.967777 & 1.02179 \tabularnewline
32 & 4130 & 4218.28 & 4123.75 & 1.02292 & 0.979072 \tabularnewline
33 & 3960 & 4093.56 & 4130 & 0.991177 & 0.967373 \tabularnewline
34 & 4320 & 4305.63 & 4145.83 & 1.03854 & 1.00334 \tabularnewline
35 & 4110 & 4129.49 & 4169.17 & 0.990483 & 0.995281 \tabularnewline
36 & 4100 & 4121.4 & 4181.67 & 0.985588 & 0.994807 \tabularnewline
37 & 4280 & 4211.31 & 4178.33 & 1.00789 & 1.01631 \tabularnewline
38 & 3990 & 3994.37 & 4180.42 & 0.955494 & 0.998907 \tabularnewline
39 & 4360 & 4389.33 & 4195.42 & 1.04622 & 0.993319 \tabularnewline
40 & 4240 & 4133.59 & 4212.5 & 0.981268 & 1.02574 \tabularnewline
41 & 4450 & 4298.58 & 4227.08 & 1.01691 & 1.03522 \tabularnewline
42 & 4190 & 4218.94 & 4237.08 & 0.995718 & 0.99314 \tabularnewline
43 & 3950 & 4109.42 & 4246.25 & 0.967777 & 0.961206 \tabularnewline
44 & 4300 & 4354.67 & 4257.08 & 1.02292 & 0.987445 \tabularnewline
45 & 4150 & 4229.85 & 4267.5 & 0.991177 & 0.981122 \tabularnewline
46 & 4540 & 4438.47 & 4273.75 & 1.03854 & 1.02287 \tabularnewline
47 & 4240 & 4234.31 & 4275 & 0.990483 & 1.00134 \tabularnewline
48 & 4210 & 4220.78 & 4282.5 & 0.985588 & 0.997445 \tabularnewline
49 & 4390 & 4341.08 & 4307.08 & 1.00789 & 1.01127 \tabularnewline
50 & 4140 & 4141.67 & 4334.58 & 0.955494 & 0.999597 \tabularnewline
51 & 4460 & 4560.64 & 4359.17 & 1.04622 & 0.977932 \tabularnewline
52 & 4290 & 4291.01 & 4372.92 & 0.981268 & 0.999766 \tabularnewline
53 & 4430 & 4454.93 & 4380.83 & 1.01691 & 0.994403 \tabularnewline
54 & 4390 & 4381.16 & 4400 & 0.995718 & 1.00202 \tabularnewline
55 & 4340 & 4273.14 & 4415.42 & 0.967777 & 1.01565 \tabularnewline
56 & 4570 & 4531.55 & 4430 & 1.02292 & 1.00848 \tabularnewline
57 & 4470 & 4414.46 & 4453.75 & 0.991177 & 1.01258 \tabularnewline
58 & 4550 & 4645.75 & 4473.33 & 1.03854 & 0.97939 \tabularnewline
59 & 4420 & 4444.79 & 4487.5 & 0.990483 & 0.994423 \tabularnewline
60 & 4490 & 4436.38 & 4501.25 & 0.985588 & 1.01209 \tabularnewline
61 & 4480 & 4550.64 & 4515 & 1.00789 & 0.984477 \tabularnewline
62 & 4400 & 4326.8 & 4528.33 & 0.955494 & 1.01692 \tabularnewline
63 & 4770 & 4748.53 & 4538.75 & 1.04622 & 1.00452 \tabularnewline
64 & 4450 & 4466.82 & 4552.08 & 0.981268 & 0.996235 \tabularnewline
65 & 4610 & 4639.25 & 4562.08 & 1.01691 & 0.993695 \tabularnewline
66 & 4540 & 4544.21 & 4563.75 & 0.995718 & 0.999074 \tabularnewline
67 & 4520 & 4424.35 & 4571.67 & 0.967777 & 1.02162 \tabularnewline
68 & 4710 & 4682.86 & 4577.92 & 1.02292 & 1.0058 \tabularnewline
69 & 4580 & 4547.03 & 4587.5 & 0.991177 & 1.00725 \tabularnewline
70 & 4760 & 4778.16 & 4600.83 & 1.03854 & 0.996199 \tabularnewline
71 & 4450 & 4564.89 & 4608.75 & 0.990483 & 0.974833 \tabularnewline
72 & 4500 & 4553.83 & 4620.42 & 0.985588 & 0.988179 \tabularnewline
73 & 4660 & 4665.71 & 4629.17 & 1.00789 & 0.998777 \tabularnewline
74 & 4370 & 4431.11 & 4637.5 & 0.955494 & 0.98621 \tabularnewline
75 & 5030 & 4864.48 & 4649.58 & 1.04622 & 1.03403 \tabularnewline
76 & 4510 & 4573.94 & 4661.25 & 0.981268 & 0.986021 \tabularnewline
77 & 4740 & 4757.89 & 4678.75 & 1.01691 & 0.99624 \tabularnewline
78 & 4690 & 4674.9 & 4695 & 0.995718 & 1.00323 \tabularnewline
79 & 4580 & 4550.97 & 4702.5 & 0.967777 & 1.00638 \tabularnewline
80 & 4850 & 4820.1 & 4712.08 & 1.02292 & 1.0062 \tabularnewline
81 & 4730 & 4675.47 & 4717.08 & 0.991177 & 1.01166 \tabularnewline
82 & 4890 & 4904.52 & 4722.5 & 1.03854 & 0.99704 \tabularnewline
83 & 4740 & 4692.41 & 4737.5 & 0.990483 & 1.01014 \tabularnewline
84 & 4600 & 4681.54 & 4750 & 0.985588 & 0.982582 \tabularnewline
85 & 4740 & 4801.77 & 4764.17 & 1.00789 & 0.987136 \tabularnewline
86 & 4520 & 4568.06 & 4780.83 & 0.955494 & 0.989479 \tabularnewline
87 & 5000 & 5014.88 & 4793.33 & 1.04622 & 0.997033 \tabularnewline
88 & 4670 & 4716.63 & 4806.67 & 0.981268 & 0.990114 \tabularnewline
89 & 4940 & 4896.87 & 4815.42 & 1.01691 & 1.00881 \tabularnewline
90 & 4790 & 4806 & 4826.67 & 0.995718 & 0.996671 \tabularnewline
91 & 4820 & 4685.25 & 4841.25 & 0.967777 & 1.02876 \tabularnewline
92 & 5010 & 4959.9 & 4848.75 & 1.02292 & 1.0101 \tabularnewline
93 & 4870 & 4810.93 & 4853.75 & 0.991177 & 1.01228 \tabularnewline
94 & 5070 & 5047.32 & 4860 & 1.03854 & 1.00449 \tabularnewline
95 & 4770 & 4808.79 & 4855 & 0.990483 & 0.991933 \tabularnewline
96 & 4840 & 4773.94 & 4843.75 & 0.985588 & 1.01384 \tabularnewline
97 & 4850 & 4862.24 & 4824.17 & 1.00789 & 0.997482 \tabularnewline
98 & 4590 & 4585.98 & 4799.58 & 0.955494 & 1.00088 \tabularnewline
99 & 5050 & 5004.42 & 4783.33 & 1.04622 & 1.00911 \tabularnewline
100 & 4770 & 4676.15 & 4765.42 & 0.981268 & 1.02007 \tabularnewline
101 & 4720 & 4829.07 & 4748.75 & 1.01691 & 0.977413 \tabularnewline
102 & 4740 & 4712.24 & 4732.5 & 0.995718 & 1.00589 \tabularnewline
103 & 4400 & 4569.92 & 4722.08 & 0.967777 & 0.962817 \tabularnewline
104 & 4840 & 4831.18 & 4722.92 & 1.02292 & 1.00182 \tabularnewline
105 & 4650 & 4682.9 & 4724.58 & 0.991177 & 0.992974 \tabularnewline
106 & 4860 & 4902.36 & 4720.42 & 1.03854 & 0.99136 \tabularnewline
107 & 4580 & 4675.9 & 4720.83 & 0.990483 & 0.97949 \tabularnewline
108 & 4640 & 4654.44 & 4722.5 & 0.985588 & 0.996897 \tabularnewline
109 & 4800 & 4764.81 & 4727.5 & 1.00789 & 1.00738 \tabularnewline
110 & 4660 & NA & NA & 0.955494 & NA \tabularnewline
111 & 5020 & NA & NA & 1.04622 & NA \tabularnewline
112 & 4700 & NA & NA & 0.981268 & NA \tabularnewline
113 & 4800 & NA & NA & 1.01691 & NA \tabularnewline
114 & 4700 & NA & NA & 0.995718 & NA \tabularnewline
115 & 4560 & NA & NA & 0.967777 & NA \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301488&T=1

[TABLE]
[ROW][C]Classical Decomposition by Moving Averages[/C][/ROW]
[ROW][C]t[/C][C]Observations[/C][C]Fit[/C][C]Trend[/C][C]Seasonal[/C][C]Random[/C][/ROW]
[ROW][C]1[/C][C]3880[/C][C]NA[/C][C]NA[/C][C]1.00789[/C][C]NA[/C][/ROW]
[ROW][C]2[/C][C]3740[/C][C]NA[/C][C]NA[/C][C]0.955494[/C][C]NA[/C][/ROW]
[ROW][C]3[/C][C]3990[/C][C]NA[/C][C]NA[/C][C]1.04622[/C][C]NA[/C][/ROW]
[ROW][C]4[/C][C]3970[/C][C]NA[/C][C]NA[/C][C]0.981268[/C][C]NA[/C][/ROW]
[ROW][C]5[/C][C]4100[/C][C]NA[/C][C]NA[/C][C]1.01691[/C][C]NA[/C][/ROW]
[ROW][C]6[/C][C]3920[/C][C]NA[/C][C]NA[/C][C]0.995718[/C][C]NA[/C][/ROW]
[ROW][C]7[/C][C]3850[/C][C]3858.61[/C][C]3987.08[/C][C]0.967777[/C][C]0.997769[/C][/ROW]
[ROW][C]8[/C][C]4190[/C][C]4094.68[/C][C]4002.92[/C][C]1.02292[/C][C]1.02328[/C][/ROW]
[ROW][C]9[/C][C]3990[/C][C]3984.53[/C][C]4020[/C][C]0.991177[/C][C]1.00137[/C][/ROW]
[ROW][C]10[/C][C]4140[/C][C]4186.63[/C][C]4031.25[/C][C]1.03854[/C][C]0.988863[/C][/ROW]
[ROW][C]11[/C][C]4080[/C][C]3995.77[/C][C]4034.17[/C][C]0.990483[/C][C]1.02108[/C][/ROW]
[ROW][C]12[/C][C]3900[/C][C]3980.96[/C][C]4039.17[/C][C]0.985588[/C][C]0.979664[/C][/ROW]
[ROW][C]13[/C][C]4070[/C][C]4077.77[/C][C]4045.83[/C][C]1.00789[/C][C]0.998095[/C][/ROW]
[ROW][C]14[/C][C]3930[/C][C]3864.98[/C][C]4045[/C][C]0.955494[/C][C]1.01682[/C][/ROW]
[ROW][C]15[/C][C]4210[/C][C]4234.57[/C][C]4047.5[/C][C]1.04622[/C][C]0.994197[/C][/ROW]
[ROW][C]16[/C][C]4020[/C][C]3985.59[/C][C]4061.67[/C][C]0.981268[/C][C]1.00863[/C][/ROW]
[ROW][C]17[/C][C]4120[/C][C]4143.93[/C][C]4075[/C][C]1.01691[/C][C]0.994226[/C][/ROW]
[ROW][C]18[/C][C]4020[/C][C]4074.98[/C][C]4092.5[/C][C]0.995718[/C][C]0.986509[/C][/ROW]
[ROW][C]19[/C][C]3910[/C][C]3976.35[/C][C]4108.75[/C][C]0.967777[/C][C]0.983313[/C][/ROW]
[ROW][C]20[/C][C]4110[/C][C]4206.35[/C][C]4112.08[/C][C]1.02292[/C][C]0.977095[/C][/ROW]
[ROW][C]21[/C][C]4130[/C][C]4078.28[/C][C]4114.58[/C][C]0.991177[/C][C]1.01268[/C][/ROW]
[ROW][C]22[/C][C]4340[/C][C]4272.74[/C][C]4114.17[/C][C]1.03854[/C][C]1.01574[/C][/ROW]
[ROW][C]23[/C][C]4200[/C][C]4074.6[/C][C]4113.75[/C][C]0.990483[/C][C]1.03078[/C][/ROW]
[ROW][C]24[/C][C]4200[/C][C]4062.68[/C][C]4122.08[/C][C]0.985588[/C][C]1.0338[/C][/ROW]
[ROW][C]25[/C][C]4160[/C][C]4166.8[/C][C]4134.17[/C][C]1.00789[/C][C]0.998369[/C][/ROW]
[ROW][C]26[/C][C]3920[/C][C]3957.34[/C][C]4141.67[/C][C]0.955494[/C][C]0.990564[/C][/ROW]
[ROW][C]27[/C][C]4280[/C][C]4326.55[/C][C]4135.42[/C][C]1.04622[/C][C]0.98924[/C][/ROW]
[ROW][C]28[/C][C]3940[/C][C]4050.19[/C][C]4127.5[/C][C]0.981268[/C][C]0.972795[/C][/ROW]
[ROW][C]29[/C][C]4190[/C][C]4192.65[/C][C]4122.92[/C][C]1.01691[/C][C]0.999367[/C][/ROW]
[ROW][C]30[/C][C]4150[/C][C]4097.38[/C][C]4115[/C][C]0.995718[/C][C]1.01284[/C][/ROW]
[ROW][C]31[/C][C]4070[/C][C]3983.21[/C][C]4115.83[/C][C]0.967777[/C][C]1.02179[/C][/ROW]
[ROW][C]32[/C][C]4130[/C][C]4218.28[/C][C]4123.75[/C][C]1.02292[/C][C]0.979072[/C][/ROW]
[ROW][C]33[/C][C]3960[/C][C]4093.56[/C][C]4130[/C][C]0.991177[/C][C]0.967373[/C][/ROW]
[ROW][C]34[/C][C]4320[/C][C]4305.63[/C][C]4145.83[/C][C]1.03854[/C][C]1.00334[/C][/ROW]
[ROW][C]35[/C][C]4110[/C][C]4129.49[/C][C]4169.17[/C][C]0.990483[/C][C]0.995281[/C][/ROW]
[ROW][C]36[/C][C]4100[/C][C]4121.4[/C][C]4181.67[/C][C]0.985588[/C][C]0.994807[/C][/ROW]
[ROW][C]37[/C][C]4280[/C][C]4211.31[/C][C]4178.33[/C][C]1.00789[/C][C]1.01631[/C][/ROW]
[ROW][C]38[/C][C]3990[/C][C]3994.37[/C][C]4180.42[/C][C]0.955494[/C][C]0.998907[/C][/ROW]
[ROW][C]39[/C][C]4360[/C][C]4389.33[/C][C]4195.42[/C][C]1.04622[/C][C]0.993319[/C][/ROW]
[ROW][C]40[/C][C]4240[/C][C]4133.59[/C][C]4212.5[/C][C]0.981268[/C][C]1.02574[/C][/ROW]
[ROW][C]41[/C][C]4450[/C][C]4298.58[/C][C]4227.08[/C][C]1.01691[/C][C]1.03522[/C][/ROW]
[ROW][C]42[/C][C]4190[/C][C]4218.94[/C][C]4237.08[/C][C]0.995718[/C][C]0.99314[/C][/ROW]
[ROW][C]43[/C][C]3950[/C][C]4109.42[/C][C]4246.25[/C][C]0.967777[/C][C]0.961206[/C][/ROW]
[ROW][C]44[/C][C]4300[/C][C]4354.67[/C][C]4257.08[/C][C]1.02292[/C][C]0.987445[/C][/ROW]
[ROW][C]45[/C][C]4150[/C][C]4229.85[/C][C]4267.5[/C][C]0.991177[/C][C]0.981122[/C][/ROW]
[ROW][C]46[/C][C]4540[/C][C]4438.47[/C][C]4273.75[/C][C]1.03854[/C][C]1.02287[/C][/ROW]
[ROW][C]47[/C][C]4240[/C][C]4234.31[/C][C]4275[/C][C]0.990483[/C][C]1.00134[/C][/ROW]
[ROW][C]48[/C][C]4210[/C][C]4220.78[/C][C]4282.5[/C][C]0.985588[/C][C]0.997445[/C][/ROW]
[ROW][C]49[/C][C]4390[/C][C]4341.08[/C][C]4307.08[/C][C]1.00789[/C][C]1.01127[/C][/ROW]
[ROW][C]50[/C][C]4140[/C][C]4141.67[/C][C]4334.58[/C][C]0.955494[/C][C]0.999597[/C][/ROW]
[ROW][C]51[/C][C]4460[/C][C]4560.64[/C][C]4359.17[/C][C]1.04622[/C][C]0.977932[/C][/ROW]
[ROW][C]52[/C][C]4290[/C][C]4291.01[/C][C]4372.92[/C][C]0.981268[/C][C]0.999766[/C][/ROW]
[ROW][C]53[/C][C]4430[/C][C]4454.93[/C][C]4380.83[/C][C]1.01691[/C][C]0.994403[/C][/ROW]
[ROW][C]54[/C][C]4390[/C][C]4381.16[/C][C]4400[/C][C]0.995718[/C][C]1.00202[/C][/ROW]
[ROW][C]55[/C][C]4340[/C][C]4273.14[/C][C]4415.42[/C][C]0.967777[/C][C]1.01565[/C][/ROW]
[ROW][C]56[/C][C]4570[/C][C]4531.55[/C][C]4430[/C][C]1.02292[/C][C]1.00848[/C][/ROW]
[ROW][C]57[/C][C]4470[/C][C]4414.46[/C][C]4453.75[/C][C]0.991177[/C][C]1.01258[/C][/ROW]
[ROW][C]58[/C][C]4550[/C][C]4645.75[/C][C]4473.33[/C][C]1.03854[/C][C]0.97939[/C][/ROW]
[ROW][C]59[/C][C]4420[/C][C]4444.79[/C][C]4487.5[/C][C]0.990483[/C][C]0.994423[/C][/ROW]
[ROW][C]60[/C][C]4490[/C][C]4436.38[/C][C]4501.25[/C][C]0.985588[/C][C]1.01209[/C][/ROW]
[ROW][C]61[/C][C]4480[/C][C]4550.64[/C][C]4515[/C][C]1.00789[/C][C]0.984477[/C][/ROW]
[ROW][C]62[/C][C]4400[/C][C]4326.8[/C][C]4528.33[/C][C]0.955494[/C][C]1.01692[/C][/ROW]
[ROW][C]63[/C][C]4770[/C][C]4748.53[/C][C]4538.75[/C][C]1.04622[/C][C]1.00452[/C][/ROW]
[ROW][C]64[/C][C]4450[/C][C]4466.82[/C][C]4552.08[/C][C]0.981268[/C][C]0.996235[/C][/ROW]
[ROW][C]65[/C][C]4610[/C][C]4639.25[/C][C]4562.08[/C][C]1.01691[/C][C]0.993695[/C][/ROW]
[ROW][C]66[/C][C]4540[/C][C]4544.21[/C][C]4563.75[/C][C]0.995718[/C][C]0.999074[/C][/ROW]
[ROW][C]67[/C][C]4520[/C][C]4424.35[/C][C]4571.67[/C][C]0.967777[/C][C]1.02162[/C][/ROW]
[ROW][C]68[/C][C]4710[/C][C]4682.86[/C][C]4577.92[/C][C]1.02292[/C][C]1.0058[/C][/ROW]
[ROW][C]69[/C][C]4580[/C][C]4547.03[/C][C]4587.5[/C][C]0.991177[/C][C]1.00725[/C][/ROW]
[ROW][C]70[/C][C]4760[/C][C]4778.16[/C][C]4600.83[/C][C]1.03854[/C][C]0.996199[/C][/ROW]
[ROW][C]71[/C][C]4450[/C][C]4564.89[/C][C]4608.75[/C][C]0.990483[/C][C]0.974833[/C][/ROW]
[ROW][C]72[/C][C]4500[/C][C]4553.83[/C][C]4620.42[/C][C]0.985588[/C][C]0.988179[/C][/ROW]
[ROW][C]73[/C][C]4660[/C][C]4665.71[/C][C]4629.17[/C][C]1.00789[/C][C]0.998777[/C][/ROW]
[ROW][C]74[/C][C]4370[/C][C]4431.11[/C][C]4637.5[/C][C]0.955494[/C][C]0.98621[/C][/ROW]
[ROW][C]75[/C][C]5030[/C][C]4864.48[/C][C]4649.58[/C][C]1.04622[/C][C]1.03403[/C][/ROW]
[ROW][C]76[/C][C]4510[/C][C]4573.94[/C][C]4661.25[/C][C]0.981268[/C][C]0.986021[/C][/ROW]
[ROW][C]77[/C][C]4740[/C][C]4757.89[/C][C]4678.75[/C][C]1.01691[/C][C]0.99624[/C][/ROW]
[ROW][C]78[/C][C]4690[/C][C]4674.9[/C][C]4695[/C][C]0.995718[/C][C]1.00323[/C][/ROW]
[ROW][C]79[/C][C]4580[/C][C]4550.97[/C][C]4702.5[/C][C]0.967777[/C][C]1.00638[/C][/ROW]
[ROW][C]80[/C][C]4850[/C][C]4820.1[/C][C]4712.08[/C][C]1.02292[/C][C]1.0062[/C][/ROW]
[ROW][C]81[/C][C]4730[/C][C]4675.47[/C][C]4717.08[/C][C]0.991177[/C][C]1.01166[/C][/ROW]
[ROW][C]82[/C][C]4890[/C][C]4904.52[/C][C]4722.5[/C][C]1.03854[/C][C]0.99704[/C][/ROW]
[ROW][C]83[/C][C]4740[/C][C]4692.41[/C][C]4737.5[/C][C]0.990483[/C][C]1.01014[/C][/ROW]
[ROW][C]84[/C][C]4600[/C][C]4681.54[/C][C]4750[/C][C]0.985588[/C][C]0.982582[/C][/ROW]
[ROW][C]85[/C][C]4740[/C][C]4801.77[/C][C]4764.17[/C][C]1.00789[/C][C]0.987136[/C][/ROW]
[ROW][C]86[/C][C]4520[/C][C]4568.06[/C][C]4780.83[/C][C]0.955494[/C][C]0.989479[/C][/ROW]
[ROW][C]87[/C][C]5000[/C][C]5014.88[/C][C]4793.33[/C][C]1.04622[/C][C]0.997033[/C][/ROW]
[ROW][C]88[/C][C]4670[/C][C]4716.63[/C][C]4806.67[/C][C]0.981268[/C][C]0.990114[/C][/ROW]
[ROW][C]89[/C][C]4940[/C][C]4896.87[/C][C]4815.42[/C][C]1.01691[/C][C]1.00881[/C][/ROW]
[ROW][C]90[/C][C]4790[/C][C]4806[/C][C]4826.67[/C][C]0.995718[/C][C]0.996671[/C][/ROW]
[ROW][C]91[/C][C]4820[/C][C]4685.25[/C][C]4841.25[/C][C]0.967777[/C][C]1.02876[/C][/ROW]
[ROW][C]92[/C][C]5010[/C][C]4959.9[/C][C]4848.75[/C][C]1.02292[/C][C]1.0101[/C][/ROW]
[ROW][C]93[/C][C]4870[/C][C]4810.93[/C][C]4853.75[/C][C]0.991177[/C][C]1.01228[/C][/ROW]
[ROW][C]94[/C][C]5070[/C][C]5047.32[/C][C]4860[/C][C]1.03854[/C][C]1.00449[/C][/ROW]
[ROW][C]95[/C][C]4770[/C][C]4808.79[/C][C]4855[/C][C]0.990483[/C][C]0.991933[/C][/ROW]
[ROW][C]96[/C][C]4840[/C][C]4773.94[/C][C]4843.75[/C][C]0.985588[/C][C]1.01384[/C][/ROW]
[ROW][C]97[/C][C]4850[/C][C]4862.24[/C][C]4824.17[/C][C]1.00789[/C][C]0.997482[/C][/ROW]
[ROW][C]98[/C][C]4590[/C][C]4585.98[/C][C]4799.58[/C][C]0.955494[/C][C]1.00088[/C][/ROW]
[ROW][C]99[/C][C]5050[/C][C]5004.42[/C][C]4783.33[/C][C]1.04622[/C][C]1.00911[/C][/ROW]
[ROW][C]100[/C][C]4770[/C][C]4676.15[/C][C]4765.42[/C][C]0.981268[/C][C]1.02007[/C][/ROW]
[ROW][C]101[/C][C]4720[/C][C]4829.07[/C][C]4748.75[/C][C]1.01691[/C][C]0.977413[/C][/ROW]
[ROW][C]102[/C][C]4740[/C][C]4712.24[/C][C]4732.5[/C][C]0.995718[/C][C]1.00589[/C][/ROW]
[ROW][C]103[/C][C]4400[/C][C]4569.92[/C][C]4722.08[/C][C]0.967777[/C][C]0.962817[/C][/ROW]
[ROW][C]104[/C][C]4840[/C][C]4831.18[/C][C]4722.92[/C][C]1.02292[/C][C]1.00182[/C][/ROW]
[ROW][C]105[/C][C]4650[/C][C]4682.9[/C][C]4724.58[/C][C]0.991177[/C][C]0.992974[/C][/ROW]
[ROW][C]106[/C][C]4860[/C][C]4902.36[/C][C]4720.42[/C][C]1.03854[/C][C]0.99136[/C][/ROW]
[ROW][C]107[/C][C]4580[/C][C]4675.9[/C][C]4720.83[/C][C]0.990483[/C][C]0.97949[/C][/ROW]
[ROW][C]108[/C][C]4640[/C][C]4654.44[/C][C]4722.5[/C][C]0.985588[/C][C]0.996897[/C][/ROW]
[ROW][C]109[/C][C]4800[/C][C]4764.81[/C][C]4727.5[/C][C]1.00789[/C][C]1.00738[/C][/ROW]
[ROW][C]110[/C][C]4660[/C][C]NA[/C][C]NA[/C][C]0.955494[/C][C]NA[/C][/ROW]
[ROW][C]111[/C][C]5020[/C][C]NA[/C][C]NA[/C][C]1.04622[/C][C]NA[/C][/ROW]
[ROW][C]112[/C][C]4700[/C][C]NA[/C][C]NA[/C][C]0.981268[/C][C]NA[/C][/ROW]
[ROW][C]113[/C][C]4800[/C][C]NA[/C][C]NA[/C][C]1.01691[/C][C]NA[/C][/ROW]
[ROW][C]114[/C][C]4700[/C][C]NA[/C][C]NA[/C][C]0.995718[/C][C]NA[/C][/ROW]
[ROW][C]115[/C][C]4560[/C][C]NA[/C][C]NA[/C][C]0.967777[/C][C]NA[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301488&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301488&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
13880NANA1.00789NA
23740NANA0.955494NA
33990NANA1.04622NA
43970NANA0.981268NA
54100NANA1.01691NA
63920NANA0.995718NA
738503858.613987.080.9677770.997769
841904094.684002.921.022921.02328
939903984.5340200.9911771.00137
1041404186.634031.251.038540.988863
1140803995.774034.170.9904831.02108
1239003980.964039.170.9855880.979664
1340704077.774045.831.007890.998095
1439303864.9840450.9554941.01682
1542104234.574047.51.046220.994197
1640203985.594061.670.9812681.00863
1741204143.9340751.016910.994226
1840204074.984092.50.9957180.986509
1939103976.354108.750.9677770.983313
2041104206.354112.081.022920.977095
2141304078.284114.580.9911771.01268
2243404272.744114.171.038541.01574
2342004074.64113.750.9904831.03078
2442004062.684122.080.9855881.0338
2541604166.84134.171.007890.998369
2639203957.344141.670.9554940.990564
2742804326.554135.421.046220.98924
2839404050.194127.50.9812680.972795
2941904192.654122.921.016910.999367
3041504097.3841150.9957181.01284
3140703983.214115.830.9677771.02179
3241304218.284123.751.022920.979072
3339604093.5641300.9911770.967373
3443204305.634145.831.038541.00334
3541104129.494169.170.9904830.995281
3641004121.44181.670.9855880.994807
3742804211.314178.331.007891.01631
3839903994.374180.420.9554940.998907
3943604389.334195.421.046220.993319
4042404133.594212.50.9812681.02574
4144504298.584227.081.016911.03522
4241904218.944237.080.9957180.99314
4339504109.424246.250.9677770.961206
4443004354.674257.081.022920.987445
4541504229.854267.50.9911770.981122
4645404438.474273.751.038541.02287
4742404234.3142750.9904831.00134
4842104220.784282.50.9855880.997445
4943904341.084307.081.007891.01127
5041404141.674334.580.9554940.999597
5144604560.644359.171.046220.977932
5242904291.014372.920.9812680.999766
5344304454.934380.831.016910.994403
5443904381.1644000.9957181.00202
5543404273.144415.420.9677771.01565
5645704531.5544301.022921.00848
5744704414.464453.750.9911771.01258
5845504645.754473.331.038540.97939
5944204444.794487.50.9904830.994423
6044904436.384501.250.9855881.01209
6144804550.6445151.007890.984477
6244004326.84528.330.9554941.01692
6347704748.534538.751.046221.00452
6444504466.824552.080.9812680.996235
6546104639.254562.081.016910.993695
6645404544.214563.750.9957180.999074
6745204424.354571.670.9677771.02162
6847104682.864577.921.022921.0058
6945804547.034587.50.9911771.00725
7047604778.164600.831.038540.996199
7144504564.894608.750.9904830.974833
7245004553.834620.420.9855880.988179
7346604665.714629.171.007890.998777
7443704431.114637.50.9554940.98621
7550304864.484649.581.046221.03403
7645104573.944661.250.9812680.986021
7747404757.894678.751.016910.99624
7846904674.946950.9957181.00323
7945804550.974702.50.9677771.00638
8048504820.14712.081.022921.0062
8147304675.474717.080.9911771.01166
8248904904.524722.51.038540.99704
8347404692.414737.50.9904831.01014
8446004681.5447500.9855880.982582
8547404801.774764.171.007890.987136
8645204568.064780.830.9554940.989479
8750005014.884793.331.046220.997033
8846704716.634806.670.9812680.990114
8949404896.874815.421.016911.00881
90479048064826.670.9957180.996671
9148204685.254841.250.9677771.02876
9250104959.94848.751.022921.0101
9348704810.934853.750.9911771.01228
9450705047.3248601.038541.00449
9547704808.7948550.9904830.991933
9648404773.944843.750.9855881.01384
9748504862.244824.171.007890.997482
9845904585.984799.580.9554941.00088
9950505004.424783.331.046221.00911
10047704676.154765.420.9812681.02007
10147204829.074748.751.016910.977413
10247404712.244732.50.9957181.00589
10344004569.924722.080.9677770.962817
10448404831.184722.921.022921.00182
10546504682.94724.580.9911770.992974
10648604902.364720.421.038540.99136
10745804675.94720.830.9904830.97949
10846404654.444722.50.9855880.996897
10948004764.814727.51.007891.00738
1104660NANA0.955494NA
1115020NANA1.04622NA
1124700NANA0.981268NA
1134800NANA1.01691NA
1144700NANA0.995718NA
1154560NANA0.967777NA



Parameters (Session):
par1 = 12 ;
Parameters (R input):
par1 = multiplicative ; par2 = 12 ;
R code (references can be found in the software module):
par2 <- as.numeric(par2)
x <- ts(x,freq=par2)
m <- decompose(x,type=par1)
m$figure
bitmap(file='test1.png')
plot(m)
dev.off()
mylagmax <- length(x)/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$trend),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$seasonal),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$random),na.action=na.pass,lag.max = mylagmax,main='Random')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
spectrum(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
spectrum(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
cpgram(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
cpgram(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Classical Decomposition by Moving Averages',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observations',header=TRUE)
a<-table.element(a,'Fit',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Random',header=TRUE)
a<-table.row.end(a)
for (i in 1:length(m$trend)) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
if (par1 == 'additive') a<-table.element(a,signif(m$trend[i]+m$seasonal[i],6)) else a<-table.element(a,signif(m$trend[i]*m$seasonal[i],6))
a<-table.element(a,signif(m$trend[i],6))
a<-table.element(a,signif(m$seasonal[i],6))
a<-table.element(a,signif(m$random[i],6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')