Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimabackwardselection.wasp
Title produced by softwareARIMA Backward Selection
Date of computationMon, 19 Dec 2016 20:24:46 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/19/t1482175524c89wjukd5wmcs24.htm/, Retrieved Fri, 01 Nov 2024 03:36:11 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=301467, Retrieved Fri, 01 Nov 2024 03:36:11 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact112
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [ARIMA Backward Selection] [N2141 ARIMA Backward] [2016-12-19 19:24:46] [f8e2c3c70b883e93ecb746821352be11] [Current]
Feedback Forum

Post a new message
Dataseries X:
4976
4994
5478
4712
4388
4210
3844
3850
3770
3584
3490
3060
3324
3406
4346
4076
4310
4148
3958
4296
4370
4476
4406
4076
4430
4534
5200
4960
5188
4958
4554
4310
3890
4214
3720
3606
4360
4262
4788
4780
4836
4492
4514
4770
4664
4906
4684
4320
4588
4372
4674
4794
4558
4260
3994
3394
3334
3412
3198
3196
3536
3272
3562
3900
3744
3886
3708
3700
3878
4152
3830
3864
3880
4230
4394
4076
4224
4026
3950
4086
4166
4270
4162
4030
4128
3958
4216
4096
4168
3948
3394
3660
3808
3684
3610
3598
3918
3764
3872
3710
4056
4010
3656
3884
3886
3880
3642
3272
3602
3198
3802
3402
3344
3508
3426
3394
3448
3554
3522
3472
3692
3690
3802
3814
3408
3650




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time3 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301467&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]3 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=301467&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301467&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R ServerBig Analytics Cloud Computing Center







ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2ar3ma1sar1sar2sma1
Estimates ( 1 )0.4863-0.1359-0.10590.3482-1.3409-0.63510.3482
(p-val)(0.6912 )(0.8919 )(0.8271 )(0.8753 )(0 )(0 )(0.8753 )
Estimates ( 2 )0.31570-0.17160.4321-1.3386-0.63390.4321
(p-val)(0.043 )(NA )(0.0828 )(0.4209 )(0 )(0 )(0.4209 )
Estimates ( 3 )0.450-0.19820-1.244-0.55020.622
(p-val)(1e-04 )(NA )(0.0301 )(NA )(0 )(0 )(1e-04 )
Estimates ( 4 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 5 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 6 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 7 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 8 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 9 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 10 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 11 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 12 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 13 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )

\begin{tabular}{lllllllll}
\hline
ARIMA Parameter Estimation and Backward Selection \tabularnewline
Iteration & ar1 & ar2 & ar3 & ma1 & sar1 & sar2 & sma1 \tabularnewline
Estimates ( 1 ) & 0.4863 & -0.1359 & -0.1059 & 0.3482 & -1.3409 & -0.6351 & 0.3482 \tabularnewline
(p-val) & (0.6912 ) & (0.8919 ) & (0.8271 ) & (0.8753 ) & (0 ) & (0 ) & (0.8753 ) \tabularnewline
Estimates ( 2 ) & 0.3157 & 0 & -0.1716 & 0.4321 & -1.3386 & -0.6339 & 0.4321 \tabularnewline
(p-val) & (0.043 ) & (NA ) & (0.0828 ) & (0.4209 ) & (0 ) & (0 ) & (0.4209 ) \tabularnewline
Estimates ( 3 ) & 0.45 & 0 & -0.1982 & 0 & -1.244 & -0.5502 & 0.622 \tabularnewline
(p-val) & (1e-04 ) & (NA ) & (0.0301 ) & (NA ) & (0 ) & (0 ) & (1e-04 ) \tabularnewline
Estimates ( 4 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 5 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 6 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 7 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 8 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 9 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 10 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 11 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 12 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 13 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301467&T=1

[TABLE]
[ROW][C]ARIMA Parameter Estimation and Backward Selection[/C][/ROW]
[ROW][C]Iteration[/C][C]ar1[/C][C]ar2[/C][C]ar3[/C][C]ma1[/C][C]sar1[/C][C]sar2[/C][C]sma1[/C][/ROW]
[ROW][C]Estimates ( 1 )[/C][C]0.4863[/C][C]-0.1359[/C][C]-0.1059[/C][C]0.3482[/C][C]-1.3409[/C][C]-0.6351[/C][C]0.3482[/C][/ROW]
[ROW][C](p-val)[/C][C](0.6912 )[/C][C](0.8919 )[/C][C](0.8271 )[/C][C](0.8753 )[/C][C](0 )[/C][C](0 )[/C][C](0.8753 )[/C][/ROW]
[ROW][C]Estimates ( 2 )[/C][C]0.3157[/C][C]0[/C][C]-0.1716[/C][C]0.4321[/C][C]-1.3386[/C][C]-0.6339[/C][C]0.4321[/C][/ROW]
[ROW][C](p-val)[/C][C](0.043 )[/C][C](NA )[/C][C](0.0828 )[/C][C](0.4209 )[/C][C](0 )[/C][C](0 )[/C][C](0.4209 )[/C][/ROW]
[ROW][C]Estimates ( 3 )[/C][C]0.45[/C][C]0[/C][C]-0.1982[/C][C]0[/C][C]-1.244[/C][C]-0.5502[/C][C]0.622[/C][/ROW]
[ROW][C](p-val)[/C][C](1e-04 )[/C][C](NA )[/C][C](0.0301 )[/C][C](NA )[/C][C](0 )[/C][C](0 )[/C][C](1e-04 )[/C][/ROW]
[ROW][C]Estimates ( 4 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 5 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 6 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 7 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 8 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 9 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 10 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 11 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 12 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 13 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301467&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301467&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2ar3ma1sar1sar2sma1
Estimates ( 1 )0.4863-0.1359-0.10590.3482-1.3409-0.63510.3482
(p-val)(0.6912 )(0.8919 )(0.8271 )(0.8753 )(0 )(0 )(0.8753 )
Estimates ( 2 )0.31570-0.17160.4321-1.3386-0.63390.4321
(p-val)(0.043 )(NA )(0.0828 )(0.4209 )(0 )(0 )(0.4209 )
Estimates ( 3 )0.450-0.19820-1.244-0.55020.622
(p-val)(1e-04 )(NA )(0.0301 )(NA )(0 )(0 )(1e-04 )
Estimates ( 4 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 5 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 6 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 7 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 8 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 9 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 10 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 11 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 12 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 13 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )







Estimated ARIMA Residuals
Value
4.97599719188352
16.9440767325963
469.161033807576
-654.311390893449
-497.805356717316
-127.026970702845
-281.649700807724
-252.963541816556
-32.686068218702
-256.766972809202
-176.748677420206
-400.904040805014
171.371157306472
139.199390476709
897.803711428081
-209.612545210357
181.460356377802
-76.6599853167175
-41.3564057107465
193.043430719422
249.476025682418
-4.87755379365807
-59.2231901455616
-272.257343602495
298.756232769344
223.411707275884
603.179801259875
-193.320416751894
220.112051759873
-158.238867592184
-324.292326724488
-385.206977440712
-328.646602324895
182.304683245088
-458.365415829037
-276.752918829001
725.523959720879
116.646169073329
273.812690541285
149.455123041162
142.24286498892
-394.750400225768
106.947139668563
240.889730230446
-45.8384946470942
108.74773080567
-121.962436657407
-390.628610624312
205.732007453146
-73.2446938822377
148.293871514225
153.376958173967
-181.566460648206
-414.84830375914
-185.804042048775
-629.85050189165
-183.535599208397
79.5587881978604
-257.766803761058
-161.538883645889
399.200122976561
-213.987587148858
161.580121860115
445.722475837147
-78.9636647020402
6.92908963586342
-28.7133825012593
-22.9106445613656
154.254309026843
346.074474187744
-357.228004842829
-19.6484499658782
98.6225392511169
383.477570947925
130.430485770799
-288.304613512029
79.5668797240246
-51.2816013681786
-132.973989251037
81.4979690677774
162.502979803862
31.6957631601008
-85.3336341908435
-131.980402765394
100.360002377769
-124.063999292174
183.573279861891
-72.3674660087645
45.0339806789875
-232.866467083753
-526.783799901015
150.042751460263
281.490738312181
-214.589717859727
-195.448576179326
91.6979267957654
315.808715874081
-129.540990953781
40.9278067498058
-115.191700561209
371.616450490527
-29.6135952635423
-359.067318571221
136.693559000677
172.497028037505
-93.2047442694329
-288.197819204023
-334.43361595087
269.529753368975
-309.481946676667
432.862915109254
-304.148540892839
-110.424026893891
98.2456007903784
115.413389827521
-223.830286079149
114.316702689866
131.173229545574
-46.9573543401298
-62.0595131877599
230.393757367706
56.0767402722727
70.5604889522101
33.4407558414546
-366.987974387494
160.445240636746

\begin{tabular}{lllllllll}
\hline
Estimated ARIMA Residuals \tabularnewline
Value \tabularnewline
4.97599719188352 \tabularnewline
16.9440767325963 \tabularnewline
469.161033807576 \tabularnewline
-654.311390893449 \tabularnewline
-497.805356717316 \tabularnewline
-127.026970702845 \tabularnewline
-281.649700807724 \tabularnewline
-252.963541816556 \tabularnewline
-32.686068218702 \tabularnewline
-256.766972809202 \tabularnewline
-176.748677420206 \tabularnewline
-400.904040805014 \tabularnewline
171.371157306472 \tabularnewline
139.199390476709 \tabularnewline
897.803711428081 \tabularnewline
-209.612545210357 \tabularnewline
181.460356377802 \tabularnewline
-76.6599853167175 \tabularnewline
-41.3564057107465 \tabularnewline
193.043430719422 \tabularnewline
249.476025682418 \tabularnewline
-4.87755379365807 \tabularnewline
-59.2231901455616 \tabularnewline
-272.257343602495 \tabularnewline
298.756232769344 \tabularnewline
223.411707275884 \tabularnewline
603.179801259875 \tabularnewline
-193.320416751894 \tabularnewline
220.112051759873 \tabularnewline
-158.238867592184 \tabularnewline
-324.292326724488 \tabularnewline
-385.206977440712 \tabularnewline
-328.646602324895 \tabularnewline
182.304683245088 \tabularnewline
-458.365415829037 \tabularnewline
-276.752918829001 \tabularnewline
725.523959720879 \tabularnewline
116.646169073329 \tabularnewline
273.812690541285 \tabularnewline
149.455123041162 \tabularnewline
142.24286498892 \tabularnewline
-394.750400225768 \tabularnewline
106.947139668563 \tabularnewline
240.889730230446 \tabularnewline
-45.8384946470942 \tabularnewline
108.74773080567 \tabularnewline
-121.962436657407 \tabularnewline
-390.628610624312 \tabularnewline
205.732007453146 \tabularnewline
-73.2446938822377 \tabularnewline
148.293871514225 \tabularnewline
153.376958173967 \tabularnewline
-181.566460648206 \tabularnewline
-414.84830375914 \tabularnewline
-185.804042048775 \tabularnewline
-629.85050189165 \tabularnewline
-183.535599208397 \tabularnewline
79.5587881978604 \tabularnewline
-257.766803761058 \tabularnewline
-161.538883645889 \tabularnewline
399.200122976561 \tabularnewline
-213.987587148858 \tabularnewline
161.580121860115 \tabularnewline
445.722475837147 \tabularnewline
-78.9636647020402 \tabularnewline
6.92908963586342 \tabularnewline
-28.7133825012593 \tabularnewline
-22.9106445613656 \tabularnewline
154.254309026843 \tabularnewline
346.074474187744 \tabularnewline
-357.228004842829 \tabularnewline
-19.6484499658782 \tabularnewline
98.6225392511169 \tabularnewline
383.477570947925 \tabularnewline
130.430485770799 \tabularnewline
-288.304613512029 \tabularnewline
79.5668797240246 \tabularnewline
-51.2816013681786 \tabularnewline
-132.973989251037 \tabularnewline
81.4979690677774 \tabularnewline
162.502979803862 \tabularnewline
31.6957631601008 \tabularnewline
-85.3336341908435 \tabularnewline
-131.980402765394 \tabularnewline
100.360002377769 \tabularnewline
-124.063999292174 \tabularnewline
183.573279861891 \tabularnewline
-72.3674660087645 \tabularnewline
45.0339806789875 \tabularnewline
-232.866467083753 \tabularnewline
-526.783799901015 \tabularnewline
150.042751460263 \tabularnewline
281.490738312181 \tabularnewline
-214.589717859727 \tabularnewline
-195.448576179326 \tabularnewline
91.6979267957654 \tabularnewline
315.808715874081 \tabularnewline
-129.540990953781 \tabularnewline
40.9278067498058 \tabularnewline
-115.191700561209 \tabularnewline
371.616450490527 \tabularnewline
-29.6135952635423 \tabularnewline
-359.067318571221 \tabularnewline
136.693559000677 \tabularnewline
172.497028037505 \tabularnewline
-93.2047442694329 \tabularnewline
-288.197819204023 \tabularnewline
-334.43361595087 \tabularnewline
269.529753368975 \tabularnewline
-309.481946676667 \tabularnewline
432.862915109254 \tabularnewline
-304.148540892839 \tabularnewline
-110.424026893891 \tabularnewline
98.2456007903784 \tabularnewline
115.413389827521 \tabularnewline
-223.830286079149 \tabularnewline
114.316702689866 \tabularnewline
131.173229545574 \tabularnewline
-46.9573543401298 \tabularnewline
-62.0595131877599 \tabularnewline
230.393757367706 \tabularnewline
56.0767402722727 \tabularnewline
70.5604889522101 \tabularnewline
33.4407558414546 \tabularnewline
-366.987974387494 \tabularnewline
160.445240636746 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301467&T=2

[TABLE]
[ROW][C]Estimated ARIMA Residuals[/C][/ROW]
[ROW][C]Value[/C][/ROW]
[ROW][C]4.97599719188352[/C][/ROW]
[ROW][C]16.9440767325963[/C][/ROW]
[ROW][C]469.161033807576[/C][/ROW]
[ROW][C]-654.311390893449[/C][/ROW]
[ROW][C]-497.805356717316[/C][/ROW]
[ROW][C]-127.026970702845[/C][/ROW]
[ROW][C]-281.649700807724[/C][/ROW]
[ROW][C]-252.963541816556[/C][/ROW]
[ROW][C]-32.686068218702[/C][/ROW]
[ROW][C]-256.766972809202[/C][/ROW]
[ROW][C]-176.748677420206[/C][/ROW]
[ROW][C]-400.904040805014[/C][/ROW]
[ROW][C]171.371157306472[/C][/ROW]
[ROW][C]139.199390476709[/C][/ROW]
[ROW][C]897.803711428081[/C][/ROW]
[ROW][C]-209.612545210357[/C][/ROW]
[ROW][C]181.460356377802[/C][/ROW]
[ROW][C]-76.6599853167175[/C][/ROW]
[ROW][C]-41.3564057107465[/C][/ROW]
[ROW][C]193.043430719422[/C][/ROW]
[ROW][C]249.476025682418[/C][/ROW]
[ROW][C]-4.87755379365807[/C][/ROW]
[ROW][C]-59.2231901455616[/C][/ROW]
[ROW][C]-272.257343602495[/C][/ROW]
[ROW][C]298.756232769344[/C][/ROW]
[ROW][C]223.411707275884[/C][/ROW]
[ROW][C]603.179801259875[/C][/ROW]
[ROW][C]-193.320416751894[/C][/ROW]
[ROW][C]220.112051759873[/C][/ROW]
[ROW][C]-158.238867592184[/C][/ROW]
[ROW][C]-324.292326724488[/C][/ROW]
[ROW][C]-385.206977440712[/C][/ROW]
[ROW][C]-328.646602324895[/C][/ROW]
[ROW][C]182.304683245088[/C][/ROW]
[ROW][C]-458.365415829037[/C][/ROW]
[ROW][C]-276.752918829001[/C][/ROW]
[ROW][C]725.523959720879[/C][/ROW]
[ROW][C]116.646169073329[/C][/ROW]
[ROW][C]273.812690541285[/C][/ROW]
[ROW][C]149.455123041162[/C][/ROW]
[ROW][C]142.24286498892[/C][/ROW]
[ROW][C]-394.750400225768[/C][/ROW]
[ROW][C]106.947139668563[/C][/ROW]
[ROW][C]240.889730230446[/C][/ROW]
[ROW][C]-45.8384946470942[/C][/ROW]
[ROW][C]108.74773080567[/C][/ROW]
[ROW][C]-121.962436657407[/C][/ROW]
[ROW][C]-390.628610624312[/C][/ROW]
[ROW][C]205.732007453146[/C][/ROW]
[ROW][C]-73.2446938822377[/C][/ROW]
[ROW][C]148.293871514225[/C][/ROW]
[ROW][C]153.376958173967[/C][/ROW]
[ROW][C]-181.566460648206[/C][/ROW]
[ROW][C]-414.84830375914[/C][/ROW]
[ROW][C]-185.804042048775[/C][/ROW]
[ROW][C]-629.85050189165[/C][/ROW]
[ROW][C]-183.535599208397[/C][/ROW]
[ROW][C]79.5587881978604[/C][/ROW]
[ROW][C]-257.766803761058[/C][/ROW]
[ROW][C]-161.538883645889[/C][/ROW]
[ROW][C]399.200122976561[/C][/ROW]
[ROW][C]-213.987587148858[/C][/ROW]
[ROW][C]161.580121860115[/C][/ROW]
[ROW][C]445.722475837147[/C][/ROW]
[ROW][C]-78.9636647020402[/C][/ROW]
[ROW][C]6.92908963586342[/C][/ROW]
[ROW][C]-28.7133825012593[/C][/ROW]
[ROW][C]-22.9106445613656[/C][/ROW]
[ROW][C]154.254309026843[/C][/ROW]
[ROW][C]346.074474187744[/C][/ROW]
[ROW][C]-357.228004842829[/C][/ROW]
[ROW][C]-19.6484499658782[/C][/ROW]
[ROW][C]98.6225392511169[/C][/ROW]
[ROW][C]383.477570947925[/C][/ROW]
[ROW][C]130.430485770799[/C][/ROW]
[ROW][C]-288.304613512029[/C][/ROW]
[ROW][C]79.5668797240246[/C][/ROW]
[ROW][C]-51.2816013681786[/C][/ROW]
[ROW][C]-132.973989251037[/C][/ROW]
[ROW][C]81.4979690677774[/C][/ROW]
[ROW][C]162.502979803862[/C][/ROW]
[ROW][C]31.6957631601008[/C][/ROW]
[ROW][C]-85.3336341908435[/C][/ROW]
[ROW][C]-131.980402765394[/C][/ROW]
[ROW][C]100.360002377769[/C][/ROW]
[ROW][C]-124.063999292174[/C][/ROW]
[ROW][C]183.573279861891[/C][/ROW]
[ROW][C]-72.3674660087645[/C][/ROW]
[ROW][C]45.0339806789875[/C][/ROW]
[ROW][C]-232.866467083753[/C][/ROW]
[ROW][C]-526.783799901015[/C][/ROW]
[ROW][C]150.042751460263[/C][/ROW]
[ROW][C]281.490738312181[/C][/ROW]
[ROW][C]-214.589717859727[/C][/ROW]
[ROW][C]-195.448576179326[/C][/ROW]
[ROW][C]91.6979267957654[/C][/ROW]
[ROW][C]315.808715874081[/C][/ROW]
[ROW][C]-129.540990953781[/C][/ROW]
[ROW][C]40.9278067498058[/C][/ROW]
[ROW][C]-115.191700561209[/C][/ROW]
[ROW][C]371.616450490527[/C][/ROW]
[ROW][C]-29.6135952635423[/C][/ROW]
[ROW][C]-359.067318571221[/C][/ROW]
[ROW][C]136.693559000677[/C][/ROW]
[ROW][C]172.497028037505[/C][/ROW]
[ROW][C]-93.2047442694329[/C][/ROW]
[ROW][C]-288.197819204023[/C][/ROW]
[ROW][C]-334.43361595087[/C][/ROW]
[ROW][C]269.529753368975[/C][/ROW]
[ROW][C]-309.481946676667[/C][/ROW]
[ROW][C]432.862915109254[/C][/ROW]
[ROW][C]-304.148540892839[/C][/ROW]
[ROW][C]-110.424026893891[/C][/ROW]
[ROW][C]98.2456007903784[/C][/ROW]
[ROW][C]115.413389827521[/C][/ROW]
[ROW][C]-223.830286079149[/C][/ROW]
[ROW][C]114.316702689866[/C][/ROW]
[ROW][C]131.173229545574[/C][/ROW]
[ROW][C]-46.9573543401298[/C][/ROW]
[ROW][C]-62.0595131877599[/C][/ROW]
[ROW][C]230.393757367706[/C][/ROW]
[ROW][C]56.0767402722727[/C][/ROW]
[ROW][C]70.5604889522101[/C][/ROW]
[ROW][C]33.4407558414546[/C][/ROW]
[ROW][C]-366.987974387494[/C][/ROW]
[ROW][C]160.445240636746[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301467&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301467&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimated ARIMA Residuals
Value
4.97599719188352
16.9440767325963
469.161033807576
-654.311390893449
-497.805356717316
-127.026970702845
-281.649700807724
-252.963541816556
-32.686068218702
-256.766972809202
-176.748677420206
-400.904040805014
171.371157306472
139.199390476709
897.803711428081
-209.612545210357
181.460356377802
-76.6599853167175
-41.3564057107465
193.043430719422
249.476025682418
-4.87755379365807
-59.2231901455616
-272.257343602495
298.756232769344
223.411707275884
603.179801259875
-193.320416751894
220.112051759873
-158.238867592184
-324.292326724488
-385.206977440712
-328.646602324895
182.304683245088
-458.365415829037
-276.752918829001
725.523959720879
116.646169073329
273.812690541285
149.455123041162
142.24286498892
-394.750400225768
106.947139668563
240.889730230446
-45.8384946470942
108.74773080567
-121.962436657407
-390.628610624312
205.732007453146
-73.2446938822377
148.293871514225
153.376958173967
-181.566460648206
-414.84830375914
-185.804042048775
-629.85050189165
-183.535599208397
79.5587881978604
-257.766803761058
-161.538883645889
399.200122976561
-213.987587148858
161.580121860115
445.722475837147
-78.9636647020402
6.92908963586342
-28.7133825012593
-22.9106445613656
154.254309026843
346.074474187744
-357.228004842829
-19.6484499658782
98.6225392511169
383.477570947925
130.430485770799
-288.304613512029
79.5668797240246
-51.2816013681786
-132.973989251037
81.4979690677774
162.502979803862
31.6957631601008
-85.3336341908435
-131.980402765394
100.360002377769
-124.063999292174
183.573279861891
-72.3674660087645
45.0339806789875
-232.866467083753
-526.783799901015
150.042751460263
281.490738312181
-214.589717859727
-195.448576179326
91.6979267957654
315.808715874081
-129.540990953781
40.9278067498058
-115.191700561209
371.616450490527
-29.6135952635423
-359.067318571221
136.693559000677
172.497028037505
-93.2047442694329
-288.197819204023
-334.43361595087
269.529753368975
-309.481946676667
432.862915109254
-304.148540892839
-110.424026893891
98.2456007903784
115.413389827521
-223.830286079149
114.316702689866
131.173229545574
-46.9573543401298
-62.0595131877599
230.393757367706
56.0767402722727
70.5604889522101
33.4407558414546
-366.987974387494
160.445240636746



Parameters (Session):
par1 = Default ; par2 = 1 ; par3 = 1 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ;
Parameters (R input):
par1 = FALSE ; par2 = 1 ; par3 = 0 ; par4 = 1 ; par5 = 1 ; par6 = 3 ; par7 = 1 ; par8 = 2 ; par9 = 1 ;
R code (references can be found in the software module):
library(lattice)
if (par1 == 'TRUE') par1 <- TRUE
if (par1 == 'FALSE') par1 <- FALSE
par2 <- as.numeric(par2) #Box-Cox lambda transformation parameter
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #degree (p) of the non-seasonal AR(p) polynomial
par7 <- as.numeric(par7) #degree (q) of the non-seasonal MA(q) polynomial
par8 <- as.numeric(par8) #degree (P) of the seasonal AR(P) polynomial
par9 <- as.numeric(par9) #degree (Q) of the seasonal MA(Q) polynomial
armaGR <- function(arima.out, names, n){
try1 <- arima.out$coef
try2 <- sqrt(diag(arima.out$var.coef))
try.data.frame <- data.frame(matrix(NA,ncol=4,nrow=length(names)))
dimnames(try.data.frame) <- list(names,c('coef','std','tstat','pv'))
try.data.frame[,1] <- try1
for(i in 1:length(try2)) try.data.frame[which(rownames(try.data.frame)==names(try2)[i]),2] <- try2[i]
try.data.frame[,3] <- try.data.frame[,1] / try.data.frame[,2]
try.data.frame[,4] <- round((1-pt(abs(try.data.frame[,3]),df=n-(length(try2)+1)))*2,5)
vector <- rep(NA,length(names))
vector[is.na(try.data.frame[,4])] <- 0
maxi <- which.max(try.data.frame[,4])
continue <- max(try.data.frame[,4],na.rm=TRUE) > .05
vector[maxi] <- 0
list(summary=try.data.frame,next.vector=vector,continue=continue)
}
arimaSelect <- function(series, order=c(13,0,0), seasonal=list(order=c(2,0,0),period=12), include.mean=F){
nrc <- order[1]+order[3]+seasonal$order[1]+seasonal$order[3]
coeff <- matrix(NA, nrow=nrc*2, ncol=nrc)
pval <- matrix(NA, nrow=nrc*2, ncol=nrc)
mylist <- rep(list(NULL), nrc)
names <- NULL
if(order[1] > 0) names <- paste('ar',1:order[1],sep='')
if(order[3] > 0) names <- c( names , paste('ma',1:order[3],sep='') )
if(seasonal$order[1] > 0) names <- c(names, paste('sar',1:seasonal$order[1],sep=''))
if(seasonal$order[3] > 0) names <- c(names, paste('sma',1:seasonal$order[3],sep=''))
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML')
mylist[[1]] <- arima.out
last.arma <- armaGR(arima.out, names, length(series))
mystop <- FALSE
i <- 1
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- 2
aic <- arima.out$aic
while(!mystop){
mylist[[i]] <- arima.out
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML', fixed=last.arma$next.vector)
aic <- c(aic, arima.out$aic)
last.arma <- armaGR(arima.out, names, length(series))
mystop <- !last.arma$continue
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- i+1
}
list(coeff, pval, mylist, aic=aic)
}
arimaSelectplot <- function(arimaSelect.out,noms,choix){
noms <- names(arimaSelect.out[[3]][[1]]$coef)
coeff <- arimaSelect.out[[1]]
k <- min(which(is.na(coeff[,1])))-1
coeff <- coeff[1:k,]
pval <- arimaSelect.out[[2]][1:k,]
aic <- arimaSelect.out$aic[1:k]
coeff[coeff==0] <- NA
n <- ncol(coeff)
if(missing(choix)) choix <- k
layout(matrix(c(1,1,1,2,
3,3,3,2,
3,3,3,4,
5,6,7,7),nr=4),
widths=c(10,35,45,15),
heights=c(30,30,15,15))
couleurs <- rainbow(75)[1:50]#(50)
ticks <- pretty(coeff)
par(mar=c(1,1,3,1))
plot(aic,k:1-.5,type='o',pch=21,bg='blue',cex=2,axes=F,lty=2,xpd=NA)
points(aic[choix],k-choix+.5,pch=21,cex=4,bg=2,xpd=NA)
title('aic',line=2)
par(mar=c(3,0,0,0))
plot(0,axes=F,xlab='',ylab='',xlim=range(ticks),ylim=c(.1,1))
rect(xleft = min(ticks) + (0:49)/50*(max(ticks)-min(ticks)),
xright = min(ticks) + (1:50)/50*(max(ticks)-min(ticks)),
ytop = rep(1,50),
ybottom= rep(0,50),col=couleurs,border=NA)
axis(1,ticks)
rect(xleft=min(ticks),xright=max(ticks),ytop=1,ybottom=0)
text(mean(coeff,na.rm=T),.5,'coefficients',cex=2,font=2)
par(mar=c(1,1,3,1))
image(1:n,1:k,t(coeff[k:1,]),axes=F,col=couleurs,zlim=range(ticks))
for(i in 1:n) for(j in 1:k) if(!is.na(coeff[j,i])) {
if(pval[j,i]<.01) symb = 'green'
else if( (pval[j,i]<.05) & (pval[j,i]>=.01)) symb = 'orange'
else if( (pval[j,i]<.1) & (pval[j,i]>=.05)) symb = 'red'
else symb = 'black'
polygon(c(i+.5 ,i+.2 ,i+.5 ,i+.5),
c(k-j+0.5,k-j+0.5,k-j+0.8,k-j+0.5),
col=symb)
if(j==choix) {
rect(xleft=i-.5,
xright=i+.5,
ybottom=k-j+1.5,
ytop=k-j+.5,
lwd=4)
text(i,
k-j+1,
round(coeff[j,i],2),
cex=1.2,
font=2)
}
else{
rect(xleft=i-.5,xright=i+.5,ybottom=k-j+1.5,ytop=k-j+.5)
text(i,k-j+1,round(coeff[j,i],2),cex=1.2,font=1)
}
}
axis(3,1:n,noms)
par(mar=c(0.5,0,0,0.5))
plot(0,axes=F,xlab='',ylab='',type='n',xlim=c(0,8),ylim=c(-.2,.8))
cols <- c('green','orange','red','black')
niv <- c('0','0.01','0.05','0.1')
for(i in 0:3){
polygon(c(1+2*i ,1+2*i ,1+2*i-.5 ,1+2*i),
c(.4 ,.7 , .4 , .4),
col=cols[i+1])
text(2*i,0.5,niv[i+1],cex=1.5)
}
text(8,.5,1,cex=1.5)
text(4,0,'p-value',cex=2)
box()
residus <- arimaSelect.out[[3]][[choix]]$res
par(mar=c(1,2,4,1))
acf(residus,main='')
title('acf',line=.5)
par(mar=c(1,2,4,1))
pacf(residus,main='')
title('pacf',line=.5)
par(mar=c(2,2,4,1))
qqnorm(residus,main='')
title('qq-norm',line=.5)
qqline(residus)
residus
}
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
(selection <- arimaSelect(x, order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5)))
bitmap(file='test1.png')
resid <- arimaSelectplot(selection)
dev.off()
resid
bitmap(file='test2.png')
acf(resid,length(resid)/2, main='Residual Autocorrelation Function')
dev.off()
bitmap(file='test3.png')
pacf(resid,length(resid)/2, main='Residual Partial Autocorrelation Function')
dev.off()
bitmap(file='test4.png')
cpgram(resid, main='Residual Cumulative Periodogram')
dev.off()
bitmap(file='test5.png')
hist(resid, main='Residual Histogram', xlab='values of Residuals')
dev.off()
bitmap(file='test6.png')
densityplot(~resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test7.png')
qqnorm(resid, main='Residual Normal Q-Q Plot')
qqline(resid)
dev.off()
ncols <- length(selection[[1]][1,])
nrows <- length(selection[[2]][,1])-1
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ARIMA Parameter Estimation and Backward Selection', ncols+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Iteration', header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,names(selection[[3]][[1]]$coef)[i],header=TRUE)
}
a<-table.row.end(a)
for (j in 1:nrows) {
a<-table.row.start(a)
mydum <- 'Estimates ('
mydum <- paste(mydum,j)
mydum <- paste(mydum,')')
a<-table.element(a,mydum, header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,round(selection[[1]][j,i],4))
}
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'(p-val)', header=TRUE)
for (i in 1:ncols) {
mydum <- '('
mydum <- paste(mydum,round(selection[[2]][j,i],4),sep='')
mydum <- paste(mydum,')')
a<-table.element(a,mydum)
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimated ARIMA Residuals', 1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Value', 1,TRUE)
a<-table.row.end(a)
for (i in (par4*par5+par3):length(resid)) {
a<-table.row.start(a)
a<-table.element(a,resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')