Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_structuraltimeseries.wasp
Title produced by softwareStructural Time Series Models
Date of computationMon, 19 Dec 2016 19:35:01 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/19/t14821726004tfvazpyy05ehdm.htm/, Retrieved Fri, 01 Nov 2024 03:38:32 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=301442, Retrieved Fri, 01 Nov 2024 03:38:32 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact98
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Structural Time Series Models] [data 2 structural...] [2016-12-19 18:35:01] [ca14e1566745fb922befb698831e7d61] [Current]
Feedback Forum

Post a new message
Dataseries X:
1600
3795
3805
3860
3875
3885
3930
3960
3995
3875
4065
4165
4200
4240
4315
4355
4400
4440
4525
4525
4530
4565
4585
4685
4740
4780
4850
4905
4925
4950
4970
4985
5040
5105
5015
5045
5025
4960
4925
4955
4945
4935
4925
4995
4970
5005
5140
5190
5220
5250
5235
5255
5335
5360
5345
5325
5320
5350
5430
5440
5490
5505
5545
5530
5480
5535
5560
5575
5595
5595
5500
5450
5260
5240
5245
5205
5180
5155
5160
5150
5070
4855
4825
5015
5070
5075
5060
5070
5135
5135
5110
5015
5125
5185
5190
5230
5350
5415
5465
5560
5585
5615




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time3 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301442&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]3 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=301442&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301442&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R ServerBig Analytics Cloud Computing Center







Structural Time Series Model -- Interpolation
tObservedLevelSlopeSeasonalStand. Residuals
116001600000
237953680.86000592281114.139993494525114.1399940771885.68462496809783
338053691.27490689487113.725093105131113.725093105132-0.47287401528481
438603746.50794296858113.492057031424113.492057031424-0.266658276375304
538753761.89723961997113.102760380027113.102760380027-0.447235203322712
638853772.30315598207112.696844017934112.696844017934-0.468175257870226
739303817.56863379044112.431366209562112.431366209562-0.307404311194025
839603847.89063130103112.109368698966112.109368698966-0.374315118622374
939953883.19066774244111.809332257563111.809332257563-0.350150968374494
1038753764.08915348856110.91084651144110.910846511441-1.05264610513061
1140653953.78378997438111.216210025619111.2162100256190.359146518967683
1241654053.82692924191111.173070758092111.173070758092-0.0509335684442583
1342005023.4120423458174.8556400101562-823.4120423458054.72787923740887
1442404187.1999999504752.799998441031752.8000000495352-3.5335802103851
1543154262.1597111649852.84028883502252.84028883502240.100914446907318
1643554302.1829725577552.817027442255452.817027442255-0.0583681350033457
1744004347.1971082312152.802891768791952.8028917687923-0.0355339406800895
1844404387.220218144152.779781855901852.7797818559017-0.0581983297147051
1945254472.1621636971252.83783630288352.83783630288290.146464249463976
2045254472.2571957765952.742804223406252.7428042234061-0.240186660589239
2145304477.3429099671252.657090032884252.6570900328841-0.217026359577804
2245654512.3745534975752.625446502427252.6254465024274-0.0802646641456036
2345854532.4329174446852.567082555320752.5670825553207-0.148307263904199
2446854632.3482158065752.651784193433752.65178419343370.21561873370334
2547405206.4904449032442.4082220712466-466.4904449032392.6164995246026
2647804745.4117637915134.588234507497734.5882362084898-2.08228659412732
2748504815.3701535332734.62984646672634.62984646672640.161022678195184
2849054870.3462449019534.653755098051334.6537550980510.0926262428237741
2949254890.3634239820834.636576017917934.6365760179183-0.0666329397416994
3049504915.3747080291434.625291970861834.6252919708617-0.043819063855717
3149704935.3918136340834.608186365919734.6081863659196-0.0665036046983978
3249854950.4147203942534.58527960574834.5852796057478-0.0891617049040275
3350405005.3908992498534.609100750145834.60910075014570.0928292134513924
3451055070.3554786207434.644521379256734.64452137925690.138192693290049
3550154980.5005828390734.499417160933734.4994171609338-0.566780655971452
3650455010.5058147195834.494185280423434.4941852804235-0.0204596584734735
3750255360.1019313845930.4638117678823-335.1019313845921.53119712872192
3849604934.7478250574425.252173414715625.2521749425588-1.93735459099886
3949254899.8001742789125.199825721087625.1998257210881-0.274017769758578
4049554929.7960074608325.203992539173325.20399253917290.0218304752780724
4149454919.826539979225.17346002080325.1734600208034-0.160102557471697
4249354909.8570195815925.142980418410925.1429804184108-0.159963760252132
4349254899.8874464054525.112553594552725.1125535945527-0.159825203478251
4449954969.8486164332525.151383566747725.15138356674750.204141705082094
4549704944.8919624878725.108037512134425.1080375121343-0.22808142596682
4650054979.8834202056525.116579794351425.11657979435170.0449872683880303
4751405114.7886113844725.211388615534225.21138861553430.499734685150787
4851905164.767241891225.232758108795925.2327581087960.112735237885361
4952205468.5089740230622.5917247350618-248.5089740230561.33161760034776
5052505229.77241250620.227585802105620.2275874939986-1.12767248020506
5152355214.7966923518920.203307648111420.2033076481119-0.160224128467281
5252555234.7968323709420.203167629063620.2031676290632-0.000924695784237724
5353355314.7556783206320.244321679373620.2443216793740.271971529017886
5453605339.752407565120.247592434901520.24759243490150.0216300656642566
5553455324.7766327156420.223367284357520.2233672843574-0.16031528370636
5653255304.8042586559720.195741344030120.1957413440299-0.182946454363322
5753205299.8215515471820.178448452821520.1784484528214-0.114596885897995
5853505329.8148152289420.185184771061520.18518477106190.0446710208571182
5954305409.7738180953220.226181904679120.22618190467910.272053704987365
6054405419.7808223298220.219177670179620.2191776701796-0.0465114088853671
6154905691.5622999139118.323845264383-201.5622999139141.1910495429904
6255055488.3342842763716.665713931812816.6657157236258-0.965284442467894
6355455528.3209597965116.679040203493116.67904020349350.1061366229139
6455305513.3390414415116.66095855849216.6609585584916-0.144092972455104
6554805463.3770682312516.62293176874616.6229317687464-0.303209225037929
6655355518.3551884875516.644811512449416.64481151244950.174559191205163
6755605543.3504276961116.649572303886216.64957230388620.0380038197029167
6855755558.3513670881416.648632911859216.648632911859-0.00750312918662411
6955955578.3494596508716.650540349128516.65054034912840.0152437963660667
7055955578.3589309485516.641069051453816.6410690514542-0.075735507600858
7155005483.4223994394516.577600560547316.5776005605474-0.507803003646167
7254505433.4602276237716.539772376225416.5397723762254-0.302830412596684
7352605442.4561384215916.5869215115185-182.456138421594-0.0354835071124269
7452405224.9073158033115.092682632138415.092684196691-1.02693459121032
7552455229.9122382299215.087761770081315.0877617700817-0.0459087441320245
7652055189.939084119615.060915880402415.060915880402-0.250578636883349
7751805164.9585974750215.041402524981315.0414025249818-0.182225789595854
7851555139.9780918300915.021908169907615.0219081699077-0.182137050461132
7951605144.9829686713915.017031328608615.0170313286086-0.045586840002698
8051505134.9951364890315.004863510965615.0048635109654-0.113795448951676
8150705055.0413226193914.958677380612614.9586773806125-0.432150491103095
8248554840.1530615374714.846938462532414.8469384625327-1.04601768198085
8348254810.1748424707314.825157529270114.8251575292701-0.203996199172994
8450155000.0898061335114.91019386648814.91019386648810.796821533295128
8550705221.8615298342713.8055934502812-151.8615298342680.968431077958748
8650755062.1595730451612.840425246726312.8404269548383-0.76474420219183
8750605047.1714167123112.828583287693912.8285832876942-0.126642133124175
8850705057.1726193413512.82738065864712.8273806586466-0.0128668248790726
8951355122.1504465306512.849553469352812.84955346935320.237325879758795
9051355122.1559051349412.844094865055612.8440948650557-0.0584508099366572
9151105097.171974815612.828025184399712.8280251843997-0.172147475867647
9250155002.2177422323912.782257767610512.7822577676103-0.490494596394953
9351255112.1764958386112.823504161389412.82350416138930.442229943954877
9451855172.1564888412912.843511158706112.84351115870650.21459931602319
9551905177.1598137721112.840186227889712.8401862278898-0.0356790442215177
9652305217.1483053755112.851694624490412.85169462449040.123546236383553
9753505478.6215222230111.6928654765987-128.6215222230081.15982072517389
9854155403.7339606614411.26603744541411.2660393385644-0.383036955136244
9954655453.7193514647511.280648535250111.28064853525040.176199546067388
10055605548.6877830789111.312216921086711.31221692108630.380836638018247
10155855573.6826237180611.317376281942111.31737628194250.0622652895547348
10256155603.6755842962611.3244157037411.32441570374010.0849866666777538

\begin{tabular}{lllllllll}
\hline
Structural Time Series Model -- Interpolation \tabularnewline
t & Observed & Level & Slope & Seasonal & Stand. Residuals \tabularnewline
1 & 1600 & 1600 & 0 & 0 & 0 \tabularnewline
2 & 3795 & 3680.86000592281 & 114.139993494525 & 114.139994077188 & 5.68462496809783 \tabularnewline
3 & 3805 & 3691.27490689487 & 113.725093105131 & 113.725093105132 & -0.47287401528481 \tabularnewline
4 & 3860 & 3746.50794296858 & 113.492057031424 & 113.492057031424 & -0.266658276375304 \tabularnewline
5 & 3875 & 3761.89723961997 & 113.102760380027 & 113.102760380027 & -0.447235203322712 \tabularnewline
6 & 3885 & 3772.30315598207 & 112.696844017934 & 112.696844017934 & -0.468175257870226 \tabularnewline
7 & 3930 & 3817.56863379044 & 112.431366209562 & 112.431366209562 & -0.307404311194025 \tabularnewline
8 & 3960 & 3847.89063130103 & 112.109368698966 & 112.109368698966 & -0.374315118622374 \tabularnewline
9 & 3995 & 3883.19066774244 & 111.809332257563 & 111.809332257563 & -0.350150968374494 \tabularnewline
10 & 3875 & 3764.08915348856 & 110.91084651144 & 110.910846511441 & -1.05264610513061 \tabularnewline
11 & 4065 & 3953.78378997438 & 111.216210025619 & 111.216210025619 & 0.359146518967683 \tabularnewline
12 & 4165 & 4053.82692924191 & 111.173070758092 & 111.173070758092 & -0.0509335684442583 \tabularnewline
13 & 4200 & 5023.41204234581 & 74.8556400101562 & -823.412042345805 & 4.72787923740887 \tabularnewline
14 & 4240 & 4187.19999995047 & 52.7999984410317 & 52.8000000495352 & -3.5335802103851 \tabularnewline
15 & 4315 & 4262.15971116498 & 52.840288835022 & 52.8402888350224 & 0.100914446907318 \tabularnewline
16 & 4355 & 4302.18297255775 & 52.8170274422554 & 52.817027442255 & -0.0583681350033457 \tabularnewline
17 & 4400 & 4347.19710823121 & 52.8028917687919 & 52.8028917687923 & -0.0355339406800895 \tabularnewline
18 & 4440 & 4387.2202181441 & 52.7797818559018 & 52.7797818559017 & -0.0581983297147051 \tabularnewline
19 & 4525 & 4472.16216369712 & 52.837836302883 & 52.8378363028829 & 0.146464249463976 \tabularnewline
20 & 4525 & 4472.25719577659 & 52.7428042234062 & 52.7428042234061 & -0.240186660589239 \tabularnewline
21 & 4530 & 4477.34290996712 & 52.6570900328842 & 52.6570900328841 & -0.217026359577804 \tabularnewline
22 & 4565 & 4512.37455349757 & 52.6254465024272 & 52.6254465024274 & -0.0802646641456036 \tabularnewline
23 & 4585 & 4532.43291744468 & 52.5670825553207 & 52.5670825553207 & -0.148307263904199 \tabularnewline
24 & 4685 & 4632.34821580657 & 52.6517841934337 & 52.6517841934337 & 0.21561873370334 \tabularnewline
25 & 4740 & 5206.49044490324 & 42.4082220712466 & -466.490444903239 & 2.6164995246026 \tabularnewline
26 & 4780 & 4745.41176379151 & 34.5882345074977 & 34.5882362084898 & -2.08228659412732 \tabularnewline
27 & 4850 & 4815.37015353327 & 34.629846466726 & 34.6298464667264 & 0.161022678195184 \tabularnewline
28 & 4905 & 4870.34624490195 & 34.6537550980513 & 34.653755098051 & 0.0926262428237741 \tabularnewline
29 & 4925 & 4890.36342398208 & 34.6365760179179 & 34.6365760179183 & -0.0666329397416994 \tabularnewline
30 & 4950 & 4915.37470802914 & 34.6252919708618 & 34.6252919708617 & -0.043819063855717 \tabularnewline
31 & 4970 & 4935.39181363408 & 34.6081863659197 & 34.6081863659196 & -0.0665036046983978 \tabularnewline
32 & 4985 & 4950.41472039425 & 34.585279605748 & 34.5852796057478 & -0.0891617049040275 \tabularnewline
33 & 5040 & 5005.39089924985 & 34.6091007501458 & 34.6091007501457 & 0.0928292134513924 \tabularnewline
34 & 5105 & 5070.35547862074 & 34.6445213792567 & 34.6445213792569 & 0.138192693290049 \tabularnewline
35 & 5015 & 4980.50058283907 & 34.4994171609337 & 34.4994171609338 & -0.566780655971452 \tabularnewline
36 & 5045 & 5010.50581471958 & 34.4941852804234 & 34.4941852804235 & -0.0204596584734735 \tabularnewline
37 & 5025 & 5360.10193138459 & 30.4638117678823 & -335.101931384592 & 1.53119712872192 \tabularnewline
38 & 4960 & 4934.74782505744 & 25.2521734147156 & 25.2521749425588 & -1.93735459099886 \tabularnewline
39 & 4925 & 4899.80017427891 & 25.1998257210876 & 25.1998257210881 & -0.274017769758578 \tabularnewline
40 & 4955 & 4929.79600746083 & 25.2039925391733 & 25.2039925391729 & 0.0218304752780724 \tabularnewline
41 & 4945 & 4919.8265399792 & 25.173460020803 & 25.1734600208034 & -0.160102557471697 \tabularnewline
42 & 4935 & 4909.85701958159 & 25.1429804184109 & 25.1429804184108 & -0.159963760252132 \tabularnewline
43 & 4925 & 4899.88744640545 & 25.1125535945527 & 25.1125535945527 & -0.159825203478251 \tabularnewline
44 & 4995 & 4969.84861643325 & 25.1513835667477 & 25.1513835667475 & 0.204141705082094 \tabularnewline
45 & 4970 & 4944.89196248787 & 25.1080375121344 & 25.1080375121343 & -0.22808142596682 \tabularnewline
46 & 5005 & 4979.88342020565 & 25.1165797943514 & 25.1165797943517 & 0.0449872683880303 \tabularnewline
47 & 5140 & 5114.78861138447 & 25.2113886155342 & 25.2113886155343 & 0.499734685150787 \tabularnewline
48 & 5190 & 5164.7672418912 & 25.2327581087959 & 25.232758108796 & 0.112735237885361 \tabularnewline
49 & 5220 & 5468.50897402306 & 22.5917247350618 & -248.508974023056 & 1.33161760034776 \tabularnewline
50 & 5250 & 5229.772412506 & 20.2275858021056 & 20.2275874939986 & -1.12767248020506 \tabularnewline
51 & 5235 & 5214.79669235189 & 20.2033076481114 & 20.2033076481119 & -0.160224128467281 \tabularnewline
52 & 5255 & 5234.79683237094 & 20.2031676290636 & 20.2031676290632 & -0.000924695784237724 \tabularnewline
53 & 5335 & 5314.75567832063 & 20.2443216793736 & 20.244321679374 & 0.271971529017886 \tabularnewline
54 & 5360 & 5339.7524075651 & 20.2475924349015 & 20.2475924349015 & 0.0216300656642566 \tabularnewline
55 & 5345 & 5324.77663271564 & 20.2233672843575 & 20.2233672843574 & -0.16031528370636 \tabularnewline
56 & 5325 & 5304.80425865597 & 20.1957413440301 & 20.1957413440299 & -0.182946454363322 \tabularnewline
57 & 5320 & 5299.82155154718 & 20.1784484528215 & 20.1784484528214 & -0.114596885897995 \tabularnewline
58 & 5350 & 5329.81481522894 & 20.1851847710615 & 20.1851847710619 & 0.0446710208571182 \tabularnewline
59 & 5430 & 5409.77381809532 & 20.2261819046791 & 20.2261819046791 & 0.272053704987365 \tabularnewline
60 & 5440 & 5419.78082232982 & 20.2191776701796 & 20.2191776701796 & -0.0465114088853671 \tabularnewline
61 & 5490 & 5691.56229991391 & 18.323845264383 & -201.562299913914 & 1.1910495429904 \tabularnewline
62 & 5505 & 5488.33428427637 & 16.6657139318128 & 16.6657157236258 & -0.965284442467894 \tabularnewline
63 & 5545 & 5528.32095979651 & 16.6790402034931 & 16.6790402034935 & 0.1061366229139 \tabularnewline
64 & 5530 & 5513.33904144151 & 16.660958558492 & 16.6609585584916 & -0.144092972455104 \tabularnewline
65 & 5480 & 5463.37706823125 & 16.622931768746 & 16.6229317687464 & -0.303209225037929 \tabularnewline
66 & 5535 & 5518.35518848755 & 16.6448115124494 & 16.6448115124495 & 0.174559191205163 \tabularnewline
67 & 5560 & 5543.35042769611 & 16.6495723038862 & 16.6495723038862 & 0.0380038197029167 \tabularnewline
68 & 5575 & 5558.35136708814 & 16.6486329118592 & 16.648632911859 & -0.00750312918662411 \tabularnewline
69 & 5595 & 5578.34945965087 & 16.6505403491285 & 16.6505403491284 & 0.0152437963660667 \tabularnewline
70 & 5595 & 5578.35893094855 & 16.6410690514538 & 16.6410690514542 & -0.075735507600858 \tabularnewline
71 & 5500 & 5483.42239943945 & 16.5776005605473 & 16.5776005605474 & -0.507803003646167 \tabularnewline
72 & 5450 & 5433.46022762377 & 16.5397723762254 & 16.5397723762254 & -0.302830412596684 \tabularnewline
73 & 5260 & 5442.45613842159 & 16.5869215115185 & -182.456138421594 & -0.0354835071124269 \tabularnewline
74 & 5240 & 5224.90731580331 & 15.0926826321384 & 15.092684196691 & -1.02693459121032 \tabularnewline
75 & 5245 & 5229.91223822992 & 15.0877617700813 & 15.0877617700817 & -0.0459087441320245 \tabularnewline
76 & 5205 & 5189.9390841196 & 15.0609158804024 & 15.060915880402 & -0.250578636883349 \tabularnewline
77 & 5180 & 5164.95859747502 & 15.0414025249813 & 15.0414025249818 & -0.182225789595854 \tabularnewline
78 & 5155 & 5139.97809183009 & 15.0219081699076 & 15.0219081699077 & -0.182137050461132 \tabularnewline
79 & 5160 & 5144.98296867139 & 15.0170313286086 & 15.0170313286086 & -0.045586840002698 \tabularnewline
80 & 5150 & 5134.99513648903 & 15.0048635109656 & 15.0048635109654 & -0.113795448951676 \tabularnewline
81 & 5070 & 5055.04132261939 & 14.9586773806126 & 14.9586773806125 & -0.432150491103095 \tabularnewline
82 & 4855 & 4840.15306153747 & 14.8469384625324 & 14.8469384625327 & -1.04601768198085 \tabularnewline
83 & 4825 & 4810.17484247073 & 14.8251575292701 & 14.8251575292701 & -0.203996199172994 \tabularnewline
84 & 5015 & 5000.08980613351 & 14.910193866488 & 14.9101938664881 & 0.796821533295128 \tabularnewline
85 & 5070 & 5221.86152983427 & 13.8055934502812 & -151.861529834268 & 0.968431077958748 \tabularnewline
86 & 5075 & 5062.15957304516 & 12.8404252467263 & 12.8404269548383 & -0.76474420219183 \tabularnewline
87 & 5060 & 5047.17141671231 & 12.8285832876939 & 12.8285832876942 & -0.126642133124175 \tabularnewline
88 & 5070 & 5057.17261934135 & 12.827380658647 & 12.8273806586466 & -0.0128668248790726 \tabularnewline
89 & 5135 & 5122.15044653065 & 12.8495534693528 & 12.8495534693532 & 0.237325879758795 \tabularnewline
90 & 5135 & 5122.15590513494 & 12.8440948650556 & 12.8440948650557 & -0.0584508099366572 \tabularnewline
91 & 5110 & 5097.1719748156 & 12.8280251843997 & 12.8280251843997 & -0.172147475867647 \tabularnewline
92 & 5015 & 5002.21774223239 & 12.7822577676105 & 12.7822577676103 & -0.490494596394953 \tabularnewline
93 & 5125 & 5112.17649583861 & 12.8235041613894 & 12.8235041613893 & 0.442229943954877 \tabularnewline
94 & 5185 & 5172.15648884129 & 12.8435111587061 & 12.8435111587065 & 0.21459931602319 \tabularnewline
95 & 5190 & 5177.15981377211 & 12.8401862278897 & 12.8401862278898 & -0.0356790442215177 \tabularnewline
96 & 5230 & 5217.14830537551 & 12.8516946244904 & 12.8516946244904 & 0.123546236383553 \tabularnewline
97 & 5350 & 5478.62152222301 & 11.6928654765987 & -128.621522223008 & 1.15982072517389 \tabularnewline
98 & 5415 & 5403.73396066144 & 11.266037445414 & 11.2660393385644 & -0.383036955136244 \tabularnewline
99 & 5465 & 5453.71935146475 & 11.2806485352501 & 11.2806485352504 & 0.176199546067388 \tabularnewline
100 & 5560 & 5548.68778307891 & 11.3122169210867 & 11.3122169210863 & 0.380836638018247 \tabularnewline
101 & 5585 & 5573.68262371806 & 11.3173762819421 & 11.3173762819425 & 0.0622652895547348 \tabularnewline
102 & 5615 & 5603.67558429626 & 11.32441570374 & 11.3244157037401 & 0.0849866666777538 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301442&T=1

[TABLE]
[ROW][C]Structural Time Series Model -- Interpolation[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Level[/C][C]Slope[/C][C]Seasonal[/C][C]Stand. Residuals[/C][/ROW]
[ROW][C]1[/C][C]1600[/C][C]1600[/C][C]0[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]3795[/C][C]3680.86000592281[/C][C]114.139993494525[/C][C]114.139994077188[/C][C]5.68462496809783[/C][/ROW]
[ROW][C]3[/C][C]3805[/C][C]3691.27490689487[/C][C]113.725093105131[/C][C]113.725093105132[/C][C]-0.47287401528481[/C][/ROW]
[ROW][C]4[/C][C]3860[/C][C]3746.50794296858[/C][C]113.492057031424[/C][C]113.492057031424[/C][C]-0.266658276375304[/C][/ROW]
[ROW][C]5[/C][C]3875[/C][C]3761.89723961997[/C][C]113.102760380027[/C][C]113.102760380027[/C][C]-0.447235203322712[/C][/ROW]
[ROW][C]6[/C][C]3885[/C][C]3772.30315598207[/C][C]112.696844017934[/C][C]112.696844017934[/C][C]-0.468175257870226[/C][/ROW]
[ROW][C]7[/C][C]3930[/C][C]3817.56863379044[/C][C]112.431366209562[/C][C]112.431366209562[/C][C]-0.307404311194025[/C][/ROW]
[ROW][C]8[/C][C]3960[/C][C]3847.89063130103[/C][C]112.109368698966[/C][C]112.109368698966[/C][C]-0.374315118622374[/C][/ROW]
[ROW][C]9[/C][C]3995[/C][C]3883.19066774244[/C][C]111.809332257563[/C][C]111.809332257563[/C][C]-0.350150968374494[/C][/ROW]
[ROW][C]10[/C][C]3875[/C][C]3764.08915348856[/C][C]110.91084651144[/C][C]110.910846511441[/C][C]-1.05264610513061[/C][/ROW]
[ROW][C]11[/C][C]4065[/C][C]3953.78378997438[/C][C]111.216210025619[/C][C]111.216210025619[/C][C]0.359146518967683[/C][/ROW]
[ROW][C]12[/C][C]4165[/C][C]4053.82692924191[/C][C]111.173070758092[/C][C]111.173070758092[/C][C]-0.0509335684442583[/C][/ROW]
[ROW][C]13[/C][C]4200[/C][C]5023.41204234581[/C][C]74.8556400101562[/C][C]-823.412042345805[/C][C]4.72787923740887[/C][/ROW]
[ROW][C]14[/C][C]4240[/C][C]4187.19999995047[/C][C]52.7999984410317[/C][C]52.8000000495352[/C][C]-3.5335802103851[/C][/ROW]
[ROW][C]15[/C][C]4315[/C][C]4262.15971116498[/C][C]52.840288835022[/C][C]52.8402888350224[/C][C]0.100914446907318[/C][/ROW]
[ROW][C]16[/C][C]4355[/C][C]4302.18297255775[/C][C]52.8170274422554[/C][C]52.817027442255[/C][C]-0.0583681350033457[/C][/ROW]
[ROW][C]17[/C][C]4400[/C][C]4347.19710823121[/C][C]52.8028917687919[/C][C]52.8028917687923[/C][C]-0.0355339406800895[/C][/ROW]
[ROW][C]18[/C][C]4440[/C][C]4387.2202181441[/C][C]52.7797818559018[/C][C]52.7797818559017[/C][C]-0.0581983297147051[/C][/ROW]
[ROW][C]19[/C][C]4525[/C][C]4472.16216369712[/C][C]52.837836302883[/C][C]52.8378363028829[/C][C]0.146464249463976[/C][/ROW]
[ROW][C]20[/C][C]4525[/C][C]4472.25719577659[/C][C]52.7428042234062[/C][C]52.7428042234061[/C][C]-0.240186660589239[/C][/ROW]
[ROW][C]21[/C][C]4530[/C][C]4477.34290996712[/C][C]52.6570900328842[/C][C]52.6570900328841[/C][C]-0.217026359577804[/C][/ROW]
[ROW][C]22[/C][C]4565[/C][C]4512.37455349757[/C][C]52.6254465024272[/C][C]52.6254465024274[/C][C]-0.0802646641456036[/C][/ROW]
[ROW][C]23[/C][C]4585[/C][C]4532.43291744468[/C][C]52.5670825553207[/C][C]52.5670825553207[/C][C]-0.148307263904199[/C][/ROW]
[ROW][C]24[/C][C]4685[/C][C]4632.34821580657[/C][C]52.6517841934337[/C][C]52.6517841934337[/C][C]0.21561873370334[/C][/ROW]
[ROW][C]25[/C][C]4740[/C][C]5206.49044490324[/C][C]42.4082220712466[/C][C]-466.490444903239[/C][C]2.6164995246026[/C][/ROW]
[ROW][C]26[/C][C]4780[/C][C]4745.41176379151[/C][C]34.5882345074977[/C][C]34.5882362084898[/C][C]-2.08228659412732[/C][/ROW]
[ROW][C]27[/C][C]4850[/C][C]4815.37015353327[/C][C]34.629846466726[/C][C]34.6298464667264[/C][C]0.161022678195184[/C][/ROW]
[ROW][C]28[/C][C]4905[/C][C]4870.34624490195[/C][C]34.6537550980513[/C][C]34.653755098051[/C][C]0.0926262428237741[/C][/ROW]
[ROW][C]29[/C][C]4925[/C][C]4890.36342398208[/C][C]34.6365760179179[/C][C]34.6365760179183[/C][C]-0.0666329397416994[/C][/ROW]
[ROW][C]30[/C][C]4950[/C][C]4915.37470802914[/C][C]34.6252919708618[/C][C]34.6252919708617[/C][C]-0.043819063855717[/C][/ROW]
[ROW][C]31[/C][C]4970[/C][C]4935.39181363408[/C][C]34.6081863659197[/C][C]34.6081863659196[/C][C]-0.0665036046983978[/C][/ROW]
[ROW][C]32[/C][C]4985[/C][C]4950.41472039425[/C][C]34.585279605748[/C][C]34.5852796057478[/C][C]-0.0891617049040275[/C][/ROW]
[ROW][C]33[/C][C]5040[/C][C]5005.39089924985[/C][C]34.6091007501458[/C][C]34.6091007501457[/C][C]0.0928292134513924[/C][/ROW]
[ROW][C]34[/C][C]5105[/C][C]5070.35547862074[/C][C]34.6445213792567[/C][C]34.6445213792569[/C][C]0.138192693290049[/C][/ROW]
[ROW][C]35[/C][C]5015[/C][C]4980.50058283907[/C][C]34.4994171609337[/C][C]34.4994171609338[/C][C]-0.566780655971452[/C][/ROW]
[ROW][C]36[/C][C]5045[/C][C]5010.50581471958[/C][C]34.4941852804234[/C][C]34.4941852804235[/C][C]-0.0204596584734735[/C][/ROW]
[ROW][C]37[/C][C]5025[/C][C]5360.10193138459[/C][C]30.4638117678823[/C][C]-335.101931384592[/C][C]1.53119712872192[/C][/ROW]
[ROW][C]38[/C][C]4960[/C][C]4934.74782505744[/C][C]25.2521734147156[/C][C]25.2521749425588[/C][C]-1.93735459099886[/C][/ROW]
[ROW][C]39[/C][C]4925[/C][C]4899.80017427891[/C][C]25.1998257210876[/C][C]25.1998257210881[/C][C]-0.274017769758578[/C][/ROW]
[ROW][C]40[/C][C]4955[/C][C]4929.79600746083[/C][C]25.2039925391733[/C][C]25.2039925391729[/C][C]0.0218304752780724[/C][/ROW]
[ROW][C]41[/C][C]4945[/C][C]4919.8265399792[/C][C]25.173460020803[/C][C]25.1734600208034[/C][C]-0.160102557471697[/C][/ROW]
[ROW][C]42[/C][C]4935[/C][C]4909.85701958159[/C][C]25.1429804184109[/C][C]25.1429804184108[/C][C]-0.159963760252132[/C][/ROW]
[ROW][C]43[/C][C]4925[/C][C]4899.88744640545[/C][C]25.1125535945527[/C][C]25.1125535945527[/C][C]-0.159825203478251[/C][/ROW]
[ROW][C]44[/C][C]4995[/C][C]4969.84861643325[/C][C]25.1513835667477[/C][C]25.1513835667475[/C][C]0.204141705082094[/C][/ROW]
[ROW][C]45[/C][C]4970[/C][C]4944.89196248787[/C][C]25.1080375121344[/C][C]25.1080375121343[/C][C]-0.22808142596682[/C][/ROW]
[ROW][C]46[/C][C]5005[/C][C]4979.88342020565[/C][C]25.1165797943514[/C][C]25.1165797943517[/C][C]0.0449872683880303[/C][/ROW]
[ROW][C]47[/C][C]5140[/C][C]5114.78861138447[/C][C]25.2113886155342[/C][C]25.2113886155343[/C][C]0.499734685150787[/C][/ROW]
[ROW][C]48[/C][C]5190[/C][C]5164.7672418912[/C][C]25.2327581087959[/C][C]25.232758108796[/C][C]0.112735237885361[/C][/ROW]
[ROW][C]49[/C][C]5220[/C][C]5468.50897402306[/C][C]22.5917247350618[/C][C]-248.508974023056[/C][C]1.33161760034776[/C][/ROW]
[ROW][C]50[/C][C]5250[/C][C]5229.772412506[/C][C]20.2275858021056[/C][C]20.2275874939986[/C][C]-1.12767248020506[/C][/ROW]
[ROW][C]51[/C][C]5235[/C][C]5214.79669235189[/C][C]20.2033076481114[/C][C]20.2033076481119[/C][C]-0.160224128467281[/C][/ROW]
[ROW][C]52[/C][C]5255[/C][C]5234.79683237094[/C][C]20.2031676290636[/C][C]20.2031676290632[/C][C]-0.000924695784237724[/C][/ROW]
[ROW][C]53[/C][C]5335[/C][C]5314.75567832063[/C][C]20.2443216793736[/C][C]20.244321679374[/C][C]0.271971529017886[/C][/ROW]
[ROW][C]54[/C][C]5360[/C][C]5339.7524075651[/C][C]20.2475924349015[/C][C]20.2475924349015[/C][C]0.0216300656642566[/C][/ROW]
[ROW][C]55[/C][C]5345[/C][C]5324.77663271564[/C][C]20.2233672843575[/C][C]20.2233672843574[/C][C]-0.16031528370636[/C][/ROW]
[ROW][C]56[/C][C]5325[/C][C]5304.80425865597[/C][C]20.1957413440301[/C][C]20.1957413440299[/C][C]-0.182946454363322[/C][/ROW]
[ROW][C]57[/C][C]5320[/C][C]5299.82155154718[/C][C]20.1784484528215[/C][C]20.1784484528214[/C][C]-0.114596885897995[/C][/ROW]
[ROW][C]58[/C][C]5350[/C][C]5329.81481522894[/C][C]20.1851847710615[/C][C]20.1851847710619[/C][C]0.0446710208571182[/C][/ROW]
[ROW][C]59[/C][C]5430[/C][C]5409.77381809532[/C][C]20.2261819046791[/C][C]20.2261819046791[/C][C]0.272053704987365[/C][/ROW]
[ROW][C]60[/C][C]5440[/C][C]5419.78082232982[/C][C]20.2191776701796[/C][C]20.2191776701796[/C][C]-0.0465114088853671[/C][/ROW]
[ROW][C]61[/C][C]5490[/C][C]5691.56229991391[/C][C]18.323845264383[/C][C]-201.562299913914[/C][C]1.1910495429904[/C][/ROW]
[ROW][C]62[/C][C]5505[/C][C]5488.33428427637[/C][C]16.6657139318128[/C][C]16.6657157236258[/C][C]-0.965284442467894[/C][/ROW]
[ROW][C]63[/C][C]5545[/C][C]5528.32095979651[/C][C]16.6790402034931[/C][C]16.6790402034935[/C][C]0.1061366229139[/C][/ROW]
[ROW][C]64[/C][C]5530[/C][C]5513.33904144151[/C][C]16.660958558492[/C][C]16.6609585584916[/C][C]-0.144092972455104[/C][/ROW]
[ROW][C]65[/C][C]5480[/C][C]5463.37706823125[/C][C]16.622931768746[/C][C]16.6229317687464[/C][C]-0.303209225037929[/C][/ROW]
[ROW][C]66[/C][C]5535[/C][C]5518.35518848755[/C][C]16.6448115124494[/C][C]16.6448115124495[/C][C]0.174559191205163[/C][/ROW]
[ROW][C]67[/C][C]5560[/C][C]5543.35042769611[/C][C]16.6495723038862[/C][C]16.6495723038862[/C][C]0.0380038197029167[/C][/ROW]
[ROW][C]68[/C][C]5575[/C][C]5558.35136708814[/C][C]16.6486329118592[/C][C]16.648632911859[/C][C]-0.00750312918662411[/C][/ROW]
[ROW][C]69[/C][C]5595[/C][C]5578.34945965087[/C][C]16.6505403491285[/C][C]16.6505403491284[/C][C]0.0152437963660667[/C][/ROW]
[ROW][C]70[/C][C]5595[/C][C]5578.35893094855[/C][C]16.6410690514538[/C][C]16.6410690514542[/C][C]-0.075735507600858[/C][/ROW]
[ROW][C]71[/C][C]5500[/C][C]5483.42239943945[/C][C]16.5776005605473[/C][C]16.5776005605474[/C][C]-0.507803003646167[/C][/ROW]
[ROW][C]72[/C][C]5450[/C][C]5433.46022762377[/C][C]16.5397723762254[/C][C]16.5397723762254[/C][C]-0.302830412596684[/C][/ROW]
[ROW][C]73[/C][C]5260[/C][C]5442.45613842159[/C][C]16.5869215115185[/C][C]-182.456138421594[/C][C]-0.0354835071124269[/C][/ROW]
[ROW][C]74[/C][C]5240[/C][C]5224.90731580331[/C][C]15.0926826321384[/C][C]15.092684196691[/C][C]-1.02693459121032[/C][/ROW]
[ROW][C]75[/C][C]5245[/C][C]5229.91223822992[/C][C]15.0877617700813[/C][C]15.0877617700817[/C][C]-0.0459087441320245[/C][/ROW]
[ROW][C]76[/C][C]5205[/C][C]5189.9390841196[/C][C]15.0609158804024[/C][C]15.060915880402[/C][C]-0.250578636883349[/C][/ROW]
[ROW][C]77[/C][C]5180[/C][C]5164.95859747502[/C][C]15.0414025249813[/C][C]15.0414025249818[/C][C]-0.182225789595854[/C][/ROW]
[ROW][C]78[/C][C]5155[/C][C]5139.97809183009[/C][C]15.0219081699076[/C][C]15.0219081699077[/C][C]-0.182137050461132[/C][/ROW]
[ROW][C]79[/C][C]5160[/C][C]5144.98296867139[/C][C]15.0170313286086[/C][C]15.0170313286086[/C][C]-0.045586840002698[/C][/ROW]
[ROW][C]80[/C][C]5150[/C][C]5134.99513648903[/C][C]15.0048635109656[/C][C]15.0048635109654[/C][C]-0.113795448951676[/C][/ROW]
[ROW][C]81[/C][C]5070[/C][C]5055.04132261939[/C][C]14.9586773806126[/C][C]14.9586773806125[/C][C]-0.432150491103095[/C][/ROW]
[ROW][C]82[/C][C]4855[/C][C]4840.15306153747[/C][C]14.8469384625324[/C][C]14.8469384625327[/C][C]-1.04601768198085[/C][/ROW]
[ROW][C]83[/C][C]4825[/C][C]4810.17484247073[/C][C]14.8251575292701[/C][C]14.8251575292701[/C][C]-0.203996199172994[/C][/ROW]
[ROW][C]84[/C][C]5015[/C][C]5000.08980613351[/C][C]14.910193866488[/C][C]14.9101938664881[/C][C]0.796821533295128[/C][/ROW]
[ROW][C]85[/C][C]5070[/C][C]5221.86152983427[/C][C]13.8055934502812[/C][C]-151.861529834268[/C][C]0.968431077958748[/C][/ROW]
[ROW][C]86[/C][C]5075[/C][C]5062.15957304516[/C][C]12.8404252467263[/C][C]12.8404269548383[/C][C]-0.76474420219183[/C][/ROW]
[ROW][C]87[/C][C]5060[/C][C]5047.17141671231[/C][C]12.8285832876939[/C][C]12.8285832876942[/C][C]-0.126642133124175[/C][/ROW]
[ROW][C]88[/C][C]5070[/C][C]5057.17261934135[/C][C]12.827380658647[/C][C]12.8273806586466[/C][C]-0.0128668248790726[/C][/ROW]
[ROW][C]89[/C][C]5135[/C][C]5122.15044653065[/C][C]12.8495534693528[/C][C]12.8495534693532[/C][C]0.237325879758795[/C][/ROW]
[ROW][C]90[/C][C]5135[/C][C]5122.15590513494[/C][C]12.8440948650556[/C][C]12.8440948650557[/C][C]-0.0584508099366572[/C][/ROW]
[ROW][C]91[/C][C]5110[/C][C]5097.1719748156[/C][C]12.8280251843997[/C][C]12.8280251843997[/C][C]-0.172147475867647[/C][/ROW]
[ROW][C]92[/C][C]5015[/C][C]5002.21774223239[/C][C]12.7822577676105[/C][C]12.7822577676103[/C][C]-0.490494596394953[/C][/ROW]
[ROW][C]93[/C][C]5125[/C][C]5112.17649583861[/C][C]12.8235041613894[/C][C]12.8235041613893[/C][C]0.442229943954877[/C][/ROW]
[ROW][C]94[/C][C]5185[/C][C]5172.15648884129[/C][C]12.8435111587061[/C][C]12.8435111587065[/C][C]0.21459931602319[/C][/ROW]
[ROW][C]95[/C][C]5190[/C][C]5177.15981377211[/C][C]12.8401862278897[/C][C]12.8401862278898[/C][C]-0.0356790442215177[/C][/ROW]
[ROW][C]96[/C][C]5230[/C][C]5217.14830537551[/C][C]12.8516946244904[/C][C]12.8516946244904[/C][C]0.123546236383553[/C][/ROW]
[ROW][C]97[/C][C]5350[/C][C]5478.62152222301[/C][C]11.6928654765987[/C][C]-128.621522223008[/C][C]1.15982072517389[/C][/ROW]
[ROW][C]98[/C][C]5415[/C][C]5403.73396066144[/C][C]11.266037445414[/C][C]11.2660393385644[/C][C]-0.383036955136244[/C][/ROW]
[ROW][C]99[/C][C]5465[/C][C]5453.71935146475[/C][C]11.2806485352501[/C][C]11.2806485352504[/C][C]0.176199546067388[/C][/ROW]
[ROW][C]100[/C][C]5560[/C][C]5548.68778307891[/C][C]11.3122169210867[/C][C]11.3122169210863[/C][C]0.380836638018247[/C][/ROW]
[ROW][C]101[/C][C]5585[/C][C]5573.68262371806[/C][C]11.3173762819421[/C][C]11.3173762819425[/C][C]0.0622652895547348[/C][/ROW]
[ROW][C]102[/C][C]5615[/C][C]5603.67558429626[/C][C]11.32441570374[/C][C]11.3244157037401[/C][C]0.0849866666777538[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301442&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301442&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Structural Time Series Model -- Interpolation
tObservedLevelSlopeSeasonalStand. Residuals
116001600000
237953680.86000592281114.139993494525114.1399940771885.68462496809783
338053691.27490689487113.725093105131113.725093105132-0.47287401528481
438603746.50794296858113.492057031424113.492057031424-0.266658276375304
538753761.89723961997113.102760380027113.102760380027-0.447235203322712
638853772.30315598207112.696844017934112.696844017934-0.468175257870226
739303817.56863379044112.431366209562112.431366209562-0.307404311194025
839603847.89063130103112.109368698966112.109368698966-0.374315118622374
939953883.19066774244111.809332257563111.809332257563-0.350150968374494
1038753764.08915348856110.91084651144110.910846511441-1.05264610513061
1140653953.78378997438111.216210025619111.2162100256190.359146518967683
1241654053.82692924191111.173070758092111.173070758092-0.0509335684442583
1342005023.4120423458174.8556400101562-823.4120423458054.72787923740887
1442404187.1999999504752.799998441031752.8000000495352-3.5335802103851
1543154262.1597111649852.84028883502252.84028883502240.100914446907318
1643554302.1829725577552.817027442255452.817027442255-0.0583681350033457
1744004347.1971082312152.802891768791952.8028917687923-0.0355339406800895
1844404387.220218144152.779781855901852.7797818559017-0.0581983297147051
1945254472.1621636971252.83783630288352.83783630288290.146464249463976
2045254472.2571957765952.742804223406252.7428042234061-0.240186660589239
2145304477.3429099671252.657090032884252.6570900328841-0.217026359577804
2245654512.3745534975752.625446502427252.6254465024274-0.0802646641456036
2345854532.4329174446852.567082555320752.5670825553207-0.148307263904199
2446854632.3482158065752.651784193433752.65178419343370.21561873370334
2547405206.4904449032442.4082220712466-466.4904449032392.6164995246026
2647804745.4117637915134.588234507497734.5882362084898-2.08228659412732
2748504815.3701535332734.62984646672634.62984646672640.161022678195184
2849054870.3462449019534.653755098051334.6537550980510.0926262428237741
2949254890.3634239820834.636576017917934.6365760179183-0.0666329397416994
3049504915.3747080291434.625291970861834.6252919708617-0.043819063855717
3149704935.3918136340834.608186365919734.6081863659196-0.0665036046983978
3249854950.4147203942534.58527960574834.5852796057478-0.0891617049040275
3350405005.3908992498534.609100750145834.60910075014570.0928292134513924
3451055070.3554786207434.644521379256734.64452137925690.138192693290049
3550154980.5005828390734.499417160933734.4994171609338-0.566780655971452
3650455010.5058147195834.494185280423434.4941852804235-0.0204596584734735
3750255360.1019313845930.4638117678823-335.1019313845921.53119712872192
3849604934.7478250574425.252173414715625.2521749425588-1.93735459099886
3949254899.8001742789125.199825721087625.1998257210881-0.274017769758578
4049554929.7960074608325.203992539173325.20399253917290.0218304752780724
4149454919.826539979225.17346002080325.1734600208034-0.160102557471697
4249354909.8570195815925.142980418410925.1429804184108-0.159963760252132
4349254899.8874464054525.112553594552725.1125535945527-0.159825203478251
4449954969.8486164332525.151383566747725.15138356674750.204141705082094
4549704944.8919624878725.108037512134425.1080375121343-0.22808142596682
4650054979.8834202056525.116579794351425.11657979435170.0449872683880303
4751405114.7886113844725.211388615534225.21138861553430.499734685150787
4851905164.767241891225.232758108795925.2327581087960.112735237885361
4952205468.5089740230622.5917247350618-248.5089740230561.33161760034776
5052505229.77241250620.227585802105620.2275874939986-1.12767248020506
5152355214.7966923518920.203307648111420.2033076481119-0.160224128467281
5252555234.7968323709420.203167629063620.2031676290632-0.000924695784237724
5353355314.7556783206320.244321679373620.2443216793740.271971529017886
5453605339.752407565120.247592434901520.24759243490150.0216300656642566
5553455324.7766327156420.223367284357520.2233672843574-0.16031528370636
5653255304.8042586559720.195741344030120.1957413440299-0.182946454363322
5753205299.8215515471820.178448452821520.1784484528214-0.114596885897995
5853505329.8148152289420.185184771061520.18518477106190.0446710208571182
5954305409.7738180953220.226181904679120.22618190467910.272053704987365
6054405419.7808223298220.219177670179620.2191776701796-0.0465114088853671
6154905691.5622999139118.323845264383-201.5622999139141.1910495429904
6255055488.3342842763716.665713931812816.6657157236258-0.965284442467894
6355455528.3209597965116.679040203493116.67904020349350.1061366229139
6455305513.3390414415116.66095855849216.6609585584916-0.144092972455104
6554805463.3770682312516.62293176874616.6229317687464-0.303209225037929
6655355518.3551884875516.644811512449416.64481151244950.174559191205163
6755605543.3504276961116.649572303886216.64957230388620.0380038197029167
6855755558.3513670881416.648632911859216.648632911859-0.00750312918662411
6955955578.3494596508716.650540349128516.65054034912840.0152437963660667
7055955578.3589309485516.641069051453816.6410690514542-0.075735507600858
7155005483.4223994394516.577600560547316.5776005605474-0.507803003646167
7254505433.4602276237716.539772376225416.5397723762254-0.302830412596684
7352605442.4561384215916.5869215115185-182.456138421594-0.0354835071124269
7452405224.9073158033115.092682632138415.092684196691-1.02693459121032
7552455229.9122382299215.087761770081315.0877617700817-0.0459087441320245
7652055189.939084119615.060915880402415.060915880402-0.250578636883349
7751805164.9585974750215.041402524981315.0414025249818-0.182225789595854
7851555139.9780918300915.021908169907615.0219081699077-0.182137050461132
7951605144.9829686713915.017031328608615.0170313286086-0.045586840002698
8051505134.9951364890315.004863510965615.0048635109654-0.113795448951676
8150705055.0413226193914.958677380612614.9586773806125-0.432150491103095
8248554840.1530615374714.846938462532414.8469384625327-1.04601768198085
8348254810.1748424707314.825157529270114.8251575292701-0.203996199172994
8450155000.0898061335114.91019386648814.91019386648810.796821533295128
8550705221.8615298342713.8055934502812-151.8615298342680.968431077958748
8650755062.1595730451612.840425246726312.8404269548383-0.76474420219183
8750605047.1714167123112.828583287693912.8285832876942-0.126642133124175
8850705057.1726193413512.82738065864712.8273806586466-0.0128668248790726
8951355122.1504465306512.849553469352812.84955346935320.237325879758795
9051355122.1559051349412.844094865055612.8440948650557-0.0584508099366572
9151105097.171974815612.828025184399712.8280251843997-0.172147475867647
9250155002.2177422323912.782257767610512.7822577676103-0.490494596394953
9351255112.1764958386112.823504161389412.82350416138930.442229943954877
9451855172.1564888412912.843511158706112.84351115870650.21459931602319
9551905177.1598137721112.840186227889712.8401862278898-0.0356790442215177
9652305217.1483053755112.851694624490412.85169462449040.123546236383553
9753505478.6215222230111.6928654765987-128.6215222230081.15982072517389
9854155403.7339606614411.26603744541411.2660393385644-0.383036955136244
9954655453.7193514647511.280648535250111.28064853525040.176199546067388
10055605548.6877830789111.312216921086711.31221692108630.380836638018247
10155855573.6826237180611.317376281942111.31737628194250.0622652895547348
10256155603.6755842962611.3244157037411.32441570374010.0849866666777538







Structural Time Series Model -- Extrapolation
tObservedLevelSeasonal
15661.356191675075686.15678652596-24.8005948508886
25698.893088144985755.21020687896-56.3171187339824
35757.940247084815824.26362723196-66.3233801471542
45796.623058290255893.31704758497-96.6939892947197
55883.691880155275962.37046793797-78.6785877827047
66010.398117727786031.42388829098-21.0257705631995
76078.975415393546100.47730864398-21.5018932504456
86326.499327909266169.53072899699156.968598912278
96345.369102509816238.58414934999106.784953159822
106378.361543832416307.6375697029970.7239741294192
116408.809412820756376.69099005632.1184227647479
126444.489796065836445.744410409-1.25461434317284

\begin{tabular}{lllllllll}
\hline
Structural Time Series Model -- Extrapolation \tabularnewline
t & Observed & Level & Seasonal \tabularnewline
1 & 5661.35619167507 & 5686.15678652596 & -24.8005948508886 \tabularnewline
2 & 5698.89308814498 & 5755.21020687896 & -56.3171187339824 \tabularnewline
3 & 5757.94024708481 & 5824.26362723196 & -66.3233801471542 \tabularnewline
4 & 5796.62305829025 & 5893.31704758497 & -96.6939892947197 \tabularnewline
5 & 5883.69188015527 & 5962.37046793797 & -78.6785877827047 \tabularnewline
6 & 6010.39811772778 & 6031.42388829098 & -21.0257705631995 \tabularnewline
7 & 6078.97541539354 & 6100.47730864398 & -21.5018932504456 \tabularnewline
8 & 6326.49932790926 & 6169.53072899699 & 156.968598912278 \tabularnewline
9 & 6345.36910250981 & 6238.58414934999 & 106.784953159822 \tabularnewline
10 & 6378.36154383241 & 6307.63756970299 & 70.7239741294192 \tabularnewline
11 & 6408.80941282075 & 6376.690990056 & 32.1184227647479 \tabularnewline
12 & 6444.48979606583 & 6445.744410409 & -1.25461434317284 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301442&T=2

[TABLE]
[ROW][C]Structural Time Series Model -- Extrapolation[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Level[/C][C]Seasonal[/C][/ROW]
[ROW][C]1[/C][C]5661.35619167507[/C][C]5686.15678652596[/C][C]-24.8005948508886[/C][/ROW]
[ROW][C]2[/C][C]5698.89308814498[/C][C]5755.21020687896[/C][C]-56.3171187339824[/C][/ROW]
[ROW][C]3[/C][C]5757.94024708481[/C][C]5824.26362723196[/C][C]-66.3233801471542[/C][/ROW]
[ROW][C]4[/C][C]5796.62305829025[/C][C]5893.31704758497[/C][C]-96.6939892947197[/C][/ROW]
[ROW][C]5[/C][C]5883.69188015527[/C][C]5962.37046793797[/C][C]-78.6785877827047[/C][/ROW]
[ROW][C]6[/C][C]6010.39811772778[/C][C]6031.42388829098[/C][C]-21.0257705631995[/C][/ROW]
[ROW][C]7[/C][C]6078.97541539354[/C][C]6100.47730864398[/C][C]-21.5018932504456[/C][/ROW]
[ROW][C]8[/C][C]6326.49932790926[/C][C]6169.53072899699[/C][C]156.968598912278[/C][/ROW]
[ROW][C]9[/C][C]6345.36910250981[/C][C]6238.58414934999[/C][C]106.784953159822[/C][/ROW]
[ROW][C]10[/C][C]6378.36154383241[/C][C]6307.63756970299[/C][C]70.7239741294192[/C][/ROW]
[ROW][C]11[/C][C]6408.80941282075[/C][C]6376.690990056[/C][C]32.1184227647479[/C][/ROW]
[ROW][C]12[/C][C]6444.48979606583[/C][C]6445.744410409[/C][C]-1.25461434317284[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301442&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301442&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Structural Time Series Model -- Extrapolation
tObservedLevelSeasonal
15661.356191675075686.15678652596-24.8005948508886
25698.893088144985755.21020687896-56.3171187339824
35757.940247084815824.26362723196-66.3233801471542
45796.623058290255893.31704758497-96.6939892947197
55883.691880155275962.37046793797-78.6785877827047
66010.398117727786031.42388829098-21.0257705631995
76078.975415393546100.47730864398-21.5018932504456
86326.499327909266169.53072899699156.968598912278
96345.369102509816238.58414934999106.784953159822
106378.361543832416307.6375697029970.7239741294192
116408.809412820756376.69099005632.1184227647479
126444.489796065836445.744410409-1.25461434317284



Parameters (Session):
par1 = 12 ; par2 = 12 ; par3 = BFGS ;
Parameters (R input):
par1 = 12 ; par2 = 12 ; par3 = BFGS ;
R code (references can be found in the software module):
require('stsm')
require('stsm.class')
require('KFKSDS')
par1 <- as.numeric(par1)
par2 <- as.numeric(par2)
nx <- length(x)
x <- ts(x,frequency=par1)
m <- StructTS(x,type='BSM')
print(m$coef)
print(m$fitted)
print(m$resid)
mylevel <- as.numeric(m$fitted[,'level'])
myslope <- as.numeric(m$fitted[,'slope'])
myseas <- as.numeric(m$fitted[,'sea'])
myresid <- as.numeric(m$resid)
myfit <- mylevel+myseas
mm <- stsm.model(model = 'BSM', y = x, transPars = 'StructTS')
fit2 <- stsmFit(mm, stsm.method = 'maxlik.td.optim', method = par3, KF.args = list(P0cov = TRUE))
(fit2.comps <- tsSmooth(fit2, P0cov = FALSE)$states)
m2 <- set.pars(mm, pmax(fit2$par, .Machine$double.eps))
(ss <- char2numeric(m2))
(pred <- predict(ss, x, n.ahead = par2))
mylagmax <- nx/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(mylevel,na.action=na.pass,lag.max = mylagmax,main='Level')
acf(myseas,na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(myresid,na.action=na.pass,lag.max = mylagmax,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(mylevel,main='Level')
spectrum(myseas,main='Seasonal')
spectrum(myresid,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(mylevel,main='Level')
cpgram(myseas,main='Seasonal')
cpgram(myresid,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test1.png')
plot(as.numeric(m$resid),main='Standardized Residuals',ylab='Residuals',xlab='time',type='b')
grid()
dev.off()
bitmap(file='test5.png')
op <- par(mfrow = c(2,2))
hist(m$resid,main='Residual Histogram')
plot(density(m$resid),main='Residual Kernel Density')
qqnorm(m$resid,main='Residual Normal QQ Plot')
qqline(m$resid)
plot(m$resid^2, myfit^2,main='Sq.Resid vs. Sq.Fit',xlab='Squared residuals',ylab='Squared Fit')
par(op)
dev.off()
bitmap(file='test6.png')
par(mfrow = c(3,1), mar = c(3,3,3,3))
plot(cbind(x, pred$pred), type = 'n', plot.type = 'single', ylab = '')
lines(x)
polygon(c(time(pred$pred), rev(time(pred$pred))), c(pred$pred + 2 * pred$se, rev(pred$pred)), col = 'gray85', border = NA)
polygon(c(time(pred$pred), rev(time(pred$pred))), c(pred$pred - 2 * pred$se, rev(pred$pred)), col = ' gray85', border = NA)
lines(pred$pred, col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the observed series', side = 3, adj = 0)
plot(cbind(x, pred$a[,1]), type = 'n', plot.type = 'single', ylab = '')
lines(x)
polygon(c(time(pred$a[,1]), rev(time(pred$a[,1]))), c(pred$a[,1] + 2 * sqrt(pred$P[,1]), rev(pred$a[,1])), col = 'gray85', border = NA)
polygon(c(time(pred$a[,1]), rev(time(pred$a[,1]))), c(pred$a[,1] - 2 * sqrt(pred$P[,1]), rev(pred$a[,1])), col = ' gray85', border = NA)
lines(pred$a[,1], col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the level component', side = 3, adj = 0)
plot(cbind(fit2.comps[,3], pred$a[,3]), type = 'n', plot.type = 'single', ylab = '')
lines(fit2.comps[,3])
polygon(c(time(pred$a[,3]), rev(time(pred$a[,3]))), c(pred$a[,3] + 2 * sqrt(pred$P[,3]), rev(pred$a[,3])), col = 'gray85', border = NA)
polygon(c(time(pred$a[,3]), rev(time(pred$a[,3]))), c(pred$a[,3] - 2 * sqrt(pred$P[,3]), rev(pred$a[,3])), col = ' gray85', border = NA)
lines(pred$a[,3], col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the seasonal component', side = 3, adj = 0)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Structural Time Series Model -- Interpolation',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Level',header=TRUE)
a<-table.element(a,'Slope',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Stand. Residuals',header=TRUE)
a<-table.row.end(a)
for (i in 1:nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,mylevel[i])
a<-table.element(a,myslope[i])
a<-table.element(a,myseas[i])
a<-table.element(a,myresid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Structural Time Series Model -- Extrapolation',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Level',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.row.end(a)
for (i in 1:par2) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,pred$pred[i])
a<-table.element(a,pred$a[i,1])
a<-table.element(a,pred$a[i,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')