Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_autocorrelation.wasp
Title produced by software(Partial) Autocorrelation Function
Date of computationMon, 19 Dec 2016 18:35:32 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/19/t1482168951ma132mrrpwykl4g.htm/, Retrieved Fri, 01 Nov 2024 03:27:10 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=301432, Retrieved Fri, 01 Nov 2024 03:27:10 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact113
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [(Partial) Autocorrelation Function] [N2141 Auto d=1 D=1] [2016-12-19 17:35:32] [f8e2c3c70b883e93ecb746821352be11] [Current]
Feedback Forum

Post a new message
Dataseries X:
4976
4994
5478
4712
4388
4210
3844
3850
3770
3584
3490
3060
3324
3406
4346
4076
4310
4148
3958
4296
4370
4476
4406
4076
4430
4534
5200
4960
5188
4958
4554
4310
3890
4214
3720
3606
4360
4262
4788
4780
4836
4492
4514
4770
4664
4906
4684
4320
4588
4372
4674
4794
4558
4260
3994
3394
3334
3412
3198
3196
3536
3272
3562
3900
3744
3886
3708
3700
3878
4152
3830
3864
3880
4230
4394
4076
4224
4026
3950
4086
4166
4270
4162
4030
4128
3958
4216
4096
4168
3948
3394
3660
3808
3684
3610
3598
3918
3764
3872
3710
4056
4010
3656
3884
3886
3880
3642
3272
3602
3198
3802
3402
3344
3508
3426
3394
3448
3554
3522
3472
3692
3690
3802
3814
3408
3650




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301432&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=301432&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301432&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.0206670.21970.413254
20.1290771.37210.086374
30.1387051.47450.07157
4-0.004117-0.04380.482585
50.0626620.66610.253351
60.0336050.35720.360795
7-0.011163-0.11870.452878
80.0439120.46680.320775
9-0.019156-0.20360.419503
10-0.147471-1.56760.059881
11-0.188607-2.00490.023681
12-0.414313-4.40421.2e-05
13-0.053948-0.57350.28373
14-0.045498-0.48360.314786
15-0.051289-0.54520.293342
16-0.11756-1.24970.106999
17-0.022727-0.24160.404768
18-0.013184-0.14020.444395
19-0.046531-0.49460.310911
200.0174420.18540.426621
210.0688120.73150.233

\begin{tabular}{lllllllll}
\hline
Autocorrelation Function \tabularnewline
Time lag k & ACF(k) & T-STAT & P-value \tabularnewline
1 & 0.020667 & 0.2197 & 0.413254 \tabularnewline
2 & 0.129077 & 1.3721 & 0.086374 \tabularnewline
3 & 0.138705 & 1.4745 & 0.07157 \tabularnewline
4 & -0.004117 & -0.0438 & 0.482585 \tabularnewline
5 & 0.062662 & 0.6661 & 0.253351 \tabularnewline
6 & 0.033605 & 0.3572 & 0.360795 \tabularnewline
7 & -0.011163 & -0.1187 & 0.452878 \tabularnewline
8 & 0.043912 & 0.4668 & 0.320775 \tabularnewline
9 & -0.019156 & -0.2036 & 0.419503 \tabularnewline
10 & -0.147471 & -1.5676 & 0.059881 \tabularnewline
11 & -0.188607 & -2.0049 & 0.023681 \tabularnewline
12 & -0.414313 & -4.4042 & 1.2e-05 \tabularnewline
13 & -0.053948 & -0.5735 & 0.28373 \tabularnewline
14 & -0.045498 & -0.4836 & 0.314786 \tabularnewline
15 & -0.051289 & -0.5452 & 0.293342 \tabularnewline
16 & -0.11756 & -1.2497 & 0.106999 \tabularnewline
17 & -0.022727 & -0.2416 & 0.404768 \tabularnewline
18 & -0.013184 & -0.1402 & 0.444395 \tabularnewline
19 & -0.046531 & -0.4946 & 0.310911 \tabularnewline
20 & 0.017442 & 0.1854 & 0.426621 \tabularnewline
21 & 0.068812 & 0.7315 & 0.233 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301432&T=1

[TABLE]
[ROW][C]Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]ACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.020667[/C][C]0.2197[/C][C]0.413254[/C][/ROW]
[ROW][C]2[/C][C]0.129077[/C][C]1.3721[/C][C]0.086374[/C][/ROW]
[ROW][C]3[/C][C]0.138705[/C][C]1.4745[/C][C]0.07157[/C][/ROW]
[ROW][C]4[/C][C]-0.004117[/C][C]-0.0438[/C][C]0.482585[/C][/ROW]
[ROW][C]5[/C][C]0.062662[/C][C]0.6661[/C][C]0.253351[/C][/ROW]
[ROW][C]6[/C][C]0.033605[/C][C]0.3572[/C][C]0.360795[/C][/ROW]
[ROW][C]7[/C][C]-0.011163[/C][C]-0.1187[/C][C]0.452878[/C][/ROW]
[ROW][C]8[/C][C]0.043912[/C][C]0.4668[/C][C]0.320775[/C][/ROW]
[ROW][C]9[/C][C]-0.019156[/C][C]-0.2036[/C][C]0.419503[/C][/ROW]
[ROW][C]10[/C][C]-0.147471[/C][C]-1.5676[/C][C]0.059881[/C][/ROW]
[ROW][C]11[/C][C]-0.188607[/C][C]-2.0049[/C][C]0.023681[/C][/ROW]
[ROW][C]12[/C][C]-0.414313[/C][C]-4.4042[/C][C]1.2e-05[/C][/ROW]
[ROW][C]13[/C][C]-0.053948[/C][C]-0.5735[/C][C]0.28373[/C][/ROW]
[ROW][C]14[/C][C]-0.045498[/C][C]-0.4836[/C][C]0.314786[/C][/ROW]
[ROW][C]15[/C][C]-0.051289[/C][C]-0.5452[/C][C]0.293342[/C][/ROW]
[ROW][C]16[/C][C]-0.11756[/C][C]-1.2497[/C][C]0.106999[/C][/ROW]
[ROW][C]17[/C][C]-0.022727[/C][C]-0.2416[/C][C]0.404768[/C][/ROW]
[ROW][C]18[/C][C]-0.013184[/C][C]-0.1402[/C][C]0.444395[/C][/ROW]
[ROW][C]19[/C][C]-0.046531[/C][C]-0.4946[/C][C]0.310911[/C][/ROW]
[ROW][C]20[/C][C]0.017442[/C][C]0.1854[/C][C]0.426621[/C][/ROW]
[ROW][C]21[/C][C]0.068812[/C][C]0.7315[/C][C]0.233[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301432&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301432&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.0206670.21970.413254
20.1290771.37210.086374
30.1387051.47450.07157
4-0.004117-0.04380.482585
50.0626620.66610.253351
60.0336050.35720.360795
7-0.011163-0.11870.452878
80.0439120.46680.320775
9-0.019156-0.20360.419503
10-0.147471-1.56760.059881
11-0.188607-2.00490.023681
12-0.414313-4.40421.2e-05
13-0.053948-0.57350.28373
14-0.045498-0.48360.314786
15-0.051289-0.54520.293342
16-0.11756-1.24970.106999
17-0.022727-0.24160.404768
18-0.013184-0.14020.444395
19-0.046531-0.49460.310911
200.0174420.18540.426621
210.0688120.73150.233







Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.0206670.21970.413254
20.1287051.36820.08699
30.1360311.4460.075468
4-0.024143-0.25660.398959
50.0287070.30520.380402
60.0187060.19880.421369
7-0.019767-0.21010.416973
80.0261510.2780.390764
9-0.021642-0.23010.40923
10-0.158964-1.68980.046911
11-0.206968-2.20010.014918
12-0.417182-4.43471.1e-05
13-0.032979-0.35060.363281
140.1006491.06990.143469
150.1165311.23870.109005
16-0.105841-1.12510.131464
17-0.011602-0.12330.451032
180.0562180.59760.275649
190.0313930.33370.369606
200.0641740.68220.248262
210.0676790.71940.236678

\begin{tabular}{lllllllll}
\hline
Partial Autocorrelation Function \tabularnewline
Time lag k & PACF(k) & T-STAT & P-value \tabularnewline
1 & 0.020667 & 0.2197 & 0.413254 \tabularnewline
2 & 0.128705 & 1.3682 & 0.08699 \tabularnewline
3 & 0.136031 & 1.446 & 0.075468 \tabularnewline
4 & -0.024143 & -0.2566 & 0.398959 \tabularnewline
5 & 0.028707 & 0.3052 & 0.380402 \tabularnewline
6 & 0.018706 & 0.1988 & 0.421369 \tabularnewline
7 & -0.019767 & -0.2101 & 0.416973 \tabularnewline
8 & 0.026151 & 0.278 & 0.390764 \tabularnewline
9 & -0.021642 & -0.2301 & 0.40923 \tabularnewline
10 & -0.158964 & -1.6898 & 0.046911 \tabularnewline
11 & -0.206968 & -2.2001 & 0.014918 \tabularnewline
12 & -0.417182 & -4.4347 & 1.1e-05 \tabularnewline
13 & -0.032979 & -0.3506 & 0.363281 \tabularnewline
14 & 0.100649 & 1.0699 & 0.143469 \tabularnewline
15 & 0.116531 & 1.2387 & 0.109005 \tabularnewline
16 & -0.105841 & -1.1251 & 0.131464 \tabularnewline
17 & -0.011602 & -0.1233 & 0.451032 \tabularnewline
18 & 0.056218 & 0.5976 & 0.275649 \tabularnewline
19 & 0.031393 & 0.3337 & 0.369606 \tabularnewline
20 & 0.064174 & 0.6822 & 0.248262 \tabularnewline
21 & 0.067679 & 0.7194 & 0.236678 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301432&T=2

[TABLE]
[ROW][C]Partial Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]PACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.020667[/C][C]0.2197[/C][C]0.413254[/C][/ROW]
[ROW][C]2[/C][C]0.128705[/C][C]1.3682[/C][C]0.08699[/C][/ROW]
[ROW][C]3[/C][C]0.136031[/C][C]1.446[/C][C]0.075468[/C][/ROW]
[ROW][C]4[/C][C]-0.024143[/C][C]-0.2566[/C][C]0.398959[/C][/ROW]
[ROW][C]5[/C][C]0.028707[/C][C]0.3052[/C][C]0.380402[/C][/ROW]
[ROW][C]6[/C][C]0.018706[/C][C]0.1988[/C][C]0.421369[/C][/ROW]
[ROW][C]7[/C][C]-0.019767[/C][C]-0.2101[/C][C]0.416973[/C][/ROW]
[ROW][C]8[/C][C]0.026151[/C][C]0.278[/C][C]0.390764[/C][/ROW]
[ROW][C]9[/C][C]-0.021642[/C][C]-0.2301[/C][C]0.40923[/C][/ROW]
[ROW][C]10[/C][C]-0.158964[/C][C]-1.6898[/C][C]0.046911[/C][/ROW]
[ROW][C]11[/C][C]-0.206968[/C][C]-2.2001[/C][C]0.014918[/C][/ROW]
[ROW][C]12[/C][C]-0.417182[/C][C]-4.4347[/C][C]1.1e-05[/C][/ROW]
[ROW][C]13[/C][C]-0.032979[/C][C]-0.3506[/C][C]0.363281[/C][/ROW]
[ROW][C]14[/C][C]0.100649[/C][C]1.0699[/C][C]0.143469[/C][/ROW]
[ROW][C]15[/C][C]0.116531[/C][C]1.2387[/C][C]0.109005[/C][/ROW]
[ROW][C]16[/C][C]-0.105841[/C][C]-1.1251[/C][C]0.131464[/C][/ROW]
[ROW][C]17[/C][C]-0.011602[/C][C]-0.1233[/C][C]0.451032[/C][/ROW]
[ROW][C]18[/C][C]0.056218[/C][C]0.5976[/C][C]0.275649[/C][/ROW]
[ROW][C]19[/C][C]0.031393[/C][C]0.3337[/C][C]0.369606[/C][/ROW]
[ROW][C]20[/C][C]0.064174[/C][C]0.6822[/C][C]0.248262[/C][/ROW]
[ROW][C]21[/C][C]0.067679[/C][C]0.7194[/C][C]0.236678[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301432&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301432&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.0206670.21970.413254
20.1287051.36820.08699
30.1360311.4460.075468
4-0.024143-0.25660.398959
50.0287070.30520.380402
60.0187060.19880.421369
7-0.019767-0.21010.416973
80.0261510.2780.390764
9-0.021642-0.23010.40923
10-0.158964-1.68980.046911
11-0.206968-2.20010.014918
12-0.417182-4.43471.1e-05
13-0.032979-0.35060.363281
140.1006491.06990.143469
150.1165311.23870.109005
16-0.105841-1.12510.131464
17-0.011602-0.12330.451032
180.0562180.59760.275649
190.0313930.33370.369606
200.0641740.68220.248262
210.0676790.71940.236678



Parameters (Session):
par1 = Default ; par2 = 1 ; par3 = 1 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ;
Parameters (R input):
par1 = Default ; par2 = 1 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ; par8 = ;
R code (references can be found in the software module):
par8 <- ''
par7 <- '0.95'
par6 <- 'White Noise'
par5 <- '12'
par4 <- '0'
par3 <- '1'
par2 <- '1'
par1 <- 'Default'
if (par1 == 'Default') {
par1 = 10*log10(length(x))
} else {
par1 <- as.numeric(par1)
}
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
par5 <- as.numeric(par5)
if (par6 == 'White Noise') par6 <- 'white' else par6 <- 'ma'
par7 <- as.numeric(par7)
if (par8 != '') par8 <- as.numeric(par8)
x <- na.omit(x)
ox <- x
if (par8 == '') {
if (par2 == 0) {
x <- log(x)
} else {
x <- (x ^ par2 - 1) / par2
}
} else {
x <- log(x,base=par8)
}
if (par3 > 0) x <- diff(x,lag=1,difference=par3)
if (par4 > 0) x <- diff(x,lag=par5,difference=par4)
bitmap(file='picts.png')
op <- par(mfrow=c(2,1))
plot(ox,type='l',main='Original Time Series',xlab='time',ylab='value')
if (par8=='') {
mytitle <- paste('Working Time Series (lambda=',par2,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(lambda=',par2,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
} else {
mytitle <- paste('Working Time Series (base=',par8,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(base=',par8,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
}
plot(x,type='l', main=mytitle,xlab='time',ylab='value')
par(op)
dev.off()
bitmap(file='pic1.png')
racf <- acf(x, par1, main='Autocorrelation', xlab='time lag', ylab='ACF', ci.type=par6, ci=par7, sub=mysub)
dev.off()
bitmap(file='pic2.png')
rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF',sub=mysub)
dev.off()
(myacf <- c(racf$acf))
(mypacf <- c(rpacf$acf))
lengthx <- length(x)
sqrtn <- sqrt(lengthx)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'ACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 2:(par1+1)) {
a<-table.row.start(a)
a<-table.element(a,i-1,header=TRUE)
a<-table.element(a,round(myacf[i],6))
mytstat <- myacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Partial Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'PACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:par1) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,round(mypacf[i],6))
mytstat <- mypacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')