Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_decompose.wasp
Title produced by softwareClassical Decomposition
Date of computationMon, 19 Dec 2016 16:14:35 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/19/t1482160995pcz7wcc9elpgekq.htm/, Retrieved Fri, 01 Nov 2024 03:45:20 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=301389, Retrieved Fri, 01 Nov 2024 03:45:20 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact130
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Classical Decomposition] [Classical decompo...] [2016-12-19 15:14:35] [e8b5e2ae4a4517822f644e6c122e1af0] [Current]
Feedback Forum

Post a new message
Dataseries X:
3800
1650
4250
3200
2050
3600
3700
6000
8550
9050
6000
8550
6700
3850
2950
2900
2200
3500
4900
6650
10050
8300
7650
5750
4600
5250
3250
1150
1950
2850
2950
4950
6000
6650
6150
4300
4450
1250
3000
2600
1200
2050
2000
5050
4050
5150
6450
3700
3300
2000
2650
900
1350
4550
1850
3650
3250
5950
4050
3250
2200
1050
2250
2650
650
1100
2900
6450
3100
6050
4200
1800
2100
1550
1050
900
1800
1700
1700
2250
4000
3500
3300
1550
2750
1900
1200
1150
1150
2200
1500
3850
2950
3750
4600
3350
2300
1400
900
1250
1650
1600
1200
2300
2950
5650
4000
3300




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301389&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=301389&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301389&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
13800NANA50.8681NA
21650NANA-1185.59NA
34250NANA-1262.15NA
43200NANA-1684.03NA
52050NANA-1849.65NA
63600NANA-861.892NA
737004238.895154.17-915.278-538.889
860006629.255366.671262.59-629.253
9855070735404.171668.841477
1090507840.195337.52502.691209.81
1160007096.185331.251764.93-1096.18
1285505842.015333.33508.6812707.99
1367005430.035379.1750.86811269.97
1438504270.665456.25-1185.59-420.66
1529504283.685545.83-1262.15-1333.68
1629003893.065577.08-1684.03-993.056
1722003764.935614.58-1849.65-1564.93
1835004704.775566.67-861.892-1204.77
1949004447.225362.5-915.278452.778
2066506595.925333.331262.5954.0799
211005070735404.171668.842977
2283007846.445343.752502.69453.559
2376507025.355260.421764.93624.653
2457505731.65222.92508.68118.4028
2546005165.455114.5850.8681-565.451
2652503776.914962.5-1185.591473.09
2732503460.764722.92-1262.15-210.764
2811502801.394485.42-1684.03-1651.39
2919502504.514354.17-1849.65-554.514
3028503369.364231.25-861.892-519.358
3129503249.314164.58-915.278-299.306
3249505254.253991.671262.59-304.253
3360005483.423814.581668.84516.58
3466506367.273864.582502.69282.726
3561505658.683893.751764.93491.319
3643004337.853829.17508.681-37.8472
3744503807.123756.2550.8681642.882
3812502535.243720.83-1185.59-1285.24
3930002381.63643.75-1262.15618.403
4026001815.973500-1684.03784.028
4112001600.353450-1849.65-400.347
4220502575.613437.5-861.892-525.608
4320002449.313364.58-915.278-449.306
4450504610.53347.921262.59439.497
4540505033.423364.581668.84-983.42
4651505781.863279.172502.69-631.858
4764504979.513214.581764.931470.49
4837003833.683325508.681-133.681
4933003473.783422.9250.8681-173.785
5020002172.743358.33-1185.59-172.743
5126502004.513266.67-1262.15645.486
529001582.643266.67-1684.03-682.639
5313501350.353200-1849.65-0.347222
5445502219.363081.25-861.8922330.64
5518502101.393016.67-915.278-251.389
5636504193.842931.251262.59-543.837
5732504543.8428751668.84-1293.84
5859505433.942931.252502.69516.059
5940504739.9329751764.93-689.931
6032503310.762802.08508.681-60.7639
6122002752.952702.0850.8681-552.951
6210501676.912862.5-1185.59-626.91
6322501710.762972.92-1262.15539.236
6426501286.812970.83-1684.031363.19
656501131.62981.25-1849.65-481.597
6611002065.192927.08-861.892-965.191
6729001947.222862.5-915.278952.778
6864504141.752879.171262.592308.25
6931004518.8428501668.84-1418.84
7060505229.772727.082502.69820.226
7142004467.012702.081764.93-267.014
7218003283.682775508.681-1483.68
7321002800.87275050.8681-700.868
7415501339.412525-1185.59210.59
7510501125.352387.5-1262.15-75.3472
76900634.7222318.75-1684.03265.278
771800325.3472175-1849.651474.65
7817001265.192127.08-861.892434.809
7917001228.472143.75-915.278471.528
80225034482185.421262.59-1198
8140003875.092206.251668.84124.913
8235004725.612222.922502.69-1225.61
8333003971.182206.251764.93-671.181
8415502708.682200508.681-1158.68
8527502263.372212.550.8681486.632
8619001085.242270.83-1185.59814.757
8712001031.62293.75-1262.15168.403
881150576.3892260.42-1684.03573.611
891150475.3472325-1849.65674.653
9022001592.272454.17-861.892607.726
9115001595.142510.42-915.278-95.1389
9238503733.422470.831262.59116.58
9329504106.342437.51668.84-1156.34
9437504931.862429.172502.69-1181.86
9546004219.12454.171764.93380.903
9633502958.682450508.681391.319
9723002463.372412.550.8681-163.368
9814001149.832335.42-1185.59250.174
999001008.682270.83-1262.15-108.681
1001250665.9722350-1684.03584.028
1011650554.5142404.17-1849.651095.49
10216001515.192377.08-861.89284.809
1031200NANA-915.278NA
1042300NANA1262.59NA
1052950NANA1668.84NA
1065650NANA2502.69NA
1074000NANA1764.93NA
1083300NANA508.681NA

\begin{tabular}{lllllllll}
\hline
Classical Decomposition by Moving Averages \tabularnewline
t & Observations & Fit & Trend & Seasonal & Random \tabularnewline
1 & 3800 & NA & NA & 50.8681 & NA \tabularnewline
2 & 1650 & NA & NA & -1185.59 & NA \tabularnewline
3 & 4250 & NA & NA & -1262.15 & NA \tabularnewline
4 & 3200 & NA & NA & -1684.03 & NA \tabularnewline
5 & 2050 & NA & NA & -1849.65 & NA \tabularnewline
6 & 3600 & NA & NA & -861.892 & NA \tabularnewline
7 & 3700 & 4238.89 & 5154.17 & -915.278 & -538.889 \tabularnewline
8 & 6000 & 6629.25 & 5366.67 & 1262.59 & -629.253 \tabularnewline
9 & 8550 & 7073 & 5404.17 & 1668.84 & 1477 \tabularnewline
10 & 9050 & 7840.19 & 5337.5 & 2502.69 & 1209.81 \tabularnewline
11 & 6000 & 7096.18 & 5331.25 & 1764.93 & -1096.18 \tabularnewline
12 & 8550 & 5842.01 & 5333.33 & 508.681 & 2707.99 \tabularnewline
13 & 6700 & 5430.03 & 5379.17 & 50.8681 & 1269.97 \tabularnewline
14 & 3850 & 4270.66 & 5456.25 & -1185.59 & -420.66 \tabularnewline
15 & 2950 & 4283.68 & 5545.83 & -1262.15 & -1333.68 \tabularnewline
16 & 2900 & 3893.06 & 5577.08 & -1684.03 & -993.056 \tabularnewline
17 & 2200 & 3764.93 & 5614.58 & -1849.65 & -1564.93 \tabularnewline
18 & 3500 & 4704.77 & 5566.67 & -861.892 & -1204.77 \tabularnewline
19 & 4900 & 4447.22 & 5362.5 & -915.278 & 452.778 \tabularnewline
20 & 6650 & 6595.92 & 5333.33 & 1262.59 & 54.0799 \tabularnewline
21 & 10050 & 7073 & 5404.17 & 1668.84 & 2977 \tabularnewline
22 & 8300 & 7846.44 & 5343.75 & 2502.69 & 453.559 \tabularnewline
23 & 7650 & 7025.35 & 5260.42 & 1764.93 & 624.653 \tabularnewline
24 & 5750 & 5731.6 & 5222.92 & 508.681 & 18.4028 \tabularnewline
25 & 4600 & 5165.45 & 5114.58 & 50.8681 & -565.451 \tabularnewline
26 & 5250 & 3776.91 & 4962.5 & -1185.59 & 1473.09 \tabularnewline
27 & 3250 & 3460.76 & 4722.92 & -1262.15 & -210.764 \tabularnewline
28 & 1150 & 2801.39 & 4485.42 & -1684.03 & -1651.39 \tabularnewline
29 & 1950 & 2504.51 & 4354.17 & -1849.65 & -554.514 \tabularnewline
30 & 2850 & 3369.36 & 4231.25 & -861.892 & -519.358 \tabularnewline
31 & 2950 & 3249.31 & 4164.58 & -915.278 & -299.306 \tabularnewline
32 & 4950 & 5254.25 & 3991.67 & 1262.59 & -304.253 \tabularnewline
33 & 6000 & 5483.42 & 3814.58 & 1668.84 & 516.58 \tabularnewline
34 & 6650 & 6367.27 & 3864.58 & 2502.69 & 282.726 \tabularnewline
35 & 6150 & 5658.68 & 3893.75 & 1764.93 & 491.319 \tabularnewline
36 & 4300 & 4337.85 & 3829.17 & 508.681 & -37.8472 \tabularnewline
37 & 4450 & 3807.12 & 3756.25 & 50.8681 & 642.882 \tabularnewline
38 & 1250 & 2535.24 & 3720.83 & -1185.59 & -1285.24 \tabularnewline
39 & 3000 & 2381.6 & 3643.75 & -1262.15 & 618.403 \tabularnewline
40 & 2600 & 1815.97 & 3500 & -1684.03 & 784.028 \tabularnewline
41 & 1200 & 1600.35 & 3450 & -1849.65 & -400.347 \tabularnewline
42 & 2050 & 2575.61 & 3437.5 & -861.892 & -525.608 \tabularnewline
43 & 2000 & 2449.31 & 3364.58 & -915.278 & -449.306 \tabularnewline
44 & 5050 & 4610.5 & 3347.92 & 1262.59 & 439.497 \tabularnewline
45 & 4050 & 5033.42 & 3364.58 & 1668.84 & -983.42 \tabularnewline
46 & 5150 & 5781.86 & 3279.17 & 2502.69 & -631.858 \tabularnewline
47 & 6450 & 4979.51 & 3214.58 & 1764.93 & 1470.49 \tabularnewline
48 & 3700 & 3833.68 & 3325 & 508.681 & -133.681 \tabularnewline
49 & 3300 & 3473.78 & 3422.92 & 50.8681 & -173.785 \tabularnewline
50 & 2000 & 2172.74 & 3358.33 & -1185.59 & -172.743 \tabularnewline
51 & 2650 & 2004.51 & 3266.67 & -1262.15 & 645.486 \tabularnewline
52 & 900 & 1582.64 & 3266.67 & -1684.03 & -682.639 \tabularnewline
53 & 1350 & 1350.35 & 3200 & -1849.65 & -0.347222 \tabularnewline
54 & 4550 & 2219.36 & 3081.25 & -861.892 & 2330.64 \tabularnewline
55 & 1850 & 2101.39 & 3016.67 & -915.278 & -251.389 \tabularnewline
56 & 3650 & 4193.84 & 2931.25 & 1262.59 & -543.837 \tabularnewline
57 & 3250 & 4543.84 & 2875 & 1668.84 & -1293.84 \tabularnewline
58 & 5950 & 5433.94 & 2931.25 & 2502.69 & 516.059 \tabularnewline
59 & 4050 & 4739.93 & 2975 & 1764.93 & -689.931 \tabularnewline
60 & 3250 & 3310.76 & 2802.08 & 508.681 & -60.7639 \tabularnewline
61 & 2200 & 2752.95 & 2702.08 & 50.8681 & -552.951 \tabularnewline
62 & 1050 & 1676.91 & 2862.5 & -1185.59 & -626.91 \tabularnewline
63 & 2250 & 1710.76 & 2972.92 & -1262.15 & 539.236 \tabularnewline
64 & 2650 & 1286.81 & 2970.83 & -1684.03 & 1363.19 \tabularnewline
65 & 650 & 1131.6 & 2981.25 & -1849.65 & -481.597 \tabularnewline
66 & 1100 & 2065.19 & 2927.08 & -861.892 & -965.191 \tabularnewline
67 & 2900 & 1947.22 & 2862.5 & -915.278 & 952.778 \tabularnewline
68 & 6450 & 4141.75 & 2879.17 & 1262.59 & 2308.25 \tabularnewline
69 & 3100 & 4518.84 & 2850 & 1668.84 & -1418.84 \tabularnewline
70 & 6050 & 5229.77 & 2727.08 & 2502.69 & 820.226 \tabularnewline
71 & 4200 & 4467.01 & 2702.08 & 1764.93 & -267.014 \tabularnewline
72 & 1800 & 3283.68 & 2775 & 508.681 & -1483.68 \tabularnewline
73 & 2100 & 2800.87 & 2750 & 50.8681 & -700.868 \tabularnewline
74 & 1550 & 1339.41 & 2525 & -1185.59 & 210.59 \tabularnewline
75 & 1050 & 1125.35 & 2387.5 & -1262.15 & -75.3472 \tabularnewline
76 & 900 & 634.722 & 2318.75 & -1684.03 & 265.278 \tabularnewline
77 & 1800 & 325.347 & 2175 & -1849.65 & 1474.65 \tabularnewline
78 & 1700 & 1265.19 & 2127.08 & -861.892 & 434.809 \tabularnewline
79 & 1700 & 1228.47 & 2143.75 & -915.278 & 471.528 \tabularnewline
80 & 2250 & 3448 & 2185.42 & 1262.59 & -1198 \tabularnewline
81 & 4000 & 3875.09 & 2206.25 & 1668.84 & 124.913 \tabularnewline
82 & 3500 & 4725.61 & 2222.92 & 2502.69 & -1225.61 \tabularnewline
83 & 3300 & 3971.18 & 2206.25 & 1764.93 & -671.181 \tabularnewline
84 & 1550 & 2708.68 & 2200 & 508.681 & -1158.68 \tabularnewline
85 & 2750 & 2263.37 & 2212.5 & 50.8681 & 486.632 \tabularnewline
86 & 1900 & 1085.24 & 2270.83 & -1185.59 & 814.757 \tabularnewline
87 & 1200 & 1031.6 & 2293.75 & -1262.15 & 168.403 \tabularnewline
88 & 1150 & 576.389 & 2260.42 & -1684.03 & 573.611 \tabularnewline
89 & 1150 & 475.347 & 2325 & -1849.65 & 674.653 \tabularnewline
90 & 2200 & 1592.27 & 2454.17 & -861.892 & 607.726 \tabularnewline
91 & 1500 & 1595.14 & 2510.42 & -915.278 & -95.1389 \tabularnewline
92 & 3850 & 3733.42 & 2470.83 & 1262.59 & 116.58 \tabularnewline
93 & 2950 & 4106.34 & 2437.5 & 1668.84 & -1156.34 \tabularnewline
94 & 3750 & 4931.86 & 2429.17 & 2502.69 & -1181.86 \tabularnewline
95 & 4600 & 4219.1 & 2454.17 & 1764.93 & 380.903 \tabularnewline
96 & 3350 & 2958.68 & 2450 & 508.681 & 391.319 \tabularnewline
97 & 2300 & 2463.37 & 2412.5 & 50.8681 & -163.368 \tabularnewline
98 & 1400 & 1149.83 & 2335.42 & -1185.59 & 250.174 \tabularnewline
99 & 900 & 1008.68 & 2270.83 & -1262.15 & -108.681 \tabularnewline
100 & 1250 & 665.972 & 2350 & -1684.03 & 584.028 \tabularnewline
101 & 1650 & 554.514 & 2404.17 & -1849.65 & 1095.49 \tabularnewline
102 & 1600 & 1515.19 & 2377.08 & -861.892 & 84.809 \tabularnewline
103 & 1200 & NA & NA & -915.278 & NA \tabularnewline
104 & 2300 & NA & NA & 1262.59 & NA \tabularnewline
105 & 2950 & NA & NA & 1668.84 & NA \tabularnewline
106 & 5650 & NA & NA & 2502.69 & NA \tabularnewline
107 & 4000 & NA & NA & 1764.93 & NA \tabularnewline
108 & 3300 & NA & NA & 508.681 & NA \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301389&T=1

[TABLE]
[ROW][C]Classical Decomposition by Moving Averages[/C][/ROW]
[ROW][C]t[/C][C]Observations[/C][C]Fit[/C][C]Trend[/C][C]Seasonal[/C][C]Random[/C][/ROW]
[ROW][C]1[/C][C]3800[/C][C]NA[/C][C]NA[/C][C]50.8681[/C][C]NA[/C][/ROW]
[ROW][C]2[/C][C]1650[/C][C]NA[/C][C]NA[/C][C]-1185.59[/C][C]NA[/C][/ROW]
[ROW][C]3[/C][C]4250[/C][C]NA[/C][C]NA[/C][C]-1262.15[/C][C]NA[/C][/ROW]
[ROW][C]4[/C][C]3200[/C][C]NA[/C][C]NA[/C][C]-1684.03[/C][C]NA[/C][/ROW]
[ROW][C]5[/C][C]2050[/C][C]NA[/C][C]NA[/C][C]-1849.65[/C][C]NA[/C][/ROW]
[ROW][C]6[/C][C]3600[/C][C]NA[/C][C]NA[/C][C]-861.892[/C][C]NA[/C][/ROW]
[ROW][C]7[/C][C]3700[/C][C]4238.89[/C][C]5154.17[/C][C]-915.278[/C][C]-538.889[/C][/ROW]
[ROW][C]8[/C][C]6000[/C][C]6629.25[/C][C]5366.67[/C][C]1262.59[/C][C]-629.253[/C][/ROW]
[ROW][C]9[/C][C]8550[/C][C]7073[/C][C]5404.17[/C][C]1668.84[/C][C]1477[/C][/ROW]
[ROW][C]10[/C][C]9050[/C][C]7840.19[/C][C]5337.5[/C][C]2502.69[/C][C]1209.81[/C][/ROW]
[ROW][C]11[/C][C]6000[/C][C]7096.18[/C][C]5331.25[/C][C]1764.93[/C][C]-1096.18[/C][/ROW]
[ROW][C]12[/C][C]8550[/C][C]5842.01[/C][C]5333.33[/C][C]508.681[/C][C]2707.99[/C][/ROW]
[ROW][C]13[/C][C]6700[/C][C]5430.03[/C][C]5379.17[/C][C]50.8681[/C][C]1269.97[/C][/ROW]
[ROW][C]14[/C][C]3850[/C][C]4270.66[/C][C]5456.25[/C][C]-1185.59[/C][C]-420.66[/C][/ROW]
[ROW][C]15[/C][C]2950[/C][C]4283.68[/C][C]5545.83[/C][C]-1262.15[/C][C]-1333.68[/C][/ROW]
[ROW][C]16[/C][C]2900[/C][C]3893.06[/C][C]5577.08[/C][C]-1684.03[/C][C]-993.056[/C][/ROW]
[ROW][C]17[/C][C]2200[/C][C]3764.93[/C][C]5614.58[/C][C]-1849.65[/C][C]-1564.93[/C][/ROW]
[ROW][C]18[/C][C]3500[/C][C]4704.77[/C][C]5566.67[/C][C]-861.892[/C][C]-1204.77[/C][/ROW]
[ROW][C]19[/C][C]4900[/C][C]4447.22[/C][C]5362.5[/C][C]-915.278[/C][C]452.778[/C][/ROW]
[ROW][C]20[/C][C]6650[/C][C]6595.92[/C][C]5333.33[/C][C]1262.59[/C][C]54.0799[/C][/ROW]
[ROW][C]21[/C][C]10050[/C][C]7073[/C][C]5404.17[/C][C]1668.84[/C][C]2977[/C][/ROW]
[ROW][C]22[/C][C]8300[/C][C]7846.44[/C][C]5343.75[/C][C]2502.69[/C][C]453.559[/C][/ROW]
[ROW][C]23[/C][C]7650[/C][C]7025.35[/C][C]5260.42[/C][C]1764.93[/C][C]624.653[/C][/ROW]
[ROW][C]24[/C][C]5750[/C][C]5731.6[/C][C]5222.92[/C][C]508.681[/C][C]18.4028[/C][/ROW]
[ROW][C]25[/C][C]4600[/C][C]5165.45[/C][C]5114.58[/C][C]50.8681[/C][C]-565.451[/C][/ROW]
[ROW][C]26[/C][C]5250[/C][C]3776.91[/C][C]4962.5[/C][C]-1185.59[/C][C]1473.09[/C][/ROW]
[ROW][C]27[/C][C]3250[/C][C]3460.76[/C][C]4722.92[/C][C]-1262.15[/C][C]-210.764[/C][/ROW]
[ROW][C]28[/C][C]1150[/C][C]2801.39[/C][C]4485.42[/C][C]-1684.03[/C][C]-1651.39[/C][/ROW]
[ROW][C]29[/C][C]1950[/C][C]2504.51[/C][C]4354.17[/C][C]-1849.65[/C][C]-554.514[/C][/ROW]
[ROW][C]30[/C][C]2850[/C][C]3369.36[/C][C]4231.25[/C][C]-861.892[/C][C]-519.358[/C][/ROW]
[ROW][C]31[/C][C]2950[/C][C]3249.31[/C][C]4164.58[/C][C]-915.278[/C][C]-299.306[/C][/ROW]
[ROW][C]32[/C][C]4950[/C][C]5254.25[/C][C]3991.67[/C][C]1262.59[/C][C]-304.253[/C][/ROW]
[ROW][C]33[/C][C]6000[/C][C]5483.42[/C][C]3814.58[/C][C]1668.84[/C][C]516.58[/C][/ROW]
[ROW][C]34[/C][C]6650[/C][C]6367.27[/C][C]3864.58[/C][C]2502.69[/C][C]282.726[/C][/ROW]
[ROW][C]35[/C][C]6150[/C][C]5658.68[/C][C]3893.75[/C][C]1764.93[/C][C]491.319[/C][/ROW]
[ROW][C]36[/C][C]4300[/C][C]4337.85[/C][C]3829.17[/C][C]508.681[/C][C]-37.8472[/C][/ROW]
[ROW][C]37[/C][C]4450[/C][C]3807.12[/C][C]3756.25[/C][C]50.8681[/C][C]642.882[/C][/ROW]
[ROW][C]38[/C][C]1250[/C][C]2535.24[/C][C]3720.83[/C][C]-1185.59[/C][C]-1285.24[/C][/ROW]
[ROW][C]39[/C][C]3000[/C][C]2381.6[/C][C]3643.75[/C][C]-1262.15[/C][C]618.403[/C][/ROW]
[ROW][C]40[/C][C]2600[/C][C]1815.97[/C][C]3500[/C][C]-1684.03[/C][C]784.028[/C][/ROW]
[ROW][C]41[/C][C]1200[/C][C]1600.35[/C][C]3450[/C][C]-1849.65[/C][C]-400.347[/C][/ROW]
[ROW][C]42[/C][C]2050[/C][C]2575.61[/C][C]3437.5[/C][C]-861.892[/C][C]-525.608[/C][/ROW]
[ROW][C]43[/C][C]2000[/C][C]2449.31[/C][C]3364.58[/C][C]-915.278[/C][C]-449.306[/C][/ROW]
[ROW][C]44[/C][C]5050[/C][C]4610.5[/C][C]3347.92[/C][C]1262.59[/C][C]439.497[/C][/ROW]
[ROW][C]45[/C][C]4050[/C][C]5033.42[/C][C]3364.58[/C][C]1668.84[/C][C]-983.42[/C][/ROW]
[ROW][C]46[/C][C]5150[/C][C]5781.86[/C][C]3279.17[/C][C]2502.69[/C][C]-631.858[/C][/ROW]
[ROW][C]47[/C][C]6450[/C][C]4979.51[/C][C]3214.58[/C][C]1764.93[/C][C]1470.49[/C][/ROW]
[ROW][C]48[/C][C]3700[/C][C]3833.68[/C][C]3325[/C][C]508.681[/C][C]-133.681[/C][/ROW]
[ROW][C]49[/C][C]3300[/C][C]3473.78[/C][C]3422.92[/C][C]50.8681[/C][C]-173.785[/C][/ROW]
[ROW][C]50[/C][C]2000[/C][C]2172.74[/C][C]3358.33[/C][C]-1185.59[/C][C]-172.743[/C][/ROW]
[ROW][C]51[/C][C]2650[/C][C]2004.51[/C][C]3266.67[/C][C]-1262.15[/C][C]645.486[/C][/ROW]
[ROW][C]52[/C][C]900[/C][C]1582.64[/C][C]3266.67[/C][C]-1684.03[/C][C]-682.639[/C][/ROW]
[ROW][C]53[/C][C]1350[/C][C]1350.35[/C][C]3200[/C][C]-1849.65[/C][C]-0.347222[/C][/ROW]
[ROW][C]54[/C][C]4550[/C][C]2219.36[/C][C]3081.25[/C][C]-861.892[/C][C]2330.64[/C][/ROW]
[ROW][C]55[/C][C]1850[/C][C]2101.39[/C][C]3016.67[/C][C]-915.278[/C][C]-251.389[/C][/ROW]
[ROW][C]56[/C][C]3650[/C][C]4193.84[/C][C]2931.25[/C][C]1262.59[/C][C]-543.837[/C][/ROW]
[ROW][C]57[/C][C]3250[/C][C]4543.84[/C][C]2875[/C][C]1668.84[/C][C]-1293.84[/C][/ROW]
[ROW][C]58[/C][C]5950[/C][C]5433.94[/C][C]2931.25[/C][C]2502.69[/C][C]516.059[/C][/ROW]
[ROW][C]59[/C][C]4050[/C][C]4739.93[/C][C]2975[/C][C]1764.93[/C][C]-689.931[/C][/ROW]
[ROW][C]60[/C][C]3250[/C][C]3310.76[/C][C]2802.08[/C][C]508.681[/C][C]-60.7639[/C][/ROW]
[ROW][C]61[/C][C]2200[/C][C]2752.95[/C][C]2702.08[/C][C]50.8681[/C][C]-552.951[/C][/ROW]
[ROW][C]62[/C][C]1050[/C][C]1676.91[/C][C]2862.5[/C][C]-1185.59[/C][C]-626.91[/C][/ROW]
[ROW][C]63[/C][C]2250[/C][C]1710.76[/C][C]2972.92[/C][C]-1262.15[/C][C]539.236[/C][/ROW]
[ROW][C]64[/C][C]2650[/C][C]1286.81[/C][C]2970.83[/C][C]-1684.03[/C][C]1363.19[/C][/ROW]
[ROW][C]65[/C][C]650[/C][C]1131.6[/C][C]2981.25[/C][C]-1849.65[/C][C]-481.597[/C][/ROW]
[ROW][C]66[/C][C]1100[/C][C]2065.19[/C][C]2927.08[/C][C]-861.892[/C][C]-965.191[/C][/ROW]
[ROW][C]67[/C][C]2900[/C][C]1947.22[/C][C]2862.5[/C][C]-915.278[/C][C]952.778[/C][/ROW]
[ROW][C]68[/C][C]6450[/C][C]4141.75[/C][C]2879.17[/C][C]1262.59[/C][C]2308.25[/C][/ROW]
[ROW][C]69[/C][C]3100[/C][C]4518.84[/C][C]2850[/C][C]1668.84[/C][C]-1418.84[/C][/ROW]
[ROW][C]70[/C][C]6050[/C][C]5229.77[/C][C]2727.08[/C][C]2502.69[/C][C]820.226[/C][/ROW]
[ROW][C]71[/C][C]4200[/C][C]4467.01[/C][C]2702.08[/C][C]1764.93[/C][C]-267.014[/C][/ROW]
[ROW][C]72[/C][C]1800[/C][C]3283.68[/C][C]2775[/C][C]508.681[/C][C]-1483.68[/C][/ROW]
[ROW][C]73[/C][C]2100[/C][C]2800.87[/C][C]2750[/C][C]50.8681[/C][C]-700.868[/C][/ROW]
[ROW][C]74[/C][C]1550[/C][C]1339.41[/C][C]2525[/C][C]-1185.59[/C][C]210.59[/C][/ROW]
[ROW][C]75[/C][C]1050[/C][C]1125.35[/C][C]2387.5[/C][C]-1262.15[/C][C]-75.3472[/C][/ROW]
[ROW][C]76[/C][C]900[/C][C]634.722[/C][C]2318.75[/C][C]-1684.03[/C][C]265.278[/C][/ROW]
[ROW][C]77[/C][C]1800[/C][C]325.347[/C][C]2175[/C][C]-1849.65[/C][C]1474.65[/C][/ROW]
[ROW][C]78[/C][C]1700[/C][C]1265.19[/C][C]2127.08[/C][C]-861.892[/C][C]434.809[/C][/ROW]
[ROW][C]79[/C][C]1700[/C][C]1228.47[/C][C]2143.75[/C][C]-915.278[/C][C]471.528[/C][/ROW]
[ROW][C]80[/C][C]2250[/C][C]3448[/C][C]2185.42[/C][C]1262.59[/C][C]-1198[/C][/ROW]
[ROW][C]81[/C][C]4000[/C][C]3875.09[/C][C]2206.25[/C][C]1668.84[/C][C]124.913[/C][/ROW]
[ROW][C]82[/C][C]3500[/C][C]4725.61[/C][C]2222.92[/C][C]2502.69[/C][C]-1225.61[/C][/ROW]
[ROW][C]83[/C][C]3300[/C][C]3971.18[/C][C]2206.25[/C][C]1764.93[/C][C]-671.181[/C][/ROW]
[ROW][C]84[/C][C]1550[/C][C]2708.68[/C][C]2200[/C][C]508.681[/C][C]-1158.68[/C][/ROW]
[ROW][C]85[/C][C]2750[/C][C]2263.37[/C][C]2212.5[/C][C]50.8681[/C][C]486.632[/C][/ROW]
[ROW][C]86[/C][C]1900[/C][C]1085.24[/C][C]2270.83[/C][C]-1185.59[/C][C]814.757[/C][/ROW]
[ROW][C]87[/C][C]1200[/C][C]1031.6[/C][C]2293.75[/C][C]-1262.15[/C][C]168.403[/C][/ROW]
[ROW][C]88[/C][C]1150[/C][C]576.389[/C][C]2260.42[/C][C]-1684.03[/C][C]573.611[/C][/ROW]
[ROW][C]89[/C][C]1150[/C][C]475.347[/C][C]2325[/C][C]-1849.65[/C][C]674.653[/C][/ROW]
[ROW][C]90[/C][C]2200[/C][C]1592.27[/C][C]2454.17[/C][C]-861.892[/C][C]607.726[/C][/ROW]
[ROW][C]91[/C][C]1500[/C][C]1595.14[/C][C]2510.42[/C][C]-915.278[/C][C]-95.1389[/C][/ROW]
[ROW][C]92[/C][C]3850[/C][C]3733.42[/C][C]2470.83[/C][C]1262.59[/C][C]116.58[/C][/ROW]
[ROW][C]93[/C][C]2950[/C][C]4106.34[/C][C]2437.5[/C][C]1668.84[/C][C]-1156.34[/C][/ROW]
[ROW][C]94[/C][C]3750[/C][C]4931.86[/C][C]2429.17[/C][C]2502.69[/C][C]-1181.86[/C][/ROW]
[ROW][C]95[/C][C]4600[/C][C]4219.1[/C][C]2454.17[/C][C]1764.93[/C][C]380.903[/C][/ROW]
[ROW][C]96[/C][C]3350[/C][C]2958.68[/C][C]2450[/C][C]508.681[/C][C]391.319[/C][/ROW]
[ROW][C]97[/C][C]2300[/C][C]2463.37[/C][C]2412.5[/C][C]50.8681[/C][C]-163.368[/C][/ROW]
[ROW][C]98[/C][C]1400[/C][C]1149.83[/C][C]2335.42[/C][C]-1185.59[/C][C]250.174[/C][/ROW]
[ROW][C]99[/C][C]900[/C][C]1008.68[/C][C]2270.83[/C][C]-1262.15[/C][C]-108.681[/C][/ROW]
[ROW][C]100[/C][C]1250[/C][C]665.972[/C][C]2350[/C][C]-1684.03[/C][C]584.028[/C][/ROW]
[ROW][C]101[/C][C]1650[/C][C]554.514[/C][C]2404.17[/C][C]-1849.65[/C][C]1095.49[/C][/ROW]
[ROW][C]102[/C][C]1600[/C][C]1515.19[/C][C]2377.08[/C][C]-861.892[/C][C]84.809[/C][/ROW]
[ROW][C]103[/C][C]1200[/C][C]NA[/C][C]NA[/C][C]-915.278[/C][C]NA[/C][/ROW]
[ROW][C]104[/C][C]2300[/C][C]NA[/C][C]NA[/C][C]1262.59[/C][C]NA[/C][/ROW]
[ROW][C]105[/C][C]2950[/C][C]NA[/C][C]NA[/C][C]1668.84[/C][C]NA[/C][/ROW]
[ROW][C]106[/C][C]5650[/C][C]NA[/C][C]NA[/C][C]2502.69[/C][C]NA[/C][/ROW]
[ROW][C]107[/C][C]4000[/C][C]NA[/C][C]NA[/C][C]1764.93[/C][C]NA[/C][/ROW]
[ROW][C]108[/C][C]3300[/C][C]NA[/C][C]NA[/C][C]508.681[/C][C]NA[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301389&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301389&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
13800NANA50.8681NA
21650NANA-1185.59NA
34250NANA-1262.15NA
43200NANA-1684.03NA
52050NANA-1849.65NA
63600NANA-861.892NA
737004238.895154.17-915.278-538.889
860006629.255366.671262.59-629.253
9855070735404.171668.841477
1090507840.195337.52502.691209.81
1160007096.185331.251764.93-1096.18
1285505842.015333.33508.6812707.99
1367005430.035379.1750.86811269.97
1438504270.665456.25-1185.59-420.66
1529504283.685545.83-1262.15-1333.68
1629003893.065577.08-1684.03-993.056
1722003764.935614.58-1849.65-1564.93
1835004704.775566.67-861.892-1204.77
1949004447.225362.5-915.278452.778
2066506595.925333.331262.5954.0799
211005070735404.171668.842977
2283007846.445343.752502.69453.559
2376507025.355260.421764.93624.653
2457505731.65222.92508.68118.4028
2546005165.455114.5850.8681-565.451
2652503776.914962.5-1185.591473.09
2732503460.764722.92-1262.15-210.764
2811502801.394485.42-1684.03-1651.39
2919502504.514354.17-1849.65-554.514
3028503369.364231.25-861.892-519.358
3129503249.314164.58-915.278-299.306
3249505254.253991.671262.59-304.253
3360005483.423814.581668.84516.58
3466506367.273864.582502.69282.726
3561505658.683893.751764.93491.319
3643004337.853829.17508.681-37.8472
3744503807.123756.2550.8681642.882
3812502535.243720.83-1185.59-1285.24
3930002381.63643.75-1262.15618.403
4026001815.973500-1684.03784.028
4112001600.353450-1849.65-400.347
4220502575.613437.5-861.892-525.608
4320002449.313364.58-915.278-449.306
4450504610.53347.921262.59439.497
4540505033.423364.581668.84-983.42
4651505781.863279.172502.69-631.858
4764504979.513214.581764.931470.49
4837003833.683325508.681-133.681
4933003473.783422.9250.8681-173.785
5020002172.743358.33-1185.59-172.743
5126502004.513266.67-1262.15645.486
529001582.643266.67-1684.03-682.639
5313501350.353200-1849.65-0.347222
5445502219.363081.25-861.8922330.64
5518502101.393016.67-915.278-251.389
5636504193.842931.251262.59-543.837
5732504543.8428751668.84-1293.84
5859505433.942931.252502.69516.059
5940504739.9329751764.93-689.931
6032503310.762802.08508.681-60.7639
6122002752.952702.0850.8681-552.951
6210501676.912862.5-1185.59-626.91
6322501710.762972.92-1262.15539.236
6426501286.812970.83-1684.031363.19
656501131.62981.25-1849.65-481.597
6611002065.192927.08-861.892-965.191
6729001947.222862.5-915.278952.778
6864504141.752879.171262.592308.25
6931004518.8428501668.84-1418.84
7060505229.772727.082502.69820.226
7142004467.012702.081764.93-267.014
7218003283.682775508.681-1483.68
7321002800.87275050.8681-700.868
7415501339.412525-1185.59210.59
7510501125.352387.5-1262.15-75.3472
76900634.7222318.75-1684.03265.278
771800325.3472175-1849.651474.65
7817001265.192127.08-861.892434.809
7917001228.472143.75-915.278471.528
80225034482185.421262.59-1198
8140003875.092206.251668.84124.913
8235004725.612222.922502.69-1225.61
8333003971.182206.251764.93-671.181
8415502708.682200508.681-1158.68
8527502263.372212.550.8681486.632
8619001085.242270.83-1185.59814.757
8712001031.62293.75-1262.15168.403
881150576.3892260.42-1684.03573.611
891150475.3472325-1849.65674.653
9022001592.272454.17-861.892607.726
9115001595.142510.42-915.278-95.1389
9238503733.422470.831262.59116.58
9329504106.342437.51668.84-1156.34
9437504931.862429.172502.69-1181.86
9546004219.12454.171764.93380.903
9633502958.682450508.681391.319
9723002463.372412.550.8681-163.368
9814001149.832335.42-1185.59250.174
999001008.682270.83-1262.15-108.681
1001250665.9722350-1684.03584.028
1011650554.5142404.17-1849.651095.49
10216001515.192377.08-861.89284.809
1031200NANA-915.278NA
1042300NANA1262.59NA
1052950NANA1668.84NA
1065650NANA2502.69NA
1074000NANA1764.93NA
1083300NANA508.681NA



Parameters (Session):
par1 = additive ; par2 = 12 ;
Parameters (R input):
par1 = additive ; par2 = 12 ;
R code (references can be found in the software module):
par2 <- as.numeric(par2)
x <- ts(x,freq=par2)
m <- decompose(x,type=par1)
m$figure
bitmap(file='test1.png')
plot(m)
dev.off()
mylagmax <- length(x)/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$trend),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$seasonal),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$random),na.action=na.pass,lag.max = mylagmax,main='Random')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
spectrum(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
spectrum(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
cpgram(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
cpgram(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Classical Decomposition by Moving Averages',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observations',header=TRUE)
a<-table.element(a,'Fit',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Random',header=TRUE)
a<-table.row.end(a)
for (i in 1:length(m$trend)) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
if (par1 == 'additive') a<-table.element(a,signif(m$trend[i]+m$seasonal[i],6)) else a<-table.element(a,signif(m$trend[i]*m$seasonal[i],6))
a<-table.element(a,signif(m$trend[i],6))
a<-table.element(a,signif(m$seasonal[i],6))
a<-table.element(a,signif(m$random[i],6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')