Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_Simple Regression Y ~ X.wasp
Title produced by softwareSimple Linear Regression
Date of computationMon, 19 Dec 2016 16:01:07 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/19/t14821596892bypqg5s2an5aye.htm/, Retrieved Fri, 01 Nov 2024 03:41:19 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=301379, Retrieved Fri, 01 Nov 2024 03:41:19 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact100
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Simple Linear Regression] [lin regr + anova] [2016-12-19 15:01:07] [2a3a89286ec83ecc146a1d371615e68b] [Current]
Feedback Forum

Post a new message
Dataseries X:
3	3
4	3
4	3
4	3
4	3
4	3
4	3
4	3
4	3
4	3
4	3
4	3
4	4
4	4
4	4
4	3
4	4
	
4	3
4	4
4	4
4	3
4	3
4	3
4	3
4	4
4	3
4	4
4	3
4	4
3	4
4	4
4	4
4	4
3	4
4	4
4	4
4	4
4	3
5	4
4	4
4	3
3	3
4	3
4	4
4	3
4	3
4	4
3	4
3	4
4	3
4	4
4	4
3	4
4	3
3	4
4	4
4	3
4	4
4	4
4	3
4	2
4	4
4	3
4	3
3	4
4	4
4	4
4	4
4	4
4	4
4	4
3	4
3	4
4	3
4	4
4	3
4	4
4	4
4	3
4	3
3	3
4	3
4	3
4	4
5	4
4	4
5	4
4	4
4	4
4	4
4	3
4	4
4	3
4	4
4	4
4	4
5	4
5	5
4	4
4	4
4	4
4	5
3	3
4	4
4	4
4	4
4	4
4	5
4	5
4	5
3	4
4	4
3	4
5	4
4	4
4	3
4	5
4	4
4	4
4	4
4	4
4	4
4	4
4	4
4	4
4	4
4	4
4	4
4	4
3	3
4	5
5	4
3	4
3	4
4	4
5	4
3	5
4	4
5	4
4	4
3	4
4	4
4	5
3	4
4	4
4	3
5	4
4	4
4	4
3	3
4	4
4	4
4	4
3	4
4	4
4	3
3	5
4	4
5	4
4	4
5	4
4	4
4	4
4	4
3	3
4	5
3	4
4	3




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time7 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time7 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301379&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]7 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=301379&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301379&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time7 seconds
R ServerBig Analytics Cloud Computing Center







Linear Regression Model
Y ~ X
coefficients:
EstimateStd. Errort valuePr(>|t|)
(Intercept)3.4780.3729.3590
X0.0720.0940.7680.443
- - -
Residual Std. Err. 0.572 on 166 df
Multiple R-sq. 0.004
95% CI Multiple R-sq. [0, 0.035]
Adjusted R-sq. -0.002

\begin{tabular}{lllllllll}
\hline
Linear Regression Model \tabularnewline
Y ~ X \tabularnewline
coefficients: &   \tabularnewline
  & Estimate & Std. Error & t value & Pr(>|t|) \tabularnewline
(Intercept) & 3.478 & 0.372 & 9.359 & 0 \tabularnewline
X & 0.072 & 0.094 & 0.768 & 0.443 \tabularnewline
- - -  &   \tabularnewline
Residual Std. Err.  & 0.572  on  166 df \tabularnewline
Multiple R-sq.  & 0.004 \tabularnewline
95% CI Multiple R-sq.  & [0, 0.035] \tabularnewline
Adjusted R-sq.  & -0.002 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301379&T=1

[TABLE]
[ROW][C]Linear Regression Model[/C][/ROW]
[ROW][C]Y ~ X[/C][/ROW]
[ROW][C]coefficients:[/C][C] [/C][/ROW]
[ROW][C] [/C][C]Estimate[/C][C]Std. Error[/C][C]t value[/C][C]Pr(>|t|)[/C][/ROW]
[C](Intercept)[/C][C]3.478[/C][C]0.372[/C][C]9.359[/C][C]0[/C][/ROW]
[C]X[/C][C]0.072[/C][C]0.094[/C][C]0.768[/C][C]0.443[/C][/ROW]
[ROW][C]- - - [/C][C] [/C][/ROW]
[ROW][C]Residual Std. Err. [/C][C]0.572  on  166 df[/C][/ROW]
[ROW][C]Multiple R-sq. [/C][C]0.004[/C][/ROW]
[ROW][C]95% CI Multiple R-sq. [/C][C][0, 0.035][/C][/ROW]
[ROW][C]Adjusted R-sq. [/C][C]-0.002[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301379&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301379&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Linear Regression Model
Y ~ X
coefficients:
EstimateStd. Errort valuePr(>|t|)
(Intercept)3.4780.3729.3590
X0.0720.0940.7680.443
- - -
Residual Std. Err. 0.572 on 166 df
Multiple R-sq. 0.004
95% CI Multiple R-sq. [0, 0.035]
Adjusted R-sq. -0.002







ANOVA Statistics
DfSum SqMean SqF valuePr(>F)
tevredenheid10.1930.1930.590.443
Residuals16654.2830.327

\begin{tabular}{lllllllll}
\hline
ANOVA Statistics \tabularnewline
  & Df & Sum Sq & Mean Sq & F value & Pr(>F) \tabularnewline
tevredenheid & 1 & 0.193 & 0.193 & 0.59 & 0.443 \tabularnewline
Residuals & 166 & 54.283 & 0.327 &   &   \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301379&T=2

[TABLE]
[ROW][C]ANOVA Statistics[/C][/ROW]
[ROW][C] [/C][C]Df[/C][C]Sum Sq[/C][C]Mean Sq[/C][C]F value[/C][C]Pr(>F)[/C][/ROW]
[ROW][C]tevredenheid[/C][C]1[/C][C]0.193[/C][C]0.193[/C][C]0.59[/C][C]0.443[/C][/ROW]
[ROW][C]Residuals[/C][C]166[/C][C]54.283[/C][C]0.327[/C][C] [/C][C] [/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301379&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301379&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ANOVA Statistics
DfSum SqMean SqF valuePr(>F)
tevredenheid10.1930.1930.590.443
Residuals16654.2830.327



Parameters (Session):
par1 = 1 ; par2 = 2 ; par3 = TRUE ;
Parameters (R input):
par1 = 2 ; par2 = 1 ; par3 = TRUE ;
R code (references can be found in the software module):
par3 <- 'TRUE'
par2 <- '1'
par1 <- '2'
library(boot)
cat1 <- as.numeric(par1)
cat2<- as.numeric(par2)
intercept<-as.logical(par3)
x <- na.omit(t(x))
rsq <- function(formula, data, indices) {
d <- data[indices,] # allows boot to select sample
fit <- lm(formula, data=d)
return(summary(fit)$r.square)
}
xdf<-data.frame(na.omit(t(y)))
(V1<-dimnames(y)[[1]][cat1])
(V2<-dimnames(y)[[1]][cat2])
xdf <- data.frame(xdf[[cat1]], xdf[[cat2]])
names(xdf)<-c('Y', 'X')
if(intercept == FALSE) (lmxdf<-lm(Y~ X - 1, data = xdf) ) else (lmxdf<-lm(Y~ X, data = xdf) )
(results <- boot(data=xdf, statistic=rsq, R=1000, formula=Y~X))
sumlmxdf<-summary(lmxdf)
(aov.xdf<-aov(lmxdf) )
(anova.xdf<-anova(lmxdf) )
load(file='createtable')
a<-table.start()
nc <- ncol(sumlmxdf$'coefficients')
nr <- nrow(sumlmxdf$'coefficients')
a<-table.row.start(a)
a<-table.element(a,'Linear Regression Model', nc+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, lmxdf$call['formula'],nc+1)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'coefficients:',1,TRUE)
a<-table.element(a, ' ',nc,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, ' ',1,TRUE)
for(i in 1 : nc){
a<-table.element(a, dimnames(sumlmxdf$'coefficients')[[2]][i],1,TRUE)
}#end header
a<-table.row.end(a)
for(i in 1: nr){
a<-table.element(a,dimnames(sumlmxdf$'coefficients')[[1]][i] ,1,TRUE)
for(j in 1 : nc){
a<-table.element(a, round(sumlmxdf$coefficients[i, j], digits=3), 1 ,FALSE)
}
a<-table.row.end(a)
}
a<-table.row.start(a)
a<-table.element(a, '- - - ',1,TRUE)
a<-table.element(a, ' ',nc,FALSE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Std. Err. ',1,TRUE)
a<-table.element(a, paste(round(sumlmxdf$'sigma', digits=3), ' on ', sumlmxdf$'df'[2], 'df') ,nc, FALSE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R-sq. ',1,TRUE)
a<-table.element(a, round(sumlmxdf$'r.squared', digits=3) ,nc, FALSE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, '95% CI Multiple R-sq. ',1,TRUE)
a<-table.element(a, paste('[',round(boot.ci(results,type='bca')$bca[1,4], digits=3),', ', round(boot.ci(results,type='bca')$bca[1,5], digits=3), ']',sep='') ,nc, FALSE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-sq. ',1,TRUE)
a<-table.element(a, round(sumlmxdf$'adj.r.squared', digits=3) ,nc, FALSE)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ANOVA Statistics', 5+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, ' ',1,TRUE)
a<-table.element(a, 'Df',1,TRUE)
a<-table.element(a, 'Sum Sq',1,TRUE)
a<-table.element(a, 'Mean Sq',1,TRUE)
a<-table.element(a, 'F value',1,TRUE)
a<-table.element(a, 'Pr(>F)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, V2,1,TRUE)
a<-table.element(a, anova.xdf$Df[1])
a<-table.element(a, round(anova.xdf$'Sum Sq'[1], digits=3))
a<-table.element(a, round(anova.xdf$'Mean Sq'[1], digits=3))
a<-table.element(a, round(anova.xdf$'F value'[1], digits=3))
a<-table.element(a, round(anova.xdf$'Pr(>F)'[1], digits=3))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residuals',1,TRUE)
a<-table.element(a, anova.xdf$Df[2])
a<-table.element(a, round(anova.xdf$'Sum Sq'[2], digits=3))
a<-table.element(a, round(anova.xdf$'Mean Sq'[2], digits=3))
a<-table.element(a, ' ')
a<-table.element(a, ' ')
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
bitmap(file='regressionplot.png')
plot(Y~ X, data=xdf, xlab=V2, ylab=V1, main='Regression Solution')
if(intercept == TRUE) abline(coef(lmxdf), col='red')
if(intercept == FALSE) abline(0.0, coef(lmxdf), col='red')
dev.off()
library(car)
bitmap(file='residualsQQplot.png')
qqPlot(resid(lmxdf), main='QQplot of Residuals of Fit')
dev.off()
bitmap(file='residualsplot.png')
plot(xdf$X, resid(lmxdf), main='Scatterplot of Residuals of Model Fit')
dev.off()
bitmap(file='cooksDistanceLmplot.png')
plot(lmxdf, which=4)
dev.off()