Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationMon, 19 Dec 2016 15:55:23 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/19/t1482159354duqbcfhnvf951sa.htm/, Retrieved Fri, 01 Nov 2024 03:33:22 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=301376, Retrieved Fri, 01 Nov 2024 03:33:22 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact134
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Spectral Analysis] [] [2016-12-16 12:37:36] [4927a2198ad064183e4b2ff55fb4ac19]
- RMPD    [Multiple Regression] [] [2016-12-19 14:55:23] [63a9f0ea7bb98050796b649e85481845] [Current]
Feedback Forum

Post a new message
Dataseries X:
3 4 3 4 18
5 5 5 4 19
5 4 4 4 18
5 4 4 4 15
4 4 3 4 19
5 5 5 5 19
5 4 3 3 19
5 5 4 1 18
5 4 3 3 20
5 5 5 4 14
5 5 5 5 18
5 5 4 4 19
4 4 3 4 16
3 4 4 3 18
5 5 5 5 18
5 4 3 4 17
5 3 3 5 19
4 4 4 4 19
2 5 1 2 17
5 5 4 5 18
5 5 4 5 16
5 5 4 2 20
4 4 4 3 13
4 5 5 4 19
4 5 4 4 15
5 5 4 5 17
5 5 4 3 17
5 5 4 5 17
5 5 5 5 19
1 1 1 2 18
5 5 4 5 19
4 5 4 3 20
4 4 4 3 16
4 4 4 4 17
5 5 4 4 16
4 4 5 3 16
4 4 4 3 16
5 4 4 4 16
5 5 5 5 17
5 5 5 4 18
2 2 1 2 16
3 3 3 4 16
4 5 3 4 16
5 5 4 4 19
5 5 5 3 16
4 4 4 4 17
5 5 3 4 19
5 5 5 4 17
4 4 4 4 17
5 5 4 5 15
4 5 3 1 16
4 4 4 4 16
3 4 3 3 16
4 4 3 1 17
4 5 4 4 18
5 4 4 4 18
4 5 4 4 18
4 5 4 3 19
4 4 4 4 14
4 3 3 4 13
4 4 4 4 18
2 4 4 3 16
4 5 4 3 15
4 4 3 3 18
5 5 5 5 18
3 3 3 3 16
3 4 3 3 19
5 4 5 4 17
4 3 3 4 17
5 5 5 4 19
4 5 4 5 19
4 3 3 4 20
5 5 3 5 19
5 5 5 4 18
5 4 3 3 16
4 4 3 3 16
5 4 4 4 15
5 5 5 4 20
2 5 4 2 16
5 4 5 5 16
5 5 4 4 20
5 5 5 5 20
5 4 4 2 18
4 4 4 3 15
4 4 4 3 14
5 5 5 5 16
4 4 4 3 14
5 5 5 4 18
5 5 4 4 20
5 4 5 4 20
4 4 4 3 18
5 5 5 5 20
5 5 5 2 14
3 4 2 3 20
5 4 5 4 17
5 5 5 4 20
5 5 5 5 14
4 4 5 4 20
4 4 4 3 19
4 4 4 4 18
5 5 5 3 17
5 5 4 4 17
4 4 2 4 19
3 4 4 4 15
3 4 3 2 18
4 4 5 4 15
4 4 3 3 16
5 5 4 4 16
5 4 4 4 20
4 4 5 4 18
5 5 5 5 20
5 4 4 3 18
4 4 3 3 17
4 4 3 4 19
5 5 4 4 18
5 5 5 5 19
5 5 3 4 17
5 5 3 4 18
4 5 4 4 17
5 4 4 4 16
3 4 4 4 19
5 5 4 3 18
5 4 5 4 17
4 5 4 4 18
5 5 5 5 16
4 4 4 3 20
4 4 4 4 14
4 4 4 3 17
4 4 5 5 13
2 3 2 4 13
4 4 4 3 17
5 4 5 4 18
5 5 5 5 16
4 4 4 2 19
5 4 4 2 17
5 4 4 4 16
5 4 5 4 17
5 5 5 5 17
5 3 5 4 17
5 4 5 4 20
4 4 4 3 14
5 4 4 3 20
3 3 3 2 19
3 4 4 4 16
4 5 4 5 19
4 5 4 4 17
3 5 3 5 19
3 4 3 2 20
5 5 5 4 19
5 5 4 4 19
5 4 4 2 16
5 4 4 4 18
5 5 5 4 16
5 4 5 4 17
5 5 5 4 18
5 4 5 2 16
4 4 4 4 17
4 4 5 3 15
2 4 5 3 18




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time8 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301376&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]8 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=301376&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301376&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R ServerBig Analytics Cloud Computing Center







Multiple Linear Regression - Estimated Regression Equation
e[t] = + 15.2548 + 0.296302a[t] + 0.433327b[t] -0.327263c[t] + 0.0632033d[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
e[t] =  +  15.2548 +  0.296302a[t] +  0.433327b[t] -0.327263c[t] +  0.0632033d[t]  + e[t] \tabularnewline
 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301376&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]e[t] =  +  15.2548 +  0.296302a[t] +  0.433327b[t] -0.327263c[t] +  0.0632033d[t]  + e[t][/C][/ROW]
[ROW][C][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301376&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301376&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
e[t] = + 15.2548 + 0.296302a[t] + 0.433327b[t] -0.327263c[t] + 0.0632033d[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+15.26 0.9873+1.5450e+01 4.037e-33 2.018e-33
a+0.2963 0.2161+1.3710e+00 0.1724 0.08618
b+0.4333 0.2479+1.7480e+00 0.08247 0.04123
c-0.3273 0.2043-1.6020e+00 0.1112 0.0556
d+0.0632 0.1688+3.7450e-01 0.7086 0.3543

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & +15.26 &  0.9873 & +1.5450e+01 &  4.037e-33 &  2.018e-33 \tabularnewline
a & +0.2963 &  0.2161 & +1.3710e+00 &  0.1724 &  0.08618 \tabularnewline
b & +0.4333 &  0.2479 & +1.7480e+00 &  0.08247 &  0.04123 \tabularnewline
c & -0.3273 &  0.2043 & -1.6020e+00 &  0.1112 &  0.0556 \tabularnewline
d & +0.0632 &  0.1688 & +3.7450e-01 &  0.7086 &  0.3543 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301376&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]+15.26[/C][C] 0.9873[/C][C]+1.5450e+01[/C][C] 4.037e-33[/C][C] 2.018e-33[/C][/ROW]
[ROW][C]a[/C][C]+0.2963[/C][C] 0.2161[/C][C]+1.3710e+00[/C][C] 0.1724[/C][C] 0.08618[/C][/ROW]
[ROW][C]b[/C][C]+0.4333[/C][C] 0.2479[/C][C]+1.7480e+00[/C][C] 0.08247[/C][C] 0.04123[/C][/ROW]
[ROW][C]c[/C][C]-0.3273[/C][C] 0.2043[/C][C]-1.6020e+00[/C][C] 0.1112[/C][C] 0.0556[/C][/ROW]
[ROW][C]d[/C][C]+0.0632[/C][C] 0.1688[/C][C]+3.7450e-01[/C][C] 0.7086[/C][C] 0.3543[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301376&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301376&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+15.26 0.9873+1.5450e+01 4.037e-33 2.018e-33
a+0.2963 0.2161+1.3710e+00 0.1724 0.08618
b+0.4333 0.2479+1.7480e+00 0.08247 0.04123
c-0.3273 0.2043-1.6020e+00 0.1112 0.0556
d+0.0632 0.1688+3.7450e-01 0.7086 0.3543







Multiple Linear Regression - Regression Statistics
Multiple R 0.224
R-squared 0.05018
Adjusted R-squared 0.02551
F-TEST (value) 2.034
F-TEST (DF numerator)4
F-TEST (DF denominator)154
p-value 0.09234
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 1.753
Sum Squared Residuals 473

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R &  0.224 \tabularnewline
R-squared &  0.05018 \tabularnewline
Adjusted R-squared &  0.02551 \tabularnewline
F-TEST (value) &  2.034 \tabularnewline
F-TEST (DF numerator) & 4 \tabularnewline
F-TEST (DF denominator) & 154 \tabularnewline
p-value &  0.09234 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation &  1.753 \tabularnewline
Sum Squared Residuals &  473 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301376&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C] 0.224[/C][/ROW]
[ROW][C]R-squared[/C][C] 0.05018[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C] 0.02551[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C] 2.034[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]4[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]154[/C][/ROW]
[ROW][C]p-value[/C][C] 0.09234[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C] 1.753[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C] 473[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301376&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301376&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R 0.224
R-squared 0.05018
Adjusted R-squared 0.02551
F-TEST (value) 2.034
F-TEST (DF numerator)4
F-TEST (DF denominator)154
p-value 0.09234
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 1.753
Sum Squared Residuals 473







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 18 17.15 0.8519
2 19 17.52 1.481
3 18 17.41 0.5866
4 15 17.41-2.413
5 19 17.44 1.556
6 19 17.58 1.417
7 19 17.68 1.323
8 18 17.66 0.3429
9 20 17.68 2.323
10 14 17.52-3.519
11 18 17.58 0.4173
12 19 17.85 1.153
13 16 17.44-1.444
14 18 16.76 1.242
15 18 17.58 0.4173
16 17 17.74-0.7407
17 19 17.37 1.629
18 19 17.12 1.883
19 17 17.81-0.8132
20 18 17.91 0.09004
21 16 17.91-1.91
22 20 17.72 2.28
23 13 17.05-4.054
24 19 17.22 1.777
25 15 17.55-2.55
26 17 17.91-0.91
27 17 17.78-0.7835
28 17 17.91-0.91
29 19 17.58 1.417
30 18 15.78 2.216
31 19 17.91 1.09
32 20 17.49 2.513
33 16 17.05-1.054
34 17 17.12-0.1171
35 16 17.85-1.847
36 16 16.73-0.7267
37 16 17.05-1.054
38 16 17.41-1.413
39 17 17.58-0.5827
40 18 17.52 0.4805
41 16 16.51-0.5132
42 16 16.71-0.7148
43 16 17.88-1.878
44 19 17.85 1.153
45 16 17.46-1.456
46 17 17.12-0.1171
47 19 18.17 0.826
48 17 17.52-0.5195
49 17 17.12-0.1171
50 15 17.91-2.91
51 16 17.69-1.688
52 16 17.12-1.117
53 16 17.08-1.085
54 17 17.25-0.2548
55 18 17.55 0.4496
56 18 17.41 0.5866
57 18 17.55 0.4496
58 19 17.49 1.513
59 14 17.12-3.117
60 13 17.01-4.011
61 18 17.12 0.8829
62 16 16.46-0.4613
63 15 17.49-2.487
64 18 17.38 0.6188
65 18 17.58 0.4173
66 16 16.65-0.6516
67 19 17.08 1.915
68 17 17.09-0.08616
69 17 17.01-0.01106
70 19 17.52 1.481
71 19 17.61 1.386
72 20 17.01 2.989
73 19 18.24 0.7628
74 18 17.52 0.4805
75 16 17.68-1.677
76 16 17.38-1.381
77 15 17.41-2.413
78 20 17.52 2.481
79 16 16.83-0.8314
80 16 17.15-1.149
81 20 17.85 2.153
82 20 17.58 2.417
83 18 17.29 0.713
84 15 17.05-2.054
85 14 17.05-3.054
86 16 17.58-1.583
87 14 17.05-3.054
88 18 17.52 0.4805
89 20 17.85 2.153
90 20 17.09 2.914
91 18 17.05 0.9461
92 20 17.58 2.417
93 14 17.39-3.393
94 20 17.41 2.588
95 17 17.09-0.08616
96 20 17.52 2.481
97 14 17.58-3.583
98 20 16.79 3.21
99 19 17.05 1.946
100 18 17.12 0.8829
101 17 17.46-0.4563
102 17 17.85-0.8468
103 19 17.77 1.228
104 15 16.82-1.821
105 18 17.02 0.9783
106 15 16.79-1.79
107 16 17.38-1.381
108 16 17.85-1.847
109 20 17.41 2.587
110 18 16.79 1.21
111 20 17.58 2.417
112 18 17.35 0.6498
113 17 17.38-0.3812
114 19 17.44 1.556
115 18 17.85 0.1532
116 19 17.58 1.417
117 17 18.17-1.174
118 18 18.17-0.174
119 17 17.55-0.5504
120 16 17.41-1.413
121 19 16.82 2.179
122 18 17.78 0.2165
123 17 17.09-0.08616
124 18 17.55 0.4496
125 16 17.58-1.583
126 20 17.05 2.946
127 14 17.12-3.117
128 17 17.05-0.05392
129 13 16.85-3.853
130 13 16.75-3.746
131 17 17.05-0.05392
132 18 17.09 0.9138
133 16 17.58-1.583
134 19 16.99 2.009
135 17 17.29-0.287
136 16 17.41-1.413
137 17 17.09-0.08616
138 17 17.58-0.5827
139 17 16.65 0.3472
140 20 17.09 2.914
141 14 17.05-3.054
142 20 17.35 2.65
143 19 16.59 2.412
144 16 16.82-0.8208
145 19 17.61 1.386
146 17 17.55-0.5504
147 19 17.64 1.355
148 20 17.02 2.978
149 19 17.52 1.481
150 19 17.85 1.153
151 16 17.29-1.287
152 18 17.41 0.5866
153 16 17.52-1.519
154 17 17.09-0.08616
155 18 17.52 0.4805
156 16 16.96-0.9598
157 17 17.12-0.1171
158 15 16.73-1.727
159 18 16.13 1.866

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 &  18 &  17.15 &  0.8519 \tabularnewline
2 &  19 &  17.52 &  1.481 \tabularnewline
3 &  18 &  17.41 &  0.5866 \tabularnewline
4 &  15 &  17.41 & -2.413 \tabularnewline
5 &  19 &  17.44 &  1.556 \tabularnewline
6 &  19 &  17.58 &  1.417 \tabularnewline
7 &  19 &  17.68 &  1.323 \tabularnewline
8 &  18 &  17.66 &  0.3429 \tabularnewline
9 &  20 &  17.68 &  2.323 \tabularnewline
10 &  14 &  17.52 & -3.519 \tabularnewline
11 &  18 &  17.58 &  0.4173 \tabularnewline
12 &  19 &  17.85 &  1.153 \tabularnewline
13 &  16 &  17.44 & -1.444 \tabularnewline
14 &  18 &  16.76 &  1.242 \tabularnewline
15 &  18 &  17.58 &  0.4173 \tabularnewline
16 &  17 &  17.74 & -0.7407 \tabularnewline
17 &  19 &  17.37 &  1.629 \tabularnewline
18 &  19 &  17.12 &  1.883 \tabularnewline
19 &  17 &  17.81 & -0.8132 \tabularnewline
20 &  18 &  17.91 &  0.09004 \tabularnewline
21 &  16 &  17.91 & -1.91 \tabularnewline
22 &  20 &  17.72 &  2.28 \tabularnewline
23 &  13 &  17.05 & -4.054 \tabularnewline
24 &  19 &  17.22 &  1.777 \tabularnewline
25 &  15 &  17.55 & -2.55 \tabularnewline
26 &  17 &  17.91 & -0.91 \tabularnewline
27 &  17 &  17.78 & -0.7835 \tabularnewline
28 &  17 &  17.91 & -0.91 \tabularnewline
29 &  19 &  17.58 &  1.417 \tabularnewline
30 &  18 &  15.78 &  2.216 \tabularnewline
31 &  19 &  17.91 &  1.09 \tabularnewline
32 &  20 &  17.49 &  2.513 \tabularnewline
33 &  16 &  17.05 & -1.054 \tabularnewline
34 &  17 &  17.12 & -0.1171 \tabularnewline
35 &  16 &  17.85 & -1.847 \tabularnewline
36 &  16 &  16.73 & -0.7267 \tabularnewline
37 &  16 &  17.05 & -1.054 \tabularnewline
38 &  16 &  17.41 & -1.413 \tabularnewline
39 &  17 &  17.58 & -0.5827 \tabularnewline
40 &  18 &  17.52 &  0.4805 \tabularnewline
41 &  16 &  16.51 & -0.5132 \tabularnewline
42 &  16 &  16.71 & -0.7148 \tabularnewline
43 &  16 &  17.88 & -1.878 \tabularnewline
44 &  19 &  17.85 &  1.153 \tabularnewline
45 &  16 &  17.46 & -1.456 \tabularnewline
46 &  17 &  17.12 & -0.1171 \tabularnewline
47 &  19 &  18.17 &  0.826 \tabularnewline
48 &  17 &  17.52 & -0.5195 \tabularnewline
49 &  17 &  17.12 & -0.1171 \tabularnewline
50 &  15 &  17.91 & -2.91 \tabularnewline
51 &  16 &  17.69 & -1.688 \tabularnewline
52 &  16 &  17.12 & -1.117 \tabularnewline
53 &  16 &  17.08 & -1.085 \tabularnewline
54 &  17 &  17.25 & -0.2548 \tabularnewline
55 &  18 &  17.55 &  0.4496 \tabularnewline
56 &  18 &  17.41 &  0.5866 \tabularnewline
57 &  18 &  17.55 &  0.4496 \tabularnewline
58 &  19 &  17.49 &  1.513 \tabularnewline
59 &  14 &  17.12 & -3.117 \tabularnewline
60 &  13 &  17.01 & -4.011 \tabularnewline
61 &  18 &  17.12 &  0.8829 \tabularnewline
62 &  16 &  16.46 & -0.4613 \tabularnewline
63 &  15 &  17.49 & -2.487 \tabularnewline
64 &  18 &  17.38 &  0.6188 \tabularnewline
65 &  18 &  17.58 &  0.4173 \tabularnewline
66 &  16 &  16.65 & -0.6516 \tabularnewline
67 &  19 &  17.08 &  1.915 \tabularnewline
68 &  17 &  17.09 & -0.08616 \tabularnewline
69 &  17 &  17.01 & -0.01106 \tabularnewline
70 &  19 &  17.52 &  1.481 \tabularnewline
71 &  19 &  17.61 &  1.386 \tabularnewline
72 &  20 &  17.01 &  2.989 \tabularnewline
73 &  19 &  18.24 &  0.7628 \tabularnewline
74 &  18 &  17.52 &  0.4805 \tabularnewline
75 &  16 &  17.68 & -1.677 \tabularnewline
76 &  16 &  17.38 & -1.381 \tabularnewline
77 &  15 &  17.41 & -2.413 \tabularnewline
78 &  20 &  17.52 &  2.481 \tabularnewline
79 &  16 &  16.83 & -0.8314 \tabularnewline
80 &  16 &  17.15 & -1.149 \tabularnewline
81 &  20 &  17.85 &  2.153 \tabularnewline
82 &  20 &  17.58 &  2.417 \tabularnewline
83 &  18 &  17.29 &  0.713 \tabularnewline
84 &  15 &  17.05 & -2.054 \tabularnewline
85 &  14 &  17.05 & -3.054 \tabularnewline
86 &  16 &  17.58 & -1.583 \tabularnewline
87 &  14 &  17.05 & -3.054 \tabularnewline
88 &  18 &  17.52 &  0.4805 \tabularnewline
89 &  20 &  17.85 &  2.153 \tabularnewline
90 &  20 &  17.09 &  2.914 \tabularnewline
91 &  18 &  17.05 &  0.9461 \tabularnewline
92 &  20 &  17.58 &  2.417 \tabularnewline
93 &  14 &  17.39 & -3.393 \tabularnewline
94 &  20 &  17.41 &  2.588 \tabularnewline
95 &  17 &  17.09 & -0.08616 \tabularnewline
96 &  20 &  17.52 &  2.481 \tabularnewline
97 &  14 &  17.58 & -3.583 \tabularnewline
98 &  20 &  16.79 &  3.21 \tabularnewline
99 &  19 &  17.05 &  1.946 \tabularnewline
100 &  18 &  17.12 &  0.8829 \tabularnewline
101 &  17 &  17.46 & -0.4563 \tabularnewline
102 &  17 &  17.85 & -0.8468 \tabularnewline
103 &  19 &  17.77 &  1.228 \tabularnewline
104 &  15 &  16.82 & -1.821 \tabularnewline
105 &  18 &  17.02 &  0.9783 \tabularnewline
106 &  15 &  16.79 & -1.79 \tabularnewline
107 &  16 &  17.38 & -1.381 \tabularnewline
108 &  16 &  17.85 & -1.847 \tabularnewline
109 &  20 &  17.41 &  2.587 \tabularnewline
110 &  18 &  16.79 &  1.21 \tabularnewline
111 &  20 &  17.58 &  2.417 \tabularnewline
112 &  18 &  17.35 &  0.6498 \tabularnewline
113 &  17 &  17.38 & -0.3812 \tabularnewline
114 &  19 &  17.44 &  1.556 \tabularnewline
115 &  18 &  17.85 &  0.1532 \tabularnewline
116 &  19 &  17.58 &  1.417 \tabularnewline
117 &  17 &  18.17 & -1.174 \tabularnewline
118 &  18 &  18.17 & -0.174 \tabularnewline
119 &  17 &  17.55 & -0.5504 \tabularnewline
120 &  16 &  17.41 & -1.413 \tabularnewline
121 &  19 &  16.82 &  2.179 \tabularnewline
122 &  18 &  17.78 &  0.2165 \tabularnewline
123 &  17 &  17.09 & -0.08616 \tabularnewline
124 &  18 &  17.55 &  0.4496 \tabularnewline
125 &  16 &  17.58 & -1.583 \tabularnewline
126 &  20 &  17.05 &  2.946 \tabularnewline
127 &  14 &  17.12 & -3.117 \tabularnewline
128 &  17 &  17.05 & -0.05392 \tabularnewline
129 &  13 &  16.85 & -3.853 \tabularnewline
130 &  13 &  16.75 & -3.746 \tabularnewline
131 &  17 &  17.05 & -0.05392 \tabularnewline
132 &  18 &  17.09 &  0.9138 \tabularnewline
133 &  16 &  17.58 & -1.583 \tabularnewline
134 &  19 &  16.99 &  2.009 \tabularnewline
135 &  17 &  17.29 & -0.287 \tabularnewline
136 &  16 &  17.41 & -1.413 \tabularnewline
137 &  17 &  17.09 & -0.08616 \tabularnewline
138 &  17 &  17.58 & -0.5827 \tabularnewline
139 &  17 &  16.65 &  0.3472 \tabularnewline
140 &  20 &  17.09 &  2.914 \tabularnewline
141 &  14 &  17.05 & -3.054 \tabularnewline
142 &  20 &  17.35 &  2.65 \tabularnewline
143 &  19 &  16.59 &  2.412 \tabularnewline
144 &  16 &  16.82 & -0.8208 \tabularnewline
145 &  19 &  17.61 &  1.386 \tabularnewline
146 &  17 &  17.55 & -0.5504 \tabularnewline
147 &  19 &  17.64 &  1.355 \tabularnewline
148 &  20 &  17.02 &  2.978 \tabularnewline
149 &  19 &  17.52 &  1.481 \tabularnewline
150 &  19 &  17.85 &  1.153 \tabularnewline
151 &  16 &  17.29 & -1.287 \tabularnewline
152 &  18 &  17.41 &  0.5866 \tabularnewline
153 &  16 &  17.52 & -1.519 \tabularnewline
154 &  17 &  17.09 & -0.08616 \tabularnewline
155 &  18 &  17.52 &  0.4805 \tabularnewline
156 &  16 &  16.96 & -0.9598 \tabularnewline
157 &  17 &  17.12 & -0.1171 \tabularnewline
158 &  15 &  16.73 & -1.727 \tabularnewline
159 &  18 &  16.13 &  1.866 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301376&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C] 18[/C][C] 17.15[/C][C] 0.8519[/C][/ROW]
[ROW][C]2[/C][C] 19[/C][C] 17.52[/C][C] 1.481[/C][/ROW]
[ROW][C]3[/C][C] 18[/C][C] 17.41[/C][C] 0.5866[/C][/ROW]
[ROW][C]4[/C][C] 15[/C][C] 17.41[/C][C]-2.413[/C][/ROW]
[ROW][C]5[/C][C] 19[/C][C] 17.44[/C][C] 1.556[/C][/ROW]
[ROW][C]6[/C][C] 19[/C][C] 17.58[/C][C] 1.417[/C][/ROW]
[ROW][C]7[/C][C] 19[/C][C] 17.68[/C][C] 1.323[/C][/ROW]
[ROW][C]8[/C][C] 18[/C][C] 17.66[/C][C] 0.3429[/C][/ROW]
[ROW][C]9[/C][C] 20[/C][C] 17.68[/C][C] 2.323[/C][/ROW]
[ROW][C]10[/C][C] 14[/C][C] 17.52[/C][C]-3.519[/C][/ROW]
[ROW][C]11[/C][C] 18[/C][C] 17.58[/C][C] 0.4173[/C][/ROW]
[ROW][C]12[/C][C] 19[/C][C] 17.85[/C][C] 1.153[/C][/ROW]
[ROW][C]13[/C][C] 16[/C][C] 17.44[/C][C]-1.444[/C][/ROW]
[ROW][C]14[/C][C] 18[/C][C] 16.76[/C][C] 1.242[/C][/ROW]
[ROW][C]15[/C][C] 18[/C][C] 17.58[/C][C] 0.4173[/C][/ROW]
[ROW][C]16[/C][C] 17[/C][C] 17.74[/C][C]-0.7407[/C][/ROW]
[ROW][C]17[/C][C] 19[/C][C] 17.37[/C][C] 1.629[/C][/ROW]
[ROW][C]18[/C][C] 19[/C][C] 17.12[/C][C] 1.883[/C][/ROW]
[ROW][C]19[/C][C] 17[/C][C] 17.81[/C][C]-0.8132[/C][/ROW]
[ROW][C]20[/C][C] 18[/C][C] 17.91[/C][C] 0.09004[/C][/ROW]
[ROW][C]21[/C][C] 16[/C][C] 17.91[/C][C]-1.91[/C][/ROW]
[ROW][C]22[/C][C] 20[/C][C] 17.72[/C][C] 2.28[/C][/ROW]
[ROW][C]23[/C][C] 13[/C][C] 17.05[/C][C]-4.054[/C][/ROW]
[ROW][C]24[/C][C] 19[/C][C] 17.22[/C][C] 1.777[/C][/ROW]
[ROW][C]25[/C][C] 15[/C][C] 17.55[/C][C]-2.55[/C][/ROW]
[ROW][C]26[/C][C] 17[/C][C] 17.91[/C][C]-0.91[/C][/ROW]
[ROW][C]27[/C][C] 17[/C][C] 17.78[/C][C]-0.7835[/C][/ROW]
[ROW][C]28[/C][C] 17[/C][C] 17.91[/C][C]-0.91[/C][/ROW]
[ROW][C]29[/C][C] 19[/C][C] 17.58[/C][C] 1.417[/C][/ROW]
[ROW][C]30[/C][C] 18[/C][C] 15.78[/C][C] 2.216[/C][/ROW]
[ROW][C]31[/C][C] 19[/C][C] 17.91[/C][C] 1.09[/C][/ROW]
[ROW][C]32[/C][C] 20[/C][C] 17.49[/C][C] 2.513[/C][/ROW]
[ROW][C]33[/C][C] 16[/C][C] 17.05[/C][C]-1.054[/C][/ROW]
[ROW][C]34[/C][C] 17[/C][C] 17.12[/C][C]-0.1171[/C][/ROW]
[ROW][C]35[/C][C] 16[/C][C] 17.85[/C][C]-1.847[/C][/ROW]
[ROW][C]36[/C][C] 16[/C][C] 16.73[/C][C]-0.7267[/C][/ROW]
[ROW][C]37[/C][C] 16[/C][C] 17.05[/C][C]-1.054[/C][/ROW]
[ROW][C]38[/C][C] 16[/C][C] 17.41[/C][C]-1.413[/C][/ROW]
[ROW][C]39[/C][C] 17[/C][C] 17.58[/C][C]-0.5827[/C][/ROW]
[ROW][C]40[/C][C] 18[/C][C] 17.52[/C][C] 0.4805[/C][/ROW]
[ROW][C]41[/C][C] 16[/C][C] 16.51[/C][C]-0.5132[/C][/ROW]
[ROW][C]42[/C][C] 16[/C][C] 16.71[/C][C]-0.7148[/C][/ROW]
[ROW][C]43[/C][C] 16[/C][C] 17.88[/C][C]-1.878[/C][/ROW]
[ROW][C]44[/C][C] 19[/C][C] 17.85[/C][C] 1.153[/C][/ROW]
[ROW][C]45[/C][C] 16[/C][C] 17.46[/C][C]-1.456[/C][/ROW]
[ROW][C]46[/C][C] 17[/C][C] 17.12[/C][C]-0.1171[/C][/ROW]
[ROW][C]47[/C][C] 19[/C][C] 18.17[/C][C] 0.826[/C][/ROW]
[ROW][C]48[/C][C] 17[/C][C] 17.52[/C][C]-0.5195[/C][/ROW]
[ROW][C]49[/C][C] 17[/C][C] 17.12[/C][C]-0.1171[/C][/ROW]
[ROW][C]50[/C][C] 15[/C][C] 17.91[/C][C]-2.91[/C][/ROW]
[ROW][C]51[/C][C] 16[/C][C] 17.69[/C][C]-1.688[/C][/ROW]
[ROW][C]52[/C][C] 16[/C][C] 17.12[/C][C]-1.117[/C][/ROW]
[ROW][C]53[/C][C] 16[/C][C] 17.08[/C][C]-1.085[/C][/ROW]
[ROW][C]54[/C][C] 17[/C][C] 17.25[/C][C]-0.2548[/C][/ROW]
[ROW][C]55[/C][C] 18[/C][C] 17.55[/C][C] 0.4496[/C][/ROW]
[ROW][C]56[/C][C] 18[/C][C] 17.41[/C][C] 0.5866[/C][/ROW]
[ROW][C]57[/C][C] 18[/C][C] 17.55[/C][C] 0.4496[/C][/ROW]
[ROW][C]58[/C][C] 19[/C][C] 17.49[/C][C] 1.513[/C][/ROW]
[ROW][C]59[/C][C] 14[/C][C] 17.12[/C][C]-3.117[/C][/ROW]
[ROW][C]60[/C][C] 13[/C][C] 17.01[/C][C]-4.011[/C][/ROW]
[ROW][C]61[/C][C] 18[/C][C] 17.12[/C][C] 0.8829[/C][/ROW]
[ROW][C]62[/C][C] 16[/C][C] 16.46[/C][C]-0.4613[/C][/ROW]
[ROW][C]63[/C][C] 15[/C][C] 17.49[/C][C]-2.487[/C][/ROW]
[ROW][C]64[/C][C] 18[/C][C] 17.38[/C][C] 0.6188[/C][/ROW]
[ROW][C]65[/C][C] 18[/C][C] 17.58[/C][C] 0.4173[/C][/ROW]
[ROW][C]66[/C][C] 16[/C][C] 16.65[/C][C]-0.6516[/C][/ROW]
[ROW][C]67[/C][C] 19[/C][C] 17.08[/C][C] 1.915[/C][/ROW]
[ROW][C]68[/C][C] 17[/C][C] 17.09[/C][C]-0.08616[/C][/ROW]
[ROW][C]69[/C][C] 17[/C][C] 17.01[/C][C]-0.01106[/C][/ROW]
[ROW][C]70[/C][C] 19[/C][C] 17.52[/C][C] 1.481[/C][/ROW]
[ROW][C]71[/C][C] 19[/C][C] 17.61[/C][C] 1.386[/C][/ROW]
[ROW][C]72[/C][C] 20[/C][C] 17.01[/C][C] 2.989[/C][/ROW]
[ROW][C]73[/C][C] 19[/C][C] 18.24[/C][C] 0.7628[/C][/ROW]
[ROW][C]74[/C][C] 18[/C][C] 17.52[/C][C] 0.4805[/C][/ROW]
[ROW][C]75[/C][C] 16[/C][C] 17.68[/C][C]-1.677[/C][/ROW]
[ROW][C]76[/C][C] 16[/C][C] 17.38[/C][C]-1.381[/C][/ROW]
[ROW][C]77[/C][C] 15[/C][C] 17.41[/C][C]-2.413[/C][/ROW]
[ROW][C]78[/C][C] 20[/C][C] 17.52[/C][C] 2.481[/C][/ROW]
[ROW][C]79[/C][C] 16[/C][C] 16.83[/C][C]-0.8314[/C][/ROW]
[ROW][C]80[/C][C] 16[/C][C] 17.15[/C][C]-1.149[/C][/ROW]
[ROW][C]81[/C][C] 20[/C][C] 17.85[/C][C] 2.153[/C][/ROW]
[ROW][C]82[/C][C] 20[/C][C] 17.58[/C][C] 2.417[/C][/ROW]
[ROW][C]83[/C][C] 18[/C][C] 17.29[/C][C] 0.713[/C][/ROW]
[ROW][C]84[/C][C] 15[/C][C] 17.05[/C][C]-2.054[/C][/ROW]
[ROW][C]85[/C][C] 14[/C][C] 17.05[/C][C]-3.054[/C][/ROW]
[ROW][C]86[/C][C] 16[/C][C] 17.58[/C][C]-1.583[/C][/ROW]
[ROW][C]87[/C][C] 14[/C][C] 17.05[/C][C]-3.054[/C][/ROW]
[ROW][C]88[/C][C] 18[/C][C] 17.52[/C][C] 0.4805[/C][/ROW]
[ROW][C]89[/C][C] 20[/C][C] 17.85[/C][C] 2.153[/C][/ROW]
[ROW][C]90[/C][C] 20[/C][C] 17.09[/C][C] 2.914[/C][/ROW]
[ROW][C]91[/C][C] 18[/C][C] 17.05[/C][C] 0.9461[/C][/ROW]
[ROW][C]92[/C][C] 20[/C][C] 17.58[/C][C] 2.417[/C][/ROW]
[ROW][C]93[/C][C] 14[/C][C] 17.39[/C][C]-3.393[/C][/ROW]
[ROW][C]94[/C][C] 20[/C][C] 17.41[/C][C] 2.588[/C][/ROW]
[ROW][C]95[/C][C] 17[/C][C] 17.09[/C][C]-0.08616[/C][/ROW]
[ROW][C]96[/C][C] 20[/C][C] 17.52[/C][C] 2.481[/C][/ROW]
[ROW][C]97[/C][C] 14[/C][C] 17.58[/C][C]-3.583[/C][/ROW]
[ROW][C]98[/C][C] 20[/C][C] 16.79[/C][C] 3.21[/C][/ROW]
[ROW][C]99[/C][C] 19[/C][C] 17.05[/C][C] 1.946[/C][/ROW]
[ROW][C]100[/C][C] 18[/C][C] 17.12[/C][C] 0.8829[/C][/ROW]
[ROW][C]101[/C][C] 17[/C][C] 17.46[/C][C]-0.4563[/C][/ROW]
[ROW][C]102[/C][C] 17[/C][C] 17.85[/C][C]-0.8468[/C][/ROW]
[ROW][C]103[/C][C] 19[/C][C] 17.77[/C][C] 1.228[/C][/ROW]
[ROW][C]104[/C][C] 15[/C][C] 16.82[/C][C]-1.821[/C][/ROW]
[ROW][C]105[/C][C] 18[/C][C] 17.02[/C][C] 0.9783[/C][/ROW]
[ROW][C]106[/C][C] 15[/C][C] 16.79[/C][C]-1.79[/C][/ROW]
[ROW][C]107[/C][C] 16[/C][C] 17.38[/C][C]-1.381[/C][/ROW]
[ROW][C]108[/C][C] 16[/C][C] 17.85[/C][C]-1.847[/C][/ROW]
[ROW][C]109[/C][C] 20[/C][C] 17.41[/C][C] 2.587[/C][/ROW]
[ROW][C]110[/C][C] 18[/C][C] 16.79[/C][C] 1.21[/C][/ROW]
[ROW][C]111[/C][C] 20[/C][C] 17.58[/C][C] 2.417[/C][/ROW]
[ROW][C]112[/C][C] 18[/C][C] 17.35[/C][C] 0.6498[/C][/ROW]
[ROW][C]113[/C][C] 17[/C][C] 17.38[/C][C]-0.3812[/C][/ROW]
[ROW][C]114[/C][C] 19[/C][C] 17.44[/C][C] 1.556[/C][/ROW]
[ROW][C]115[/C][C] 18[/C][C] 17.85[/C][C] 0.1532[/C][/ROW]
[ROW][C]116[/C][C] 19[/C][C] 17.58[/C][C] 1.417[/C][/ROW]
[ROW][C]117[/C][C] 17[/C][C] 18.17[/C][C]-1.174[/C][/ROW]
[ROW][C]118[/C][C] 18[/C][C] 18.17[/C][C]-0.174[/C][/ROW]
[ROW][C]119[/C][C] 17[/C][C] 17.55[/C][C]-0.5504[/C][/ROW]
[ROW][C]120[/C][C] 16[/C][C] 17.41[/C][C]-1.413[/C][/ROW]
[ROW][C]121[/C][C] 19[/C][C] 16.82[/C][C] 2.179[/C][/ROW]
[ROW][C]122[/C][C] 18[/C][C] 17.78[/C][C] 0.2165[/C][/ROW]
[ROW][C]123[/C][C] 17[/C][C] 17.09[/C][C]-0.08616[/C][/ROW]
[ROW][C]124[/C][C] 18[/C][C] 17.55[/C][C] 0.4496[/C][/ROW]
[ROW][C]125[/C][C] 16[/C][C] 17.58[/C][C]-1.583[/C][/ROW]
[ROW][C]126[/C][C] 20[/C][C] 17.05[/C][C] 2.946[/C][/ROW]
[ROW][C]127[/C][C] 14[/C][C] 17.12[/C][C]-3.117[/C][/ROW]
[ROW][C]128[/C][C] 17[/C][C] 17.05[/C][C]-0.05392[/C][/ROW]
[ROW][C]129[/C][C] 13[/C][C] 16.85[/C][C]-3.853[/C][/ROW]
[ROW][C]130[/C][C] 13[/C][C] 16.75[/C][C]-3.746[/C][/ROW]
[ROW][C]131[/C][C] 17[/C][C] 17.05[/C][C]-0.05392[/C][/ROW]
[ROW][C]132[/C][C] 18[/C][C] 17.09[/C][C] 0.9138[/C][/ROW]
[ROW][C]133[/C][C] 16[/C][C] 17.58[/C][C]-1.583[/C][/ROW]
[ROW][C]134[/C][C] 19[/C][C] 16.99[/C][C] 2.009[/C][/ROW]
[ROW][C]135[/C][C] 17[/C][C] 17.29[/C][C]-0.287[/C][/ROW]
[ROW][C]136[/C][C] 16[/C][C] 17.41[/C][C]-1.413[/C][/ROW]
[ROW][C]137[/C][C] 17[/C][C] 17.09[/C][C]-0.08616[/C][/ROW]
[ROW][C]138[/C][C] 17[/C][C] 17.58[/C][C]-0.5827[/C][/ROW]
[ROW][C]139[/C][C] 17[/C][C] 16.65[/C][C] 0.3472[/C][/ROW]
[ROW][C]140[/C][C] 20[/C][C] 17.09[/C][C] 2.914[/C][/ROW]
[ROW][C]141[/C][C] 14[/C][C] 17.05[/C][C]-3.054[/C][/ROW]
[ROW][C]142[/C][C] 20[/C][C] 17.35[/C][C] 2.65[/C][/ROW]
[ROW][C]143[/C][C] 19[/C][C] 16.59[/C][C] 2.412[/C][/ROW]
[ROW][C]144[/C][C] 16[/C][C] 16.82[/C][C]-0.8208[/C][/ROW]
[ROW][C]145[/C][C] 19[/C][C] 17.61[/C][C] 1.386[/C][/ROW]
[ROW][C]146[/C][C] 17[/C][C] 17.55[/C][C]-0.5504[/C][/ROW]
[ROW][C]147[/C][C] 19[/C][C] 17.64[/C][C] 1.355[/C][/ROW]
[ROW][C]148[/C][C] 20[/C][C] 17.02[/C][C] 2.978[/C][/ROW]
[ROW][C]149[/C][C] 19[/C][C] 17.52[/C][C] 1.481[/C][/ROW]
[ROW][C]150[/C][C] 19[/C][C] 17.85[/C][C] 1.153[/C][/ROW]
[ROW][C]151[/C][C] 16[/C][C] 17.29[/C][C]-1.287[/C][/ROW]
[ROW][C]152[/C][C] 18[/C][C] 17.41[/C][C] 0.5866[/C][/ROW]
[ROW][C]153[/C][C] 16[/C][C] 17.52[/C][C]-1.519[/C][/ROW]
[ROW][C]154[/C][C] 17[/C][C] 17.09[/C][C]-0.08616[/C][/ROW]
[ROW][C]155[/C][C] 18[/C][C] 17.52[/C][C] 0.4805[/C][/ROW]
[ROW][C]156[/C][C] 16[/C][C] 16.96[/C][C]-0.9598[/C][/ROW]
[ROW][C]157[/C][C] 17[/C][C] 17.12[/C][C]-0.1171[/C][/ROW]
[ROW][C]158[/C][C] 15[/C][C] 16.73[/C][C]-1.727[/C][/ROW]
[ROW][C]159[/C][C] 18[/C][C] 16.13[/C][C] 1.866[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301376&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301376&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 18 17.15 0.8519
2 19 17.52 1.481
3 18 17.41 0.5866
4 15 17.41-2.413
5 19 17.44 1.556
6 19 17.58 1.417
7 19 17.68 1.323
8 18 17.66 0.3429
9 20 17.68 2.323
10 14 17.52-3.519
11 18 17.58 0.4173
12 19 17.85 1.153
13 16 17.44-1.444
14 18 16.76 1.242
15 18 17.58 0.4173
16 17 17.74-0.7407
17 19 17.37 1.629
18 19 17.12 1.883
19 17 17.81-0.8132
20 18 17.91 0.09004
21 16 17.91-1.91
22 20 17.72 2.28
23 13 17.05-4.054
24 19 17.22 1.777
25 15 17.55-2.55
26 17 17.91-0.91
27 17 17.78-0.7835
28 17 17.91-0.91
29 19 17.58 1.417
30 18 15.78 2.216
31 19 17.91 1.09
32 20 17.49 2.513
33 16 17.05-1.054
34 17 17.12-0.1171
35 16 17.85-1.847
36 16 16.73-0.7267
37 16 17.05-1.054
38 16 17.41-1.413
39 17 17.58-0.5827
40 18 17.52 0.4805
41 16 16.51-0.5132
42 16 16.71-0.7148
43 16 17.88-1.878
44 19 17.85 1.153
45 16 17.46-1.456
46 17 17.12-0.1171
47 19 18.17 0.826
48 17 17.52-0.5195
49 17 17.12-0.1171
50 15 17.91-2.91
51 16 17.69-1.688
52 16 17.12-1.117
53 16 17.08-1.085
54 17 17.25-0.2548
55 18 17.55 0.4496
56 18 17.41 0.5866
57 18 17.55 0.4496
58 19 17.49 1.513
59 14 17.12-3.117
60 13 17.01-4.011
61 18 17.12 0.8829
62 16 16.46-0.4613
63 15 17.49-2.487
64 18 17.38 0.6188
65 18 17.58 0.4173
66 16 16.65-0.6516
67 19 17.08 1.915
68 17 17.09-0.08616
69 17 17.01-0.01106
70 19 17.52 1.481
71 19 17.61 1.386
72 20 17.01 2.989
73 19 18.24 0.7628
74 18 17.52 0.4805
75 16 17.68-1.677
76 16 17.38-1.381
77 15 17.41-2.413
78 20 17.52 2.481
79 16 16.83-0.8314
80 16 17.15-1.149
81 20 17.85 2.153
82 20 17.58 2.417
83 18 17.29 0.713
84 15 17.05-2.054
85 14 17.05-3.054
86 16 17.58-1.583
87 14 17.05-3.054
88 18 17.52 0.4805
89 20 17.85 2.153
90 20 17.09 2.914
91 18 17.05 0.9461
92 20 17.58 2.417
93 14 17.39-3.393
94 20 17.41 2.588
95 17 17.09-0.08616
96 20 17.52 2.481
97 14 17.58-3.583
98 20 16.79 3.21
99 19 17.05 1.946
100 18 17.12 0.8829
101 17 17.46-0.4563
102 17 17.85-0.8468
103 19 17.77 1.228
104 15 16.82-1.821
105 18 17.02 0.9783
106 15 16.79-1.79
107 16 17.38-1.381
108 16 17.85-1.847
109 20 17.41 2.587
110 18 16.79 1.21
111 20 17.58 2.417
112 18 17.35 0.6498
113 17 17.38-0.3812
114 19 17.44 1.556
115 18 17.85 0.1532
116 19 17.58 1.417
117 17 18.17-1.174
118 18 18.17-0.174
119 17 17.55-0.5504
120 16 17.41-1.413
121 19 16.82 2.179
122 18 17.78 0.2165
123 17 17.09-0.08616
124 18 17.55 0.4496
125 16 17.58-1.583
126 20 17.05 2.946
127 14 17.12-3.117
128 17 17.05-0.05392
129 13 16.85-3.853
130 13 16.75-3.746
131 17 17.05-0.05392
132 18 17.09 0.9138
133 16 17.58-1.583
134 19 16.99 2.009
135 17 17.29-0.287
136 16 17.41-1.413
137 17 17.09-0.08616
138 17 17.58-0.5827
139 17 16.65 0.3472
140 20 17.09 2.914
141 14 17.05-3.054
142 20 17.35 2.65
143 19 16.59 2.412
144 16 16.82-0.8208
145 19 17.61 1.386
146 17 17.55-0.5504
147 19 17.64 1.355
148 20 17.02 2.978
149 19 17.52 1.481
150 19 17.85 1.153
151 16 17.29-1.287
152 18 17.41 0.5866
153 16 17.52-1.519
154 17 17.09-0.08616
155 18 17.52 0.4805
156 16 16.96-0.9598
157 17 17.12-0.1171
158 15 16.73-1.727
159 18 16.13 1.866







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
8 0.3598 0.7196 0.6402
9 0.2595 0.5189 0.7405
10 0.7041 0.5917 0.2959
11 0.5882 0.8236 0.4118
12 0.5551 0.8897 0.4449
13 0.6568 0.6864 0.3432
14 0.6817 0.6366 0.3183
15 0.597 0.806 0.403
16 0.5501 0.8999 0.4499
17 0.5355 0.929 0.4645
18 0.5072 0.9855 0.4928
19 0.457 0.914 0.543
20 0.3787 0.7574 0.6213
21 0.3739 0.7478 0.6261
22 0.3906 0.7811 0.6094
23 0.7653 0.4694 0.2347
24 0.7655 0.469 0.2345
25 0.8032 0.3936 0.1968
26 0.7623 0.4755 0.2377
27 0.7209 0.5582 0.2791
28 0.6716 0.6568 0.3284
29 0.655 0.6899 0.345
30 0.6226 0.7548 0.3774
31 0.5952 0.8097 0.4048
32 0.6449 0.7103 0.3551
33 0.6303 0.7395 0.3697
34 0.5769 0.8462 0.4231
35 0.5774 0.8453 0.4227
36 0.5434 0.9133 0.4566
37 0.516 0.9681 0.484
38 0.5026 0.9947 0.4974
39 0.4503 0.9007 0.5497
40 0.4021 0.8043 0.5979
41 0.3703 0.7406 0.6297
42 0.3319 0.6637 0.6681
43 0.3293 0.6587 0.6707
44 0.3055 0.6109 0.6945
45 0.2919 0.5838 0.7081
46 0.2482 0.4964 0.7518
47 0.2183 0.4365 0.7817
48 0.1839 0.3678 0.8161
49 0.1513 0.3026 0.8487
50 0.204 0.4079 0.796
51 0.2003 0.4007 0.7997
52 0.1792 0.3585 0.8208
53 0.1572 0.3145 0.8428
54 0.1294 0.2589 0.8706
55 0.109 0.2179 0.891
56 0.08928 0.1786 0.9107
57 0.07364 0.1473 0.9264
58 0.07267 0.1453 0.9273
59 0.1173 0.2346 0.8827
60 0.2488 0.4975 0.7512
61 0.2235 0.447 0.7765
62 0.1905 0.381 0.8095
63 0.2212 0.4424 0.7788
64 0.1922 0.3844 0.8078
65 0.1645 0.329 0.8355
66 0.1396 0.2792 0.8604
67 0.1474 0.2948 0.8526
68 0.1218 0.2436 0.8782
69 0.09949 0.199 0.9005
70 0.09542 0.1908 0.9046
71 0.08933 0.1787 0.9107
72 0.1326 0.2652 0.8674
73 0.1131 0.2262 0.8869
74 0.09393 0.1879 0.9061
75 0.09179 0.1836 0.9082
76 0.0844 0.1688 0.9156
77 0.1003 0.2005 0.8997
78 0.1232 0.2464 0.8768
79 0.106 0.212 0.894
80 0.09343 0.1869 0.9066
81 0.103 0.2059 0.897
82 0.1226 0.2453 0.8774
83 0.1044 0.2087 0.8956
84 0.1119 0.2237 0.8881
85 0.1619 0.3239 0.8381
86 0.1546 0.3092 0.8454
87 0.2167 0.4335 0.7833
88 0.187 0.374 0.813
89 0.2013 0.4026 0.7987
90 0.2665 0.5329 0.7335
91 0.2389 0.4778 0.7611
92 0.2779 0.5557 0.7221
93 0.4157 0.8314 0.5843
94 0.4542 0.9084 0.5458
95 0.4076 0.8153 0.5924
96 0.4516 0.9031 0.5484
97 0.5845 0.8311 0.4155
98 0.6924 0.6153 0.3076
99 0.696 0.6081 0.304
100 0.6656 0.6689 0.3344
101 0.6303 0.7395 0.3697
102 0.5967 0.8066 0.4033
103 0.5824 0.8351 0.4176
104 0.5836 0.8328 0.4164
105 0.5429 0.9142 0.4571
106 0.5454 0.9092 0.4546
107 0.5285 0.9431 0.4715
108 0.54 0.9201 0.46
109 0.6181 0.7639 0.3819
110 0.5923 0.8154 0.4077
111 0.6507 0.6986 0.3493
112 0.6076 0.7847 0.3924
113 0.5613 0.8774 0.4387
114 0.5703 0.8595 0.4297
115 0.518 0.964 0.482
116 0.5181 0.9638 0.4819
117 0.4838 0.9676 0.5162
118 0.4303 0.8607 0.5697
119 0.3882 0.7764 0.6118
120 0.3544 0.7087 0.6456
121 0.3921 0.7842 0.6079
122 0.3478 0.6956 0.6522
123 0.2994 0.5987 0.7006
124 0.2524 0.5047 0.7476
125 0.2307 0.4614 0.7693
126 0.294 0.588 0.706
127 0.373 0.7459 0.627
128 0.3187 0.6374 0.6813
129 0.4586 0.9173 0.5414
130 0.7568 0.4865 0.2432
131 0.7097 0.5806 0.2903
132 0.6731 0.6539 0.3269
133 0.6484 0.7032 0.3516
134 0.6416 0.7168 0.3584
135 0.5766 0.8468 0.4234
136 0.5881 0.8238 0.4119
137 0.5155 0.969 0.4845
138 0.4492 0.8984 0.5508
139 0.3751 0.7502 0.6249
140 0.5396 0.9208 0.4604
141 0.8067 0.3866 0.1933
142 0.8779 0.2441 0.1221
143 0.8694 0.2613 0.1306
144 0.8777 0.2446 0.1223
145 0.8231 0.3537 0.1769
146 0.8251 0.3498 0.1749
147 0.8571 0.2858 0.1429
148 0.8292 0.3417 0.1708
149 0.8202 0.3596 0.1798
150 0.7521 0.4959 0.2479
151 0.5932 0.8136 0.4068

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
8 &  0.3598 &  0.7196 &  0.6402 \tabularnewline
9 &  0.2595 &  0.5189 &  0.7405 \tabularnewline
10 &  0.7041 &  0.5917 &  0.2959 \tabularnewline
11 &  0.5882 &  0.8236 &  0.4118 \tabularnewline
12 &  0.5551 &  0.8897 &  0.4449 \tabularnewline
13 &  0.6568 &  0.6864 &  0.3432 \tabularnewline
14 &  0.6817 &  0.6366 &  0.3183 \tabularnewline
15 &  0.597 &  0.806 &  0.403 \tabularnewline
16 &  0.5501 &  0.8999 &  0.4499 \tabularnewline
17 &  0.5355 &  0.929 &  0.4645 \tabularnewline
18 &  0.5072 &  0.9855 &  0.4928 \tabularnewline
19 &  0.457 &  0.914 &  0.543 \tabularnewline
20 &  0.3787 &  0.7574 &  0.6213 \tabularnewline
21 &  0.3739 &  0.7478 &  0.6261 \tabularnewline
22 &  0.3906 &  0.7811 &  0.6094 \tabularnewline
23 &  0.7653 &  0.4694 &  0.2347 \tabularnewline
24 &  0.7655 &  0.469 &  0.2345 \tabularnewline
25 &  0.8032 &  0.3936 &  0.1968 \tabularnewline
26 &  0.7623 &  0.4755 &  0.2377 \tabularnewline
27 &  0.7209 &  0.5582 &  0.2791 \tabularnewline
28 &  0.6716 &  0.6568 &  0.3284 \tabularnewline
29 &  0.655 &  0.6899 &  0.345 \tabularnewline
30 &  0.6226 &  0.7548 &  0.3774 \tabularnewline
31 &  0.5952 &  0.8097 &  0.4048 \tabularnewline
32 &  0.6449 &  0.7103 &  0.3551 \tabularnewline
33 &  0.6303 &  0.7395 &  0.3697 \tabularnewline
34 &  0.5769 &  0.8462 &  0.4231 \tabularnewline
35 &  0.5774 &  0.8453 &  0.4227 \tabularnewline
36 &  0.5434 &  0.9133 &  0.4566 \tabularnewline
37 &  0.516 &  0.9681 &  0.484 \tabularnewline
38 &  0.5026 &  0.9947 &  0.4974 \tabularnewline
39 &  0.4503 &  0.9007 &  0.5497 \tabularnewline
40 &  0.4021 &  0.8043 &  0.5979 \tabularnewline
41 &  0.3703 &  0.7406 &  0.6297 \tabularnewline
42 &  0.3319 &  0.6637 &  0.6681 \tabularnewline
43 &  0.3293 &  0.6587 &  0.6707 \tabularnewline
44 &  0.3055 &  0.6109 &  0.6945 \tabularnewline
45 &  0.2919 &  0.5838 &  0.7081 \tabularnewline
46 &  0.2482 &  0.4964 &  0.7518 \tabularnewline
47 &  0.2183 &  0.4365 &  0.7817 \tabularnewline
48 &  0.1839 &  0.3678 &  0.8161 \tabularnewline
49 &  0.1513 &  0.3026 &  0.8487 \tabularnewline
50 &  0.204 &  0.4079 &  0.796 \tabularnewline
51 &  0.2003 &  0.4007 &  0.7997 \tabularnewline
52 &  0.1792 &  0.3585 &  0.8208 \tabularnewline
53 &  0.1572 &  0.3145 &  0.8428 \tabularnewline
54 &  0.1294 &  0.2589 &  0.8706 \tabularnewline
55 &  0.109 &  0.2179 &  0.891 \tabularnewline
56 &  0.08928 &  0.1786 &  0.9107 \tabularnewline
57 &  0.07364 &  0.1473 &  0.9264 \tabularnewline
58 &  0.07267 &  0.1453 &  0.9273 \tabularnewline
59 &  0.1173 &  0.2346 &  0.8827 \tabularnewline
60 &  0.2488 &  0.4975 &  0.7512 \tabularnewline
61 &  0.2235 &  0.447 &  0.7765 \tabularnewline
62 &  0.1905 &  0.381 &  0.8095 \tabularnewline
63 &  0.2212 &  0.4424 &  0.7788 \tabularnewline
64 &  0.1922 &  0.3844 &  0.8078 \tabularnewline
65 &  0.1645 &  0.329 &  0.8355 \tabularnewline
66 &  0.1396 &  0.2792 &  0.8604 \tabularnewline
67 &  0.1474 &  0.2948 &  0.8526 \tabularnewline
68 &  0.1218 &  0.2436 &  0.8782 \tabularnewline
69 &  0.09949 &  0.199 &  0.9005 \tabularnewline
70 &  0.09542 &  0.1908 &  0.9046 \tabularnewline
71 &  0.08933 &  0.1787 &  0.9107 \tabularnewline
72 &  0.1326 &  0.2652 &  0.8674 \tabularnewline
73 &  0.1131 &  0.2262 &  0.8869 \tabularnewline
74 &  0.09393 &  0.1879 &  0.9061 \tabularnewline
75 &  0.09179 &  0.1836 &  0.9082 \tabularnewline
76 &  0.0844 &  0.1688 &  0.9156 \tabularnewline
77 &  0.1003 &  0.2005 &  0.8997 \tabularnewline
78 &  0.1232 &  0.2464 &  0.8768 \tabularnewline
79 &  0.106 &  0.212 &  0.894 \tabularnewline
80 &  0.09343 &  0.1869 &  0.9066 \tabularnewline
81 &  0.103 &  0.2059 &  0.897 \tabularnewline
82 &  0.1226 &  0.2453 &  0.8774 \tabularnewline
83 &  0.1044 &  0.2087 &  0.8956 \tabularnewline
84 &  0.1119 &  0.2237 &  0.8881 \tabularnewline
85 &  0.1619 &  0.3239 &  0.8381 \tabularnewline
86 &  0.1546 &  0.3092 &  0.8454 \tabularnewline
87 &  0.2167 &  0.4335 &  0.7833 \tabularnewline
88 &  0.187 &  0.374 &  0.813 \tabularnewline
89 &  0.2013 &  0.4026 &  0.7987 \tabularnewline
90 &  0.2665 &  0.5329 &  0.7335 \tabularnewline
91 &  0.2389 &  0.4778 &  0.7611 \tabularnewline
92 &  0.2779 &  0.5557 &  0.7221 \tabularnewline
93 &  0.4157 &  0.8314 &  0.5843 \tabularnewline
94 &  0.4542 &  0.9084 &  0.5458 \tabularnewline
95 &  0.4076 &  0.8153 &  0.5924 \tabularnewline
96 &  0.4516 &  0.9031 &  0.5484 \tabularnewline
97 &  0.5845 &  0.8311 &  0.4155 \tabularnewline
98 &  0.6924 &  0.6153 &  0.3076 \tabularnewline
99 &  0.696 &  0.6081 &  0.304 \tabularnewline
100 &  0.6656 &  0.6689 &  0.3344 \tabularnewline
101 &  0.6303 &  0.7395 &  0.3697 \tabularnewline
102 &  0.5967 &  0.8066 &  0.4033 \tabularnewline
103 &  0.5824 &  0.8351 &  0.4176 \tabularnewline
104 &  0.5836 &  0.8328 &  0.4164 \tabularnewline
105 &  0.5429 &  0.9142 &  0.4571 \tabularnewline
106 &  0.5454 &  0.9092 &  0.4546 \tabularnewline
107 &  0.5285 &  0.9431 &  0.4715 \tabularnewline
108 &  0.54 &  0.9201 &  0.46 \tabularnewline
109 &  0.6181 &  0.7639 &  0.3819 \tabularnewline
110 &  0.5923 &  0.8154 &  0.4077 \tabularnewline
111 &  0.6507 &  0.6986 &  0.3493 \tabularnewline
112 &  0.6076 &  0.7847 &  0.3924 \tabularnewline
113 &  0.5613 &  0.8774 &  0.4387 \tabularnewline
114 &  0.5703 &  0.8595 &  0.4297 \tabularnewline
115 &  0.518 &  0.964 &  0.482 \tabularnewline
116 &  0.5181 &  0.9638 &  0.4819 \tabularnewline
117 &  0.4838 &  0.9676 &  0.5162 \tabularnewline
118 &  0.4303 &  0.8607 &  0.5697 \tabularnewline
119 &  0.3882 &  0.7764 &  0.6118 \tabularnewline
120 &  0.3544 &  0.7087 &  0.6456 \tabularnewline
121 &  0.3921 &  0.7842 &  0.6079 \tabularnewline
122 &  0.3478 &  0.6956 &  0.6522 \tabularnewline
123 &  0.2994 &  0.5987 &  0.7006 \tabularnewline
124 &  0.2524 &  0.5047 &  0.7476 \tabularnewline
125 &  0.2307 &  0.4614 &  0.7693 \tabularnewline
126 &  0.294 &  0.588 &  0.706 \tabularnewline
127 &  0.373 &  0.7459 &  0.627 \tabularnewline
128 &  0.3187 &  0.6374 &  0.6813 \tabularnewline
129 &  0.4586 &  0.9173 &  0.5414 \tabularnewline
130 &  0.7568 &  0.4865 &  0.2432 \tabularnewline
131 &  0.7097 &  0.5806 &  0.2903 \tabularnewline
132 &  0.6731 &  0.6539 &  0.3269 \tabularnewline
133 &  0.6484 &  0.7032 &  0.3516 \tabularnewline
134 &  0.6416 &  0.7168 &  0.3584 \tabularnewline
135 &  0.5766 &  0.8468 &  0.4234 \tabularnewline
136 &  0.5881 &  0.8238 &  0.4119 \tabularnewline
137 &  0.5155 &  0.969 &  0.4845 \tabularnewline
138 &  0.4492 &  0.8984 &  0.5508 \tabularnewline
139 &  0.3751 &  0.7502 &  0.6249 \tabularnewline
140 &  0.5396 &  0.9208 &  0.4604 \tabularnewline
141 &  0.8067 &  0.3866 &  0.1933 \tabularnewline
142 &  0.8779 &  0.2441 &  0.1221 \tabularnewline
143 &  0.8694 &  0.2613 &  0.1306 \tabularnewline
144 &  0.8777 &  0.2446 &  0.1223 \tabularnewline
145 &  0.8231 &  0.3537 &  0.1769 \tabularnewline
146 &  0.8251 &  0.3498 &  0.1749 \tabularnewline
147 &  0.8571 &  0.2858 &  0.1429 \tabularnewline
148 &  0.8292 &  0.3417 &  0.1708 \tabularnewline
149 &  0.8202 &  0.3596 &  0.1798 \tabularnewline
150 &  0.7521 &  0.4959 &  0.2479 \tabularnewline
151 &  0.5932 &  0.8136 &  0.4068 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301376&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]8[/C][C] 0.3598[/C][C] 0.7196[/C][C] 0.6402[/C][/ROW]
[ROW][C]9[/C][C] 0.2595[/C][C] 0.5189[/C][C] 0.7405[/C][/ROW]
[ROW][C]10[/C][C] 0.7041[/C][C] 0.5917[/C][C] 0.2959[/C][/ROW]
[ROW][C]11[/C][C] 0.5882[/C][C] 0.8236[/C][C] 0.4118[/C][/ROW]
[ROW][C]12[/C][C] 0.5551[/C][C] 0.8897[/C][C] 0.4449[/C][/ROW]
[ROW][C]13[/C][C] 0.6568[/C][C] 0.6864[/C][C] 0.3432[/C][/ROW]
[ROW][C]14[/C][C] 0.6817[/C][C] 0.6366[/C][C] 0.3183[/C][/ROW]
[ROW][C]15[/C][C] 0.597[/C][C] 0.806[/C][C] 0.403[/C][/ROW]
[ROW][C]16[/C][C] 0.5501[/C][C] 0.8999[/C][C] 0.4499[/C][/ROW]
[ROW][C]17[/C][C] 0.5355[/C][C] 0.929[/C][C] 0.4645[/C][/ROW]
[ROW][C]18[/C][C] 0.5072[/C][C] 0.9855[/C][C] 0.4928[/C][/ROW]
[ROW][C]19[/C][C] 0.457[/C][C] 0.914[/C][C] 0.543[/C][/ROW]
[ROW][C]20[/C][C] 0.3787[/C][C] 0.7574[/C][C] 0.6213[/C][/ROW]
[ROW][C]21[/C][C] 0.3739[/C][C] 0.7478[/C][C] 0.6261[/C][/ROW]
[ROW][C]22[/C][C] 0.3906[/C][C] 0.7811[/C][C] 0.6094[/C][/ROW]
[ROW][C]23[/C][C] 0.7653[/C][C] 0.4694[/C][C] 0.2347[/C][/ROW]
[ROW][C]24[/C][C] 0.7655[/C][C] 0.469[/C][C] 0.2345[/C][/ROW]
[ROW][C]25[/C][C] 0.8032[/C][C] 0.3936[/C][C] 0.1968[/C][/ROW]
[ROW][C]26[/C][C] 0.7623[/C][C] 0.4755[/C][C] 0.2377[/C][/ROW]
[ROW][C]27[/C][C] 0.7209[/C][C] 0.5582[/C][C] 0.2791[/C][/ROW]
[ROW][C]28[/C][C] 0.6716[/C][C] 0.6568[/C][C] 0.3284[/C][/ROW]
[ROW][C]29[/C][C] 0.655[/C][C] 0.6899[/C][C] 0.345[/C][/ROW]
[ROW][C]30[/C][C] 0.6226[/C][C] 0.7548[/C][C] 0.3774[/C][/ROW]
[ROW][C]31[/C][C] 0.5952[/C][C] 0.8097[/C][C] 0.4048[/C][/ROW]
[ROW][C]32[/C][C] 0.6449[/C][C] 0.7103[/C][C] 0.3551[/C][/ROW]
[ROW][C]33[/C][C] 0.6303[/C][C] 0.7395[/C][C] 0.3697[/C][/ROW]
[ROW][C]34[/C][C] 0.5769[/C][C] 0.8462[/C][C] 0.4231[/C][/ROW]
[ROW][C]35[/C][C] 0.5774[/C][C] 0.8453[/C][C] 0.4227[/C][/ROW]
[ROW][C]36[/C][C] 0.5434[/C][C] 0.9133[/C][C] 0.4566[/C][/ROW]
[ROW][C]37[/C][C] 0.516[/C][C] 0.9681[/C][C] 0.484[/C][/ROW]
[ROW][C]38[/C][C] 0.5026[/C][C] 0.9947[/C][C] 0.4974[/C][/ROW]
[ROW][C]39[/C][C] 0.4503[/C][C] 0.9007[/C][C] 0.5497[/C][/ROW]
[ROW][C]40[/C][C] 0.4021[/C][C] 0.8043[/C][C] 0.5979[/C][/ROW]
[ROW][C]41[/C][C] 0.3703[/C][C] 0.7406[/C][C] 0.6297[/C][/ROW]
[ROW][C]42[/C][C] 0.3319[/C][C] 0.6637[/C][C] 0.6681[/C][/ROW]
[ROW][C]43[/C][C] 0.3293[/C][C] 0.6587[/C][C] 0.6707[/C][/ROW]
[ROW][C]44[/C][C] 0.3055[/C][C] 0.6109[/C][C] 0.6945[/C][/ROW]
[ROW][C]45[/C][C] 0.2919[/C][C] 0.5838[/C][C] 0.7081[/C][/ROW]
[ROW][C]46[/C][C] 0.2482[/C][C] 0.4964[/C][C] 0.7518[/C][/ROW]
[ROW][C]47[/C][C] 0.2183[/C][C] 0.4365[/C][C] 0.7817[/C][/ROW]
[ROW][C]48[/C][C] 0.1839[/C][C] 0.3678[/C][C] 0.8161[/C][/ROW]
[ROW][C]49[/C][C] 0.1513[/C][C] 0.3026[/C][C] 0.8487[/C][/ROW]
[ROW][C]50[/C][C] 0.204[/C][C] 0.4079[/C][C] 0.796[/C][/ROW]
[ROW][C]51[/C][C] 0.2003[/C][C] 0.4007[/C][C] 0.7997[/C][/ROW]
[ROW][C]52[/C][C] 0.1792[/C][C] 0.3585[/C][C] 0.8208[/C][/ROW]
[ROW][C]53[/C][C] 0.1572[/C][C] 0.3145[/C][C] 0.8428[/C][/ROW]
[ROW][C]54[/C][C] 0.1294[/C][C] 0.2589[/C][C] 0.8706[/C][/ROW]
[ROW][C]55[/C][C] 0.109[/C][C] 0.2179[/C][C] 0.891[/C][/ROW]
[ROW][C]56[/C][C] 0.08928[/C][C] 0.1786[/C][C] 0.9107[/C][/ROW]
[ROW][C]57[/C][C] 0.07364[/C][C] 0.1473[/C][C] 0.9264[/C][/ROW]
[ROW][C]58[/C][C] 0.07267[/C][C] 0.1453[/C][C] 0.9273[/C][/ROW]
[ROW][C]59[/C][C] 0.1173[/C][C] 0.2346[/C][C] 0.8827[/C][/ROW]
[ROW][C]60[/C][C] 0.2488[/C][C] 0.4975[/C][C] 0.7512[/C][/ROW]
[ROW][C]61[/C][C] 0.2235[/C][C] 0.447[/C][C] 0.7765[/C][/ROW]
[ROW][C]62[/C][C] 0.1905[/C][C] 0.381[/C][C] 0.8095[/C][/ROW]
[ROW][C]63[/C][C] 0.2212[/C][C] 0.4424[/C][C] 0.7788[/C][/ROW]
[ROW][C]64[/C][C] 0.1922[/C][C] 0.3844[/C][C] 0.8078[/C][/ROW]
[ROW][C]65[/C][C] 0.1645[/C][C] 0.329[/C][C] 0.8355[/C][/ROW]
[ROW][C]66[/C][C] 0.1396[/C][C] 0.2792[/C][C] 0.8604[/C][/ROW]
[ROW][C]67[/C][C] 0.1474[/C][C] 0.2948[/C][C] 0.8526[/C][/ROW]
[ROW][C]68[/C][C] 0.1218[/C][C] 0.2436[/C][C] 0.8782[/C][/ROW]
[ROW][C]69[/C][C] 0.09949[/C][C] 0.199[/C][C] 0.9005[/C][/ROW]
[ROW][C]70[/C][C] 0.09542[/C][C] 0.1908[/C][C] 0.9046[/C][/ROW]
[ROW][C]71[/C][C] 0.08933[/C][C] 0.1787[/C][C] 0.9107[/C][/ROW]
[ROW][C]72[/C][C] 0.1326[/C][C] 0.2652[/C][C] 0.8674[/C][/ROW]
[ROW][C]73[/C][C] 0.1131[/C][C] 0.2262[/C][C] 0.8869[/C][/ROW]
[ROW][C]74[/C][C] 0.09393[/C][C] 0.1879[/C][C] 0.9061[/C][/ROW]
[ROW][C]75[/C][C] 0.09179[/C][C] 0.1836[/C][C] 0.9082[/C][/ROW]
[ROW][C]76[/C][C] 0.0844[/C][C] 0.1688[/C][C] 0.9156[/C][/ROW]
[ROW][C]77[/C][C] 0.1003[/C][C] 0.2005[/C][C] 0.8997[/C][/ROW]
[ROW][C]78[/C][C] 0.1232[/C][C] 0.2464[/C][C] 0.8768[/C][/ROW]
[ROW][C]79[/C][C] 0.106[/C][C] 0.212[/C][C] 0.894[/C][/ROW]
[ROW][C]80[/C][C] 0.09343[/C][C] 0.1869[/C][C] 0.9066[/C][/ROW]
[ROW][C]81[/C][C] 0.103[/C][C] 0.2059[/C][C] 0.897[/C][/ROW]
[ROW][C]82[/C][C] 0.1226[/C][C] 0.2453[/C][C] 0.8774[/C][/ROW]
[ROW][C]83[/C][C] 0.1044[/C][C] 0.2087[/C][C] 0.8956[/C][/ROW]
[ROW][C]84[/C][C] 0.1119[/C][C] 0.2237[/C][C] 0.8881[/C][/ROW]
[ROW][C]85[/C][C] 0.1619[/C][C] 0.3239[/C][C] 0.8381[/C][/ROW]
[ROW][C]86[/C][C] 0.1546[/C][C] 0.3092[/C][C] 0.8454[/C][/ROW]
[ROW][C]87[/C][C] 0.2167[/C][C] 0.4335[/C][C] 0.7833[/C][/ROW]
[ROW][C]88[/C][C] 0.187[/C][C] 0.374[/C][C] 0.813[/C][/ROW]
[ROW][C]89[/C][C] 0.2013[/C][C] 0.4026[/C][C] 0.7987[/C][/ROW]
[ROW][C]90[/C][C] 0.2665[/C][C] 0.5329[/C][C] 0.7335[/C][/ROW]
[ROW][C]91[/C][C] 0.2389[/C][C] 0.4778[/C][C] 0.7611[/C][/ROW]
[ROW][C]92[/C][C] 0.2779[/C][C] 0.5557[/C][C] 0.7221[/C][/ROW]
[ROW][C]93[/C][C] 0.4157[/C][C] 0.8314[/C][C] 0.5843[/C][/ROW]
[ROW][C]94[/C][C] 0.4542[/C][C] 0.9084[/C][C] 0.5458[/C][/ROW]
[ROW][C]95[/C][C] 0.4076[/C][C] 0.8153[/C][C] 0.5924[/C][/ROW]
[ROW][C]96[/C][C] 0.4516[/C][C] 0.9031[/C][C] 0.5484[/C][/ROW]
[ROW][C]97[/C][C] 0.5845[/C][C] 0.8311[/C][C] 0.4155[/C][/ROW]
[ROW][C]98[/C][C] 0.6924[/C][C] 0.6153[/C][C] 0.3076[/C][/ROW]
[ROW][C]99[/C][C] 0.696[/C][C] 0.6081[/C][C] 0.304[/C][/ROW]
[ROW][C]100[/C][C] 0.6656[/C][C] 0.6689[/C][C] 0.3344[/C][/ROW]
[ROW][C]101[/C][C] 0.6303[/C][C] 0.7395[/C][C] 0.3697[/C][/ROW]
[ROW][C]102[/C][C] 0.5967[/C][C] 0.8066[/C][C] 0.4033[/C][/ROW]
[ROW][C]103[/C][C] 0.5824[/C][C] 0.8351[/C][C] 0.4176[/C][/ROW]
[ROW][C]104[/C][C] 0.5836[/C][C] 0.8328[/C][C] 0.4164[/C][/ROW]
[ROW][C]105[/C][C] 0.5429[/C][C] 0.9142[/C][C] 0.4571[/C][/ROW]
[ROW][C]106[/C][C] 0.5454[/C][C] 0.9092[/C][C] 0.4546[/C][/ROW]
[ROW][C]107[/C][C] 0.5285[/C][C] 0.9431[/C][C] 0.4715[/C][/ROW]
[ROW][C]108[/C][C] 0.54[/C][C] 0.9201[/C][C] 0.46[/C][/ROW]
[ROW][C]109[/C][C] 0.6181[/C][C] 0.7639[/C][C] 0.3819[/C][/ROW]
[ROW][C]110[/C][C] 0.5923[/C][C] 0.8154[/C][C] 0.4077[/C][/ROW]
[ROW][C]111[/C][C] 0.6507[/C][C] 0.6986[/C][C] 0.3493[/C][/ROW]
[ROW][C]112[/C][C] 0.6076[/C][C] 0.7847[/C][C] 0.3924[/C][/ROW]
[ROW][C]113[/C][C] 0.5613[/C][C] 0.8774[/C][C] 0.4387[/C][/ROW]
[ROW][C]114[/C][C] 0.5703[/C][C] 0.8595[/C][C] 0.4297[/C][/ROW]
[ROW][C]115[/C][C] 0.518[/C][C] 0.964[/C][C] 0.482[/C][/ROW]
[ROW][C]116[/C][C] 0.5181[/C][C] 0.9638[/C][C] 0.4819[/C][/ROW]
[ROW][C]117[/C][C] 0.4838[/C][C] 0.9676[/C][C] 0.5162[/C][/ROW]
[ROW][C]118[/C][C] 0.4303[/C][C] 0.8607[/C][C] 0.5697[/C][/ROW]
[ROW][C]119[/C][C] 0.3882[/C][C] 0.7764[/C][C] 0.6118[/C][/ROW]
[ROW][C]120[/C][C] 0.3544[/C][C] 0.7087[/C][C] 0.6456[/C][/ROW]
[ROW][C]121[/C][C] 0.3921[/C][C] 0.7842[/C][C] 0.6079[/C][/ROW]
[ROW][C]122[/C][C] 0.3478[/C][C] 0.6956[/C][C] 0.6522[/C][/ROW]
[ROW][C]123[/C][C] 0.2994[/C][C] 0.5987[/C][C] 0.7006[/C][/ROW]
[ROW][C]124[/C][C] 0.2524[/C][C] 0.5047[/C][C] 0.7476[/C][/ROW]
[ROW][C]125[/C][C] 0.2307[/C][C] 0.4614[/C][C] 0.7693[/C][/ROW]
[ROW][C]126[/C][C] 0.294[/C][C] 0.588[/C][C] 0.706[/C][/ROW]
[ROW][C]127[/C][C] 0.373[/C][C] 0.7459[/C][C] 0.627[/C][/ROW]
[ROW][C]128[/C][C] 0.3187[/C][C] 0.6374[/C][C] 0.6813[/C][/ROW]
[ROW][C]129[/C][C] 0.4586[/C][C] 0.9173[/C][C] 0.5414[/C][/ROW]
[ROW][C]130[/C][C] 0.7568[/C][C] 0.4865[/C][C] 0.2432[/C][/ROW]
[ROW][C]131[/C][C] 0.7097[/C][C] 0.5806[/C][C] 0.2903[/C][/ROW]
[ROW][C]132[/C][C] 0.6731[/C][C] 0.6539[/C][C] 0.3269[/C][/ROW]
[ROW][C]133[/C][C] 0.6484[/C][C] 0.7032[/C][C] 0.3516[/C][/ROW]
[ROW][C]134[/C][C] 0.6416[/C][C] 0.7168[/C][C] 0.3584[/C][/ROW]
[ROW][C]135[/C][C] 0.5766[/C][C] 0.8468[/C][C] 0.4234[/C][/ROW]
[ROW][C]136[/C][C] 0.5881[/C][C] 0.8238[/C][C] 0.4119[/C][/ROW]
[ROW][C]137[/C][C] 0.5155[/C][C] 0.969[/C][C] 0.4845[/C][/ROW]
[ROW][C]138[/C][C] 0.4492[/C][C] 0.8984[/C][C] 0.5508[/C][/ROW]
[ROW][C]139[/C][C] 0.3751[/C][C] 0.7502[/C][C] 0.6249[/C][/ROW]
[ROW][C]140[/C][C] 0.5396[/C][C] 0.9208[/C][C] 0.4604[/C][/ROW]
[ROW][C]141[/C][C] 0.8067[/C][C] 0.3866[/C][C] 0.1933[/C][/ROW]
[ROW][C]142[/C][C] 0.8779[/C][C] 0.2441[/C][C] 0.1221[/C][/ROW]
[ROW][C]143[/C][C] 0.8694[/C][C] 0.2613[/C][C] 0.1306[/C][/ROW]
[ROW][C]144[/C][C] 0.8777[/C][C] 0.2446[/C][C] 0.1223[/C][/ROW]
[ROW][C]145[/C][C] 0.8231[/C][C] 0.3537[/C][C] 0.1769[/C][/ROW]
[ROW][C]146[/C][C] 0.8251[/C][C] 0.3498[/C][C] 0.1749[/C][/ROW]
[ROW][C]147[/C][C] 0.8571[/C][C] 0.2858[/C][C] 0.1429[/C][/ROW]
[ROW][C]148[/C][C] 0.8292[/C][C] 0.3417[/C][C] 0.1708[/C][/ROW]
[ROW][C]149[/C][C] 0.8202[/C][C] 0.3596[/C][C] 0.1798[/C][/ROW]
[ROW][C]150[/C][C] 0.7521[/C][C] 0.4959[/C][C] 0.2479[/C][/ROW]
[ROW][C]151[/C][C] 0.5932[/C][C] 0.8136[/C][C] 0.4068[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301376&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301376&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
8 0.3598 0.7196 0.6402
9 0.2595 0.5189 0.7405
10 0.7041 0.5917 0.2959
11 0.5882 0.8236 0.4118
12 0.5551 0.8897 0.4449
13 0.6568 0.6864 0.3432
14 0.6817 0.6366 0.3183
15 0.597 0.806 0.403
16 0.5501 0.8999 0.4499
17 0.5355 0.929 0.4645
18 0.5072 0.9855 0.4928
19 0.457 0.914 0.543
20 0.3787 0.7574 0.6213
21 0.3739 0.7478 0.6261
22 0.3906 0.7811 0.6094
23 0.7653 0.4694 0.2347
24 0.7655 0.469 0.2345
25 0.8032 0.3936 0.1968
26 0.7623 0.4755 0.2377
27 0.7209 0.5582 0.2791
28 0.6716 0.6568 0.3284
29 0.655 0.6899 0.345
30 0.6226 0.7548 0.3774
31 0.5952 0.8097 0.4048
32 0.6449 0.7103 0.3551
33 0.6303 0.7395 0.3697
34 0.5769 0.8462 0.4231
35 0.5774 0.8453 0.4227
36 0.5434 0.9133 0.4566
37 0.516 0.9681 0.484
38 0.5026 0.9947 0.4974
39 0.4503 0.9007 0.5497
40 0.4021 0.8043 0.5979
41 0.3703 0.7406 0.6297
42 0.3319 0.6637 0.6681
43 0.3293 0.6587 0.6707
44 0.3055 0.6109 0.6945
45 0.2919 0.5838 0.7081
46 0.2482 0.4964 0.7518
47 0.2183 0.4365 0.7817
48 0.1839 0.3678 0.8161
49 0.1513 0.3026 0.8487
50 0.204 0.4079 0.796
51 0.2003 0.4007 0.7997
52 0.1792 0.3585 0.8208
53 0.1572 0.3145 0.8428
54 0.1294 0.2589 0.8706
55 0.109 0.2179 0.891
56 0.08928 0.1786 0.9107
57 0.07364 0.1473 0.9264
58 0.07267 0.1453 0.9273
59 0.1173 0.2346 0.8827
60 0.2488 0.4975 0.7512
61 0.2235 0.447 0.7765
62 0.1905 0.381 0.8095
63 0.2212 0.4424 0.7788
64 0.1922 0.3844 0.8078
65 0.1645 0.329 0.8355
66 0.1396 0.2792 0.8604
67 0.1474 0.2948 0.8526
68 0.1218 0.2436 0.8782
69 0.09949 0.199 0.9005
70 0.09542 0.1908 0.9046
71 0.08933 0.1787 0.9107
72 0.1326 0.2652 0.8674
73 0.1131 0.2262 0.8869
74 0.09393 0.1879 0.9061
75 0.09179 0.1836 0.9082
76 0.0844 0.1688 0.9156
77 0.1003 0.2005 0.8997
78 0.1232 0.2464 0.8768
79 0.106 0.212 0.894
80 0.09343 0.1869 0.9066
81 0.103 0.2059 0.897
82 0.1226 0.2453 0.8774
83 0.1044 0.2087 0.8956
84 0.1119 0.2237 0.8881
85 0.1619 0.3239 0.8381
86 0.1546 0.3092 0.8454
87 0.2167 0.4335 0.7833
88 0.187 0.374 0.813
89 0.2013 0.4026 0.7987
90 0.2665 0.5329 0.7335
91 0.2389 0.4778 0.7611
92 0.2779 0.5557 0.7221
93 0.4157 0.8314 0.5843
94 0.4542 0.9084 0.5458
95 0.4076 0.8153 0.5924
96 0.4516 0.9031 0.5484
97 0.5845 0.8311 0.4155
98 0.6924 0.6153 0.3076
99 0.696 0.6081 0.304
100 0.6656 0.6689 0.3344
101 0.6303 0.7395 0.3697
102 0.5967 0.8066 0.4033
103 0.5824 0.8351 0.4176
104 0.5836 0.8328 0.4164
105 0.5429 0.9142 0.4571
106 0.5454 0.9092 0.4546
107 0.5285 0.9431 0.4715
108 0.54 0.9201 0.46
109 0.6181 0.7639 0.3819
110 0.5923 0.8154 0.4077
111 0.6507 0.6986 0.3493
112 0.6076 0.7847 0.3924
113 0.5613 0.8774 0.4387
114 0.5703 0.8595 0.4297
115 0.518 0.964 0.482
116 0.5181 0.9638 0.4819
117 0.4838 0.9676 0.5162
118 0.4303 0.8607 0.5697
119 0.3882 0.7764 0.6118
120 0.3544 0.7087 0.6456
121 0.3921 0.7842 0.6079
122 0.3478 0.6956 0.6522
123 0.2994 0.5987 0.7006
124 0.2524 0.5047 0.7476
125 0.2307 0.4614 0.7693
126 0.294 0.588 0.706
127 0.373 0.7459 0.627
128 0.3187 0.6374 0.6813
129 0.4586 0.9173 0.5414
130 0.7568 0.4865 0.2432
131 0.7097 0.5806 0.2903
132 0.6731 0.6539 0.3269
133 0.6484 0.7032 0.3516
134 0.6416 0.7168 0.3584
135 0.5766 0.8468 0.4234
136 0.5881 0.8238 0.4119
137 0.5155 0.969 0.4845
138 0.4492 0.8984 0.5508
139 0.3751 0.7502 0.6249
140 0.5396 0.9208 0.4604
141 0.8067 0.3866 0.1933
142 0.8779 0.2441 0.1221
143 0.8694 0.2613 0.1306
144 0.8777 0.2446 0.1223
145 0.8231 0.3537 0.1769
146 0.8251 0.3498 0.1749
147 0.8571 0.2858 0.1429
148 0.8292 0.3417 0.1708
149 0.8202 0.3596 0.1798
150 0.7521 0.4959 0.2479
151 0.5932 0.8136 0.4068







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level0 0OK
5% type I error level00OK
10% type I error level00OK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 0 &  0 & OK \tabularnewline
5% type I error level & 0 & 0 & OK \tabularnewline
10% type I error level & 0 & 0 & OK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301376&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]0[/C][C] 0[/C][C]OK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]0[/C][C]0[/C][C]OK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]0[/C][C]0[/C][C]OK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301376&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301376&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level0 0OK
5% type I error level00OK
10% type I error level00OK







Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 1.7912, df1 = 2, df2 = 152, p-value = 0.1703
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.157, df1 = 8, df2 = 146, p-value = 0.3292
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.72981, df1 = 2, df2 = 152, p-value = 0.4837

\begin{tabular}{lllllllll}
\hline
Ramsey RESET F-Test for powers (2 and 3) of fitted values \tabularnewline
> reset_test_fitted
	RESET test
data:  mylm
RESET = 1.7912, df1 = 2, df2 = 152, p-value = 0.1703
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of regressors \tabularnewline
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.157, df1 = 8, df2 = 146, p-value = 0.3292
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of principal components \tabularnewline
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.72981, df1 = 2, df2 = 152, p-value = 0.4837
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=301376&T=7

[TABLE]
[ROW][C]Ramsey RESET F-Test for powers (2 and 3) of fitted values[/C][/ROW]
[ROW][C]
> reset_test_fitted
	RESET test
data:  mylm
RESET = 1.7912, df1 = 2, df2 = 152, p-value = 0.1703
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of regressors[/C][/ROW] [ROW][C]
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.157, df1 = 8, df2 = 146, p-value = 0.3292
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of principal components[/C][/ROW] [ROW][C]
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.72981, df1 = 2, df2 = 152, p-value = 0.4837
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=301376&T=7

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301376&T=7

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 1.7912, df1 = 2, df2 = 152, p-value = 0.1703
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.157, df1 = 8, df2 = 146, p-value = 0.3292
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.72981, df1 = 2, df2 = 152, p-value = 0.4837







Variance Inflation Factors (Multicollinearity)
> vif
       a        b        c        d 
1.698025 1.446255 1.616083 1.249129 

\begin{tabular}{lllllllll}
\hline
Variance Inflation Factors (Multicollinearity) \tabularnewline
> vif
       a        b        c        d 
1.698025 1.446255 1.616083 1.249129 
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=301376&T=8

[TABLE]
[ROW][C]Variance Inflation Factors (Multicollinearity)[/C][/ROW]
[ROW][C]
> vif
       a        b        c        d 
1.698025 1.446255 1.616083 1.249129 
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=301376&T=8

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301376&T=8

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variance Inflation Factors (Multicollinearity)
> vif
       a        b        c        d 
1.698025 1.446255 1.616083 1.249129 



Parameters (Session):
par1 = 5 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ;
Parameters (R input):
par1 = 5 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
library(car)
library(MASS)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
mywarning <- ''
par1 <- as.numeric(par1)
if(is.na(par1)) {
par1 <- 1
mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.'
}
if (par4=='') par4 <- 0
par4 <- as.numeric(par4)
if (par5=='') par5 <- 0
par5 <- as.numeric(par5)
x <- na.omit(t(y))
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'Seasonal Differences (s=12)'){
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'First and Seasonal Differences (s=12)'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if(par4 > 0) {
x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep='')))
for (i in 1:(n-par4)) {
for (j in 1:par4) {
x2[i,j] <- x[i+par4-j,par1]
}
}
x <- cbind(x[(par4+1):n,], x2)
n <- n - par4
}
if(par5 > 0) {
x2 <- array(0, dim=c(n-par5*12,par5), dimnames=list(1:(n-par5*12), paste(colnames(x)[par1],'(t-',1:par5,'s)',sep='')))
for (i in 1:(n-par5*12)) {
for (j in 1:par5) {
x2[i,j] <- x[i+par5*12-j*12,par1]
}
}
x <- cbind(x[(par5*12+1):n,], x2)
n <- n - par5*12
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
(k <- length(x[n,]))
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
print(x)
(k <- length(x[n,]))
head(x)
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
sresid <- studres(mylm)
hist(sresid, freq=FALSE, main='Distribution of Studentized Residuals')
xfit<-seq(min(sresid),max(sresid),length=40)
yfit<-dnorm(xfit)
lines(xfit, yfit)
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqPlot(mylm, main='QQ Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
print(z)
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, mywarning)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Multiple Linear Regression - Ordinary Least Squares', 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
myr <- as.numeric(mysum$resid)
myr
if(n < 200) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' '))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of fitted values',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_fitted <- resettest(mylm,power=2:3,type='fitted')
a<-table.element(a,paste('
',RC.texteval('reset_test_fitted'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of regressors',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_regressors <- resettest(mylm,power=2:3,type='regressor')
a<-table.element(a,paste('
',RC.texteval('reset_test_regressors'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of principal components',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_principal_components <- resettest(mylm,power=2:3,type='princomp')
a<-table.element(a,paste('
',RC.texteval('reset_test_principal_components'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable8.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variance Inflation Factors (Multicollinearity)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
vif <- vif(mylm)
a<-table.element(a,paste('
',RC.texteval('vif'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable9.tab')