Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_autocorrelation.wasp
Title produced by software(Partial) Autocorrelation Function
Date of computationMon, 19 Dec 2016 15:18:58 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/19/t1482157192v1opcfyrv83syer.htm/, Retrieved Fri, 01 Nov 2024 03:33:35 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=301365, Retrieved Fri, 01 Nov 2024 03:33:35 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact96
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [(Partial) Autocorrelation Function] [auto 11] [2016-12-19 14:18:58] [06fd994a2f2098873ec640c3e39346e5] [Current]
Feedback Forum

Post a new message
Dataseries X:
4738.4
4687.2
5930.8
5532
5429.8
6107.4
5960.8
5541.8
5362.2
5237
4827
4781.6
4983.2
4718.4
5523.8
5286.6
5389
5810.4
5057.4
5604.4
5285
5215.2
4625.4
4270.4
4685.4
4233.8
5278.4
4978.8
5333.4
5451
5224
5790.2
5079.4
4705.8
4139.6
3720.8
4594
4638.8
4969.4
4764.4
5010.8
5267.8
5312.2
5723.2
4579.6
5015.2
4282.4
3834.2
4523.4
3884.2
3897.8
4845.6
4929
4955.4
5198.4
5122.2
4643.2
4789.8
3950.8
3824.4
4511.8
4262.4
4616.6
5139.6
4972.8
5222
5242
4979.8
4691.8
4821.6
4123.6
4027.4
4365.2
4333.6
4930
5053
5031.4
5342
5191.4
4852.2
4675.6
4689.2
3809.4
4054.2
4409.6
4210.2
4566.4
4907
5021.8
5215.2
4933.6
5197.8
4734.6
4681.8
4172
4037.8
4462.6
4282.6
4962.4
4969.2
5214.6
5416.8
4764.2
5326.2
4545.4
4797.2
4259
4117
4469.2
4203.2
5033.8
4883
5361.6
5044.6
5005.6
5382
4565.4
4825
4290.2
3933.6
4177.6
3949.4
4492.6
4894.2
5224.4
5071
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301365&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=301365&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301365&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Autocorrelation Function
Time lag kACF(k)T-STATP-value
1-0.366584-3.89688.3e-05
2-0.133025-1.41410.080044
30.0674360.71690.237471
4-0.119463-1.26990.103362
50.0407010.43270.333042
60.1266681.34650.090418
7-0.121259-1.2890.100015
8-0.132554-1.40910.08078
90.2901163.0840.001284
10-0.196145-2.0850.019659
110.2666452.83450.002719
12-0.156899-1.66790.049057
13-0.287245-3.05350.001411
140.1627881.73050.043139
150.1385971.47330.071725
16-0.139641-1.48440.070243
170.1678531.78430.038529
180.0045660.04850.480688
19-0.239177-2.54250.00618
200.1979262.1040.018799
21-0.039877-0.42390.336223

\begin{tabular}{lllllllll}
\hline
Autocorrelation Function \tabularnewline
Time lag k & ACF(k) & T-STAT & P-value \tabularnewline
1 & -0.366584 & -3.8968 & 8.3e-05 \tabularnewline
2 & -0.133025 & -1.4141 & 0.080044 \tabularnewline
3 & 0.067436 & 0.7169 & 0.237471 \tabularnewline
4 & -0.119463 & -1.2699 & 0.103362 \tabularnewline
5 & 0.040701 & 0.4327 & 0.333042 \tabularnewline
6 & 0.126668 & 1.3465 & 0.090418 \tabularnewline
7 & -0.121259 & -1.289 & 0.100015 \tabularnewline
8 & -0.132554 & -1.4091 & 0.08078 \tabularnewline
9 & 0.290116 & 3.084 & 0.001284 \tabularnewline
10 & -0.196145 & -2.085 & 0.019659 \tabularnewline
11 & 0.266645 & 2.8345 & 0.002719 \tabularnewline
12 & -0.156899 & -1.6679 & 0.049057 \tabularnewline
13 & -0.287245 & -3.0535 & 0.001411 \tabularnewline
14 & 0.162788 & 1.7305 & 0.043139 \tabularnewline
15 & 0.138597 & 1.4733 & 0.071725 \tabularnewline
16 & -0.139641 & -1.4844 & 0.070243 \tabularnewline
17 & 0.167853 & 1.7843 & 0.038529 \tabularnewline
18 & 0.004566 & 0.0485 & 0.480688 \tabularnewline
19 & -0.239177 & -2.5425 & 0.00618 \tabularnewline
20 & 0.197926 & 2.104 & 0.018799 \tabularnewline
21 & -0.039877 & -0.4239 & 0.336223 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301365&T=1

[TABLE]
[ROW][C]Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]ACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]-0.366584[/C][C]-3.8968[/C][C]8.3e-05[/C][/ROW]
[ROW][C]2[/C][C]-0.133025[/C][C]-1.4141[/C][C]0.080044[/C][/ROW]
[ROW][C]3[/C][C]0.067436[/C][C]0.7169[/C][C]0.237471[/C][/ROW]
[ROW][C]4[/C][C]-0.119463[/C][C]-1.2699[/C][C]0.103362[/C][/ROW]
[ROW][C]5[/C][C]0.040701[/C][C]0.4327[/C][C]0.333042[/C][/ROW]
[ROW][C]6[/C][C]0.126668[/C][C]1.3465[/C][C]0.090418[/C][/ROW]
[ROW][C]7[/C][C]-0.121259[/C][C]-1.289[/C][C]0.100015[/C][/ROW]
[ROW][C]8[/C][C]-0.132554[/C][C]-1.4091[/C][C]0.08078[/C][/ROW]
[ROW][C]9[/C][C]0.290116[/C][C]3.084[/C][C]0.001284[/C][/ROW]
[ROW][C]10[/C][C]-0.196145[/C][C]-2.085[/C][C]0.019659[/C][/ROW]
[ROW][C]11[/C][C]0.266645[/C][C]2.8345[/C][C]0.002719[/C][/ROW]
[ROW][C]12[/C][C]-0.156899[/C][C]-1.6679[/C][C]0.049057[/C][/ROW]
[ROW][C]13[/C][C]-0.287245[/C][C]-3.0535[/C][C]0.001411[/C][/ROW]
[ROW][C]14[/C][C]0.162788[/C][C]1.7305[/C][C]0.043139[/C][/ROW]
[ROW][C]15[/C][C]0.138597[/C][C]1.4733[/C][C]0.071725[/C][/ROW]
[ROW][C]16[/C][C]-0.139641[/C][C]-1.4844[/C][C]0.070243[/C][/ROW]
[ROW][C]17[/C][C]0.167853[/C][C]1.7843[/C][C]0.038529[/C][/ROW]
[ROW][C]18[/C][C]0.004566[/C][C]0.0485[/C][C]0.480688[/C][/ROW]
[ROW][C]19[/C][C]-0.239177[/C][C]-2.5425[/C][C]0.00618[/C][/ROW]
[ROW][C]20[/C][C]0.197926[/C][C]2.104[/C][C]0.018799[/C][/ROW]
[ROW][C]21[/C][C]-0.039877[/C][C]-0.4239[/C][C]0.336223[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301365&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301365&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Autocorrelation Function
Time lag kACF(k)T-STATP-value
1-0.366584-3.89688.3e-05
2-0.133025-1.41410.080044
30.0674360.71690.237471
4-0.119463-1.26990.103362
50.0407010.43270.333042
60.1266681.34650.090418
7-0.121259-1.2890.100015
8-0.132554-1.40910.08078
90.2901163.0840.001284
10-0.196145-2.0850.019659
110.2666452.83450.002719
12-0.156899-1.66790.049057
13-0.287245-3.05350.001411
140.1627881.73050.043139
150.1385971.47330.071725
16-0.139641-1.48440.070243
170.1678531.78430.038529
180.0045660.04850.480688
19-0.239177-2.54250.00618
200.1979262.1040.018799
21-0.039877-0.42390.336223







Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
1-0.366584-3.89688.3e-05
2-0.308924-3.28390.000682
3-0.140024-1.48850.069705
4-0.241712-2.56940.005744
5-0.163794-1.74120.042189
60.012420.1320.4476
7-0.08535-0.90730.183093
8-0.270895-2.87970.002382
90.0928820.98730.16279
10-0.116125-1.23440.109803
110.3020843.21120.000861
120.0221880.23590.406984
13-0.257284-2.7350.003623
14-0.187205-1.990.024502
15-0.009234-0.09820.460992
16-0.157643-1.67580.048275
170.1157241.23020.110596
180.1241371.31960.094819
19-0.001421-0.01510.493986
20-0.126158-1.34110.091292
21-0.0509-0.54110.294762

\begin{tabular}{lllllllll}
\hline
Partial Autocorrelation Function \tabularnewline
Time lag k & PACF(k) & T-STAT & P-value \tabularnewline
1 & -0.366584 & -3.8968 & 8.3e-05 \tabularnewline
2 & -0.308924 & -3.2839 & 0.000682 \tabularnewline
3 & -0.140024 & -1.4885 & 0.069705 \tabularnewline
4 & -0.241712 & -2.5694 & 0.005744 \tabularnewline
5 & -0.163794 & -1.7412 & 0.042189 \tabularnewline
6 & 0.01242 & 0.132 & 0.4476 \tabularnewline
7 & -0.08535 & -0.9073 & 0.183093 \tabularnewline
8 & -0.270895 & -2.8797 & 0.002382 \tabularnewline
9 & 0.092882 & 0.9873 & 0.16279 \tabularnewline
10 & -0.116125 & -1.2344 & 0.109803 \tabularnewline
11 & 0.302084 & 3.2112 & 0.000861 \tabularnewline
12 & 0.022188 & 0.2359 & 0.406984 \tabularnewline
13 & -0.257284 & -2.735 & 0.003623 \tabularnewline
14 & -0.187205 & -1.99 & 0.024502 \tabularnewline
15 & -0.009234 & -0.0982 & 0.460992 \tabularnewline
16 & -0.157643 & -1.6758 & 0.048275 \tabularnewline
17 & 0.115724 & 1.2302 & 0.110596 \tabularnewline
18 & 0.124137 & 1.3196 & 0.094819 \tabularnewline
19 & -0.001421 & -0.0151 & 0.493986 \tabularnewline
20 & -0.126158 & -1.3411 & 0.091292 \tabularnewline
21 & -0.0509 & -0.5411 & 0.294762 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301365&T=2

[TABLE]
[ROW][C]Partial Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]PACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]-0.366584[/C][C]-3.8968[/C][C]8.3e-05[/C][/ROW]
[ROW][C]2[/C][C]-0.308924[/C][C]-3.2839[/C][C]0.000682[/C][/ROW]
[ROW][C]3[/C][C]-0.140024[/C][C]-1.4885[/C][C]0.069705[/C][/ROW]
[ROW][C]4[/C][C]-0.241712[/C][C]-2.5694[/C][C]0.005744[/C][/ROW]
[ROW][C]5[/C][C]-0.163794[/C][C]-1.7412[/C][C]0.042189[/C][/ROW]
[ROW][C]6[/C][C]0.01242[/C][C]0.132[/C][C]0.4476[/C][/ROW]
[ROW][C]7[/C][C]-0.08535[/C][C]-0.9073[/C][C]0.183093[/C][/ROW]
[ROW][C]8[/C][C]-0.270895[/C][C]-2.8797[/C][C]0.002382[/C][/ROW]
[ROW][C]9[/C][C]0.092882[/C][C]0.9873[/C][C]0.16279[/C][/ROW]
[ROW][C]10[/C][C]-0.116125[/C][C]-1.2344[/C][C]0.109803[/C][/ROW]
[ROW][C]11[/C][C]0.302084[/C][C]3.2112[/C][C]0.000861[/C][/ROW]
[ROW][C]12[/C][C]0.022188[/C][C]0.2359[/C][C]0.406984[/C][/ROW]
[ROW][C]13[/C][C]-0.257284[/C][C]-2.735[/C][C]0.003623[/C][/ROW]
[ROW][C]14[/C][C]-0.187205[/C][C]-1.99[/C][C]0.024502[/C][/ROW]
[ROW][C]15[/C][C]-0.009234[/C][C]-0.0982[/C][C]0.460992[/C][/ROW]
[ROW][C]16[/C][C]-0.157643[/C][C]-1.6758[/C][C]0.048275[/C][/ROW]
[ROW][C]17[/C][C]0.115724[/C][C]1.2302[/C][C]0.110596[/C][/ROW]
[ROW][C]18[/C][C]0.124137[/C][C]1.3196[/C][C]0.094819[/C][/ROW]
[ROW][C]19[/C][C]-0.001421[/C][C]-0.0151[/C][C]0.493986[/C][/ROW]
[ROW][C]20[/C][C]-0.126158[/C][C]-1.3411[/C][C]0.091292[/C][/ROW]
[ROW][C]21[/C][C]-0.0509[/C][C]-0.5411[/C][C]0.294762[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301365&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301365&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
1-0.366584-3.89688.3e-05
2-0.308924-3.28390.000682
3-0.140024-1.48850.069705
4-0.241712-2.56940.005744
5-0.163794-1.74120.042189
60.012420.1320.4476
7-0.08535-0.90730.183093
8-0.270895-2.87970.002382
90.0928820.98730.16279
10-0.116125-1.23440.109803
110.3020843.21120.000861
120.0221880.23590.406984
13-0.257284-2.7350.003623
14-0.187205-1.990.024502
15-0.009234-0.09820.460992
16-0.157643-1.67580.048275
170.1157241.23020.110596
180.1241371.31960.094819
19-0.001421-0.01510.493986
20-0.126158-1.34110.091292
21-0.0509-0.54110.294762



Parameters (Session):
Parameters (R input):
par1 = Default ; par2 = 1 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ; par8 = ;
R code (references can be found in the software module):
if (par1 == 'Default') {
par1 = 10*log10(length(x))
} else {
par1 <- as.numeric(par1)
}
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
par5 <- as.numeric(par5)
if (par6 == 'White Noise') par6 <- 'white' else par6 <- 'ma'
par7 <- as.numeric(par7)
if (par8 != '') par8 <- as.numeric(par8)
x <- na.omit(x)
ox <- x
if (par8 == '') {
if (par2 == 0) {
x <- log(x)
} else {
x <- (x ^ par2 - 1) / par2
}
} else {
x <- log(x,base=par8)
}
if (par3 > 0) x <- diff(x,lag=1,difference=par3)
if (par4 > 0) x <- diff(x,lag=par5,difference=par4)
bitmap(file='picts.png')
op <- par(mfrow=c(2,1))
plot(ox,type='l',main='Original Time Series',xlab='time',ylab='value')
if (par8=='') {
mytitle <- paste('Working Time Series (lambda=',par2,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(lambda=',par2,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
} else {
mytitle <- paste('Working Time Series (base=',par8,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(base=',par8,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
}
plot(x,type='l', main=mytitle,xlab='time',ylab='value')
par(op)
dev.off()
bitmap(file='pic1.png')
racf <- acf(x, par1, main='Autocorrelation', xlab='time lag', ylab='ACF', ci.type=par6, ci=par7, sub=mysub)
dev.off()
bitmap(file='pic2.png')
rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF',sub=mysub)
dev.off()
(myacf <- c(racf$acf))
(mypacf <- c(rpacf$acf))
lengthx <- length(x)
sqrtn <- sqrt(lengthx)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'ACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 2:(par1+1)) {
a<-table.row.start(a)
a<-table.element(a,i-1,header=TRUE)
a<-table.element(a,round(myacf[i],6))
mytstat <- myacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Partial Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'PACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:par1) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,round(mypacf[i],6))
mytstat <- mypacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')