Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_autocorrelation.wasp
Title produced by software(Partial) Autocorrelation Function
Date of computationMon, 19 Dec 2016 13:58:32 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/19/t14821526122j67bjw02lncf03.htm/, Retrieved Fri, 01 Nov 2024 03:38:30 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=301336, Retrieved Fri, 01 Nov 2024 03:38:30 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact68
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [(Partial) Autocorrelation Function] [Autocorrelation (...] [2016-12-19 12:58:32] [6fe662842930c5949e61d44eeb8a265b] [Current]
Feedback Forum

Post a new message
Dataseries X:
4419
4336
4214
4294
4650
4608
4650
4625
4739
5010
4808
4474
4527
4652
4677
4904
4851
4956
4819
4940
5217
5305
5265
5256
5671
5617
5811
5728
5629
5490
5605
4944
5555
5956
5872
5795
6033
6337
6396
6244
6200
6082
5866
5917
6134
6428
6187
6228
6269
6586
6223
6724
6294
6445
6163
6207
6816
6850
6439
6401
6913
6969
7064
6987
6882
6683
6530
6748
6773
7375
7208
6676
7167
7146
7193
7162
7145
6819
6702
6702
6782
7307
6818
6966
7012
7754
7462
7183
7165
7299
7103
6950
7506
7708
7693
7495
7955
8316
9230
8654
8307
7940
7509
7752
8310
8616
8358
8150
8664
8817
8927
8537
8497
8270
7658
8049
8365
8971
8854
8540
8878
9184




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301336&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=301336&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301336&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.94461510.43360
20.8950659.88630
30.857649.47290
40.8295919.16310
50.8005438.84230
60.7768878.5810
70.7596168.39020
80.7455238.23460
90.7248748.00650
100.7072347.81170
110.7000447.73220
120.6753517.45950
130.6325656.98690
140.5811266.41870
150.5489496.06330
160.5235175.78240
170.4936975.45310
180.4677965.1670
190.4508154.97941e-06
200.431414.76513e-06

\begin{tabular}{lllllllll}
\hline
Autocorrelation Function \tabularnewline
Time lag k & ACF(k) & T-STAT & P-value \tabularnewline
1 & 0.944615 & 10.4336 & 0 \tabularnewline
2 & 0.895065 & 9.8863 & 0 \tabularnewline
3 & 0.85764 & 9.4729 & 0 \tabularnewline
4 & 0.829591 & 9.1631 & 0 \tabularnewline
5 & 0.800543 & 8.8423 & 0 \tabularnewline
6 & 0.776887 & 8.581 & 0 \tabularnewline
7 & 0.759616 & 8.3902 & 0 \tabularnewline
8 & 0.745523 & 8.2346 & 0 \tabularnewline
9 & 0.724874 & 8.0065 & 0 \tabularnewline
10 & 0.707234 & 7.8117 & 0 \tabularnewline
11 & 0.700044 & 7.7322 & 0 \tabularnewline
12 & 0.675351 & 7.4595 & 0 \tabularnewline
13 & 0.632565 & 6.9869 & 0 \tabularnewline
14 & 0.581126 & 6.4187 & 0 \tabularnewline
15 & 0.548949 & 6.0633 & 0 \tabularnewline
16 & 0.523517 & 5.7824 & 0 \tabularnewline
17 & 0.493697 & 5.4531 & 0 \tabularnewline
18 & 0.467796 & 5.167 & 0 \tabularnewline
19 & 0.450815 & 4.9794 & 1e-06 \tabularnewline
20 & 0.43141 & 4.7651 & 3e-06 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301336&T=1

[TABLE]
[ROW][C]Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]ACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.944615[/C][C]10.4336[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]0.895065[/C][C]9.8863[/C][C]0[/C][/ROW]
[ROW][C]3[/C][C]0.85764[/C][C]9.4729[/C][C]0[/C][/ROW]
[ROW][C]4[/C][C]0.829591[/C][C]9.1631[/C][C]0[/C][/ROW]
[ROW][C]5[/C][C]0.800543[/C][C]8.8423[/C][C]0[/C][/ROW]
[ROW][C]6[/C][C]0.776887[/C][C]8.581[/C][C]0[/C][/ROW]
[ROW][C]7[/C][C]0.759616[/C][C]8.3902[/C][C]0[/C][/ROW]
[ROW][C]8[/C][C]0.745523[/C][C]8.2346[/C][C]0[/C][/ROW]
[ROW][C]9[/C][C]0.724874[/C][C]8.0065[/C][C]0[/C][/ROW]
[ROW][C]10[/C][C]0.707234[/C][C]7.8117[/C][C]0[/C][/ROW]
[ROW][C]11[/C][C]0.700044[/C][C]7.7322[/C][C]0[/C][/ROW]
[ROW][C]12[/C][C]0.675351[/C][C]7.4595[/C][C]0[/C][/ROW]
[ROW][C]13[/C][C]0.632565[/C][C]6.9869[/C][C]0[/C][/ROW]
[ROW][C]14[/C][C]0.581126[/C][C]6.4187[/C][C]0[/C][/ROW]
[ROW][C]15[/C][C]0.548949[/C][C]6.0633[/C][C]0[/C][/ROW]
[ROW][C]16[/C][C]0.523517[/C][C]5.7824[/C][C]0[/C][/ROW]
[ROW][C]17[/C][C]0.493697[/C][C]5.4531[/C][C]0[/C][/ROW]
[ROW][C]18[/C][C]0.467796[/C][C]5.167[/C][C]0[/C][/ROW]
[ROW][C]19[/C][C]0.450815[/C][C]4.9794[/C][C]1e-06[/C][/ROW]
[ROW][C]20[/C][C]0.43141[/C][C]4.7651[/C][C]3e-06[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301336&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301336&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.94461510.43360
20.8950659.88630
30.857649.47290
40.8295919.16310
50.8005438.84230
60.7768878.5810
70.7596168.39020
80.7455238.23460
90.7248748.00650
100.7072347.81170
110.7000447.73220
120.6753517.45950
130.6325656.98690
140.5811266.41870
150.5489496.06330
160.5235175.78240
170.4936975.45310
180.4677965.1670
190.4508154.97941e-06
200.431414.76513e-06







Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.94461510.43360
20.0257030.28390.388483
30.0891990.98520.163228
40.0791860.87460.191745
5-0.002219-0.02450.490243
60.0553110.61090.271191
70.0632140.69820.243185
80.0427840.47260.318685
9-0.038222-0.42220.336818
100.0344360.38040.35217
110.0964771.06560.14435
12-0.151053-1.66840.048897
13-0.171583-1.89520.030216
14-0.149616-1.65260.050495
150.0779060.86050.195601
160.0212140.23430.407568
17-0.053668-0.59280.277211
180.012220.1350.446427
190.035160.38840.349214
20-0.009602-0.10610.457855

\begin{tabular}{lllllllll}
\hline
Partial Autocorrelation Function \tabularnewline
Time lag k & PACF(k) & T-STAT & P-value \tabularnewline
1 & 0.944615 & 10.4336 & 0 \tabularnewline
2 & 0.025703 & 0.2839 & 0.388483 \tabularnewline
3 & 0.089199 & 0.9852 & 0.163228 \tabularnewline
4 & 0.079186 & 0.8746 & 0.191745 \tabularnewline
5 & -0.002219 & -0.0245 & 0.490243 \tabularnewline
6 & 0.055311 & 0.6109 & 0.271191 \tabularnewline
7 & 0.063214 & 0.6982 & 0.243185 \tabularnewline
8 & 0.042784 & 0.4726 & 0.318685 \tabularnewline
9 & -0.038222 & -0.4222 & 0.336818 \tabularnewline
10 & 0.034436 & 0.3804 & 0.35217 \tabularnewline
11 & 0.096477 & 1.0656 & 0.14435 \tabularnewline
12 & -0.151053 & -1.6684 & 0.048897 \tabularnewline
13 & -0.171583 & -1.8952 & 0.030216 \tabularnewline
14 & -0.149616 & -1.6526 & 0.050495 \tabularnewline
15 & 0.077906 & 0.8605 & 0.195601 \tabularnewline
16 & 0.021214 & 0.2343 & 0.407568 \tabularnewline
17 & -0.053668 & -0.5928 & 0.277211 \tabularnewline
18 & 0.01222 & 0.135 & 0.446427 \tabularnewline
19 & 0.03516 & 0.3884 & 0.349214 \tabularnewline
20 & -0.009602 & -0.1061 & 0.457855 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301336&T=2

[TABLE]
[ROW][C]Partial Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]PACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.944615[/C][C]10.4336[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]0.025703[/C][C]0.2839[/C][C]0.388483[/C][/ROW]
[ROW][C]3[/C][C]0.089199[/C][C]0.9852[/C][C]0.163228[/C][/ROW]
[ROW][C]4[/C][C]0.079186[/C][C]0.8746[/C][C]0.191745[/C][/ROW]
[ROW][C]5[/C][C]-0.002219[/C][C]-0.0245[/C][C]0.490243[/C][/ROW]
[ROW][C]6[/C][C]0.055311[/C][C]0.6109[/C][C]0.271191[/C][/ROW]
[ROW][C]7[/C][C]0.063214[/C][C]0.6982[/C][C]0.243185[/C][/ROW]
[ROW][C]8[/C][C]0.042784[/C][C]0.4726[/C][C]0.318685[/C][/ROW]
[ROW][C]9[/C][C]-0.038222[/C][C]-0.4222[/C][C]0.336818[/C][/ROW]
[ROW][C]10[/C][C]0.034436[/C][C]0.3804[/C][C]0.35217[/C][/ROW]
[ROW][C]11[/C][C]0.096477[/C][C]1.0656[/C][C]0.14435[/C][/ROW]
[ROW][C]12[/C][C]-0.151053[/C][C]-1.6684[/C][C]0.048897[/C][/ROW]
[ROW][C]13[/C][C]-0.171583[/C][C]-1.8952[/C][C]0.030216[/C][/ROW]
[ROW][C]14[/C][C]-0.149616[/C][C]-1.6526[/C][C]0.050495[/C][/ROW]
[ROW][C]15[/C][C]0.077906[/C][C]0.8605[/C][C]0.195601[/C][/ROW]
[ROW][C]16[/C][C]0.021214[/C][C]0.2343[/C][C]0.407568[/C][/ROW]
[ROW][C]17[/C][C]-0.053668[/C][C]-0.5928[/C][C]0.277211[/C][/ROW]
[ROW][C]18[/C][C]0.01222[/C][C]0.135[/C][C]0.446427[/C][/ROW]
[ROW][C]19[/C][C]0.03516[/C][C]0.3884[/C][C]0.349214[/C][/ROW]
[ROW][C]20[/C][C]-0.009602[/C][C]-0.1061[/C][C]0.457855[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301336&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301336&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.94461510.43360
20.0257030.28390.388483
30.0891990.98520.163228
40.0791860.87460.191745
5-0.002219-0.02450.490243
60.0553110.61090.271191
70.0632140.69820.243185
80.0427840.47260.318685
9-0.038222-0.42220.336818
100.0344360.38040.35217
110.0964771.06560.14435
12-0.151053-1.66840.048897
13-0.171583-1.89520.030216
14-0.149616-1.65260.050495
150.0779060.86050.195601
160.0212140.23430.407568
17-0.053668-0.59280.277211
180.012220.1350.446427
190.035160.38840.349214
20-0.009602-0.10610.457855



Parameters (Session):
par1 = Default ; par2 = 1 ; par3 = 0 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ;
Parameters (R input):
par1 = Default ; par2 = 1 ; par3 = 0 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ; par8 = ;
R code (references can be found in the software module):
if (par1 == 'Default') {
par1 = 10*log10(length(x))
} else {
par1 <- as.numeric(par1)
}
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
par5 <- as.numeric(par5)
if (par6 == 'White Noise') par6 <- 'white' else par6 <- 'ma'
par7 <- as.numeric(par7)
if (par8 != '') par8 <- as.numeric(par8)
x <- na.omit(x)
ox <- x
if (par8 == '') {
if (par2 == 0) {
x <- log(x)
} else {
x <- (x ^ par2 - 1) / par2
}
} else {
x <- log(x,base=par8)
}
if (par3 > 0) x <- diff(x,lag=1,difference=par3)
if (par4 > 0) x <- diff(x,lag=par5,difference=par4)
bitmap(file='picts.png')
op <- par(mfrow=c(2,1))
plot(ox,type='l',main='Original Time Series',xlab='time',ylab='value')
if (par8=='') {
mytitle <- paste('Working Time Series (lambda=',par2,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(lambda=',par2,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
} else {
mytitle <- paste('Working Time Series (base=',par8,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(base=',par8,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
}
plot(x,type='l', main=mytitle,xlab='time',ylab='value')
par(op)
dev.off()
bitmap(file='pic1.png')
racf <- acf(x, par1, main='Autocorrelation', xlab='time lag', ylab='ACF', ci.type=par6, ci=par7, sub=mysub)
dev.off()
bitmap(file='pic2.png')
rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF',sub=mysub)
dev.off()
(myacf <- c(racf$acf))
(mypacf <- c(rpacf$acf))
lengthx <- length(x)
sqrtn <- sqrt(lengthx)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'ACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 2:(par1+1)) {
a<-table.row.start(a)
a<-table.element(a,i-1,header=TRUE)
a<-table.element(a,round(myacf[i],6))
mytstat <- myacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Partial Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'PACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:par1) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,round(mypacf[i],6))
mytstat <- mypacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')