Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_pairs.wasp
Title produced by softwareKendall tau Correlation Matrix
Date of computationMon, 19 Dec 2016 13:28:49 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/19/t1482150535v6fqi1gllhh1fwj.htm/, Retrieved Fri, 01 Nov 2024 03:45:20 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=301330, Retrieved Fri, 01 Nov 2024 03:45:20 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact91
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Kendall tau Correlation Matrix] [] [2016-12-19 12:28:49] [863feeaf19a0ddfce7bd9c25059c4d8a] [Current]
Feedback Forum

Post a new message
Dataseries X:
2	3	3	3	14
1	2	2	4	19
2	3	3	4	17
3	3	2	3	17
3	3	3	3	15
2	3	3	4	20
3	3	3	3	15
3	3	3	3	19
3	3	3	3	15
2	3	3	3	15
2	3	3	4	19
3	3	3	3	15
2	4	4	5	20
2	4	3	4	18
2	3	3	4	15
3	3	2	3	14
2	2	3	5	20
3	1	3	2	16
2	2	3	2	16
2	3	3	3	16
3	3	3	3	10
2	4	3	3	19
3	3	3	3	19
2	2	3	4	16
2	2	2	4	15
2	3	3	4	18
2	3	3	4	17
3	5	4	2	19
2	2	3	4	17
3	3	3	3	14
2	2	2	3	19
2	4	3	4	20
2	2	2	2	5
2	4	3	4	19
2	3	3	4	16
3	3	3	3	15
2	4	3	3	16
2	2	4	4	18
3	3	3	3	16
2	2	2	4	15
3	3	3	3	17
2	3	3	3	13
3	3	3	4	20
2	4	3	4	19
3	3	2	3	7
3	3	3	3	13
3	4	3	3	16
2	3	2	3	16
2	2	1	1	16
3	4	3	3	18
2	2	3	4	18
2	2	3	4	16
1	1	1	2	17
2	2	3	4	19
2	1	3	4	16
3	3	3	3	19
2	5	3	5	13
3	4	3	3	16
4	4	3	2	13
3	3	3	3	12
2	5	2	4	17
3	4	3	3	17
2	3	3	3	17
2	2	3	4	16
2	2	2	3	16
2	3	3	4	14
2	4	3	3	16
2	3	3	5	13
2	5	3	4	16
2	2	2	4	14
2	2	3	4	20
2	2	2	2	12
3	3	3	3	13
1	1	3	5	18
2	3	3	4	14
2	3	3	4	19
2	2	2	4	18
2	3	3	4	14
3	3	3	3	18
3	3	3	3	19
2	2	3	4	15
2	3	3	4	14
2	4	3	4	17
3	3	3	3	19
2	5	3	4	13
3	1	3	3	19
3	3	3	3	18
2	2	3	3	20
2	4	3	4	15
3	2	3	3	15
4	4	3	3	15
3	3	3	3	20
3	3	3	3	15
3	3	3	3	19
2	4	3	4	18
3	3	3	3	18
2	2	2	3	15
5	5	5	5	20
3	3	3	3	17
4	4	3	3	12
2	4	4	4	18
2	2	3	4	19
2	2	3	4	20
2	2	3	4	13
2	2	3	4	17
3	3	3	3	15
2	2	3	4	16
2	2	3	4	18
3	3	3	3	18
3	3	3	3	14
3	3	3	3	15
2	2	3	3	12
1	3	4	4	17
2	2	3	3	14
2	2	2	3	18
2	4	3	4	17
2	2	3	3	17
3	1	3	3	20
2	5	3	4	16
2	2	3	3	14
3	3	3	3	15
3	3	3	3	18
2	3	3	3	20
3	3	3	3	17
3	4	3	4	17
4	3	3	3	17
2	3	3	4	17
2	2	3	4	15
3	3	3	3	17
2	2	3	3	18
2	2	3	4	17
3	3	3	3	20
2	2	2	4	15
2	3	3	4	16
3	3	3	3	15
2	4	4	5	18
2	2	2	4	15
1	5	2	4	18
3	3	3	3	20
2	3	2	3	19
3	3	3	3	14
2	3	3	4	16
2	2	3	4	15
2	4	3	3	17
2	3	3	3	18
2	5	3	3	20
2	2	2	3	17
2	2	3	3	18
2	2	3	4	15
2	4	3	4	16
3	2	3	3	11
2	3	3	2	15
2	3	2	2	18
3	3	3	3	17
3	3	3	3	16
2	2	4	4	12
4	4	3	3	19
2	4	3	4	18
2	3	3	2	15
2	4	3	4	17
4	4	3	3	19
3	3	3	3	18
3	3	3	3	19
2	2	2	3	16
2	4	3	3	16
2	2	3	3	16
3	2	3	4	14




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301330&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=301330&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301330&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Correlations for all pairs of data series (method=kendall)
abcde
a10.2280.188-0.447-0.025
b0.22810.2770.0220.083
c0.1880.27710.2020.122
d-0.4470.0220.20210.094
e-0.0250.0830.1220.0941

\begin{tabular}{lllllllll}
\hline
Correlations for all pairs of data series (method=kendall) \tabularnewline
  & a & b & c & d & e \tabularnewline
a & 1 & 0.228 & 0.188 & -0.447 & -0.025 \tabularnewline
b & 0.228 & 1 & 0.277 & 0.022 & 0.083 \tabularnewline
c & 0.188 & 0.277 & 1 & 0.202 & 0.122 \tabularnewline
d & -0.447 & 0.022 & 0.202 & 1 & 0.094 \tabularnewline
e & -0.025 & 0.083 & 0.122 & 0.094 & 1 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301330&T=1

[TABLE]
[ROW][C]Correlations for all pairs of data series (method=kendall)[/C][/ROW]
[ROW][C] [/C][C]a[/C][C]b[/C][C]c[/C][C]d[/C][C]e[/C][/ROW]
[ROW][C]a[/C][C]1[/C][C]0.228[/C][C]0.188[/C][C]-0.447[/C][C]-0.025[/C][/ROW]
[ROW][C]b[/C][C]0.228[/C][C]1[/C][C]0.277[/C][C]0.022[/C][C]0.083[/C][/ROW]
[ROW][C]c[/C][C]0.188[/C][C]0.277[/C][C]1[/C][C]0.202[/C][C]0.122[/C][/ROW]
[ROW][C]d[/C][C]-0.447[/C][C]0.022[/C][C]0.202[/C][C]1[/C][C]0.094[/C][/ROW]
[ROW][C]e[/C][C]-0.025[/C][C]0.083[/C][C]0.122[/C][C]0.094[/C][C]1[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301330&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301330&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Correlations for all pairs of data series (method=kendall)
abcde
a10.2280.188-0.447-0.025
b0.22810.2770.0220.083
c0.1880.27710.2020.122
d-0.4470.0220.20210.094
e-0.0250.0830.1220.0941







Correlations for all pairs of data series with p-values
pairPearson rSpearman rhoKendall tau
a;b0.23370.24080.228
p-value(0.0024)(0.0017)(0.0011)
a;c0.27060.19670.1885
p-value(4e-04)(0.0109)(0.0105)
a;d-0.3405-0.4712-0.4466
p-value(0)(0)(0)
a;e-0.0315-0.0272-0.025
p-value(0.6861)(0.7269)(0.7016)
b;c0.30380.29840.2768
p-value(1e-04)(1e-04)(1e-04)
b;d0.10070.02670.0218
p-value(0.1953)(0.7319)(0.7519)
b;e0.0960.10550.0835
p-value(0.2169)(0.1748)(0.1806)
c;d0.32010.21310.2024
p-value(0)(0.0057)(0.0054)
c;e0.18070.14470.1221
p-value(0.0194)(0.062)(0.063)
d;e0.16760.11270.0936
p-value(0.0304)(0.1469)(0.146)

\begin{tabular}{lllllllll}
\hline
Correlations for all pairs of data series with p-values \tabularnewline
pair & Pearson r & Spearman rho & Kendall tau \tabularnewline
a;b & 0.2337 & 0.2408 & 0.228 \tabularnewline
p-value & (0.0024) & (0.0017) & (0.0011) \tabularnewline
a;c & 0.2706 & 0.1967 & 0.1885 \tabularnewline
p-value & (4e-04) & (0.0109) & (0.0105) \tabularnewline
a;d & -0.3405 & -0.4712 & -0.4466 \tabularnewline
p-value & (0) & (0) & (0) \tabularnewline
a;e & -0.0315 & -0.0272 & -0.025 \tabularnewline
p-value & (0.6861) & (0.7269) & (0.7016) \tabularnewline
b;c & 0.3038 & 0.2984 & 0.2768 \tabularnewline
p-value & (1e-04) & (1e-04) & (1e-04) \tabularnewline
b;d & 0.1007 & 0.0267 & 0.0218 \tabularnewline
p-value & (0.1953) & (0.7319) & (0.7519) \tabularnewline
b;e & 0.096 & 0.1055 & 0.0835 \tabularnewline
p-value & (0.2169) & (0.1748) & (0.1806) \tabularnewline
c;d & 0.3201 & 0.2131 & 0.2024 \tabularnewline
p-value & (0) & (0.0057) & (0.0054) \tabularnewline
c;e & 0.1807 & 0.1447 & 0.1221 \tabularnewline
p-value & (0.0194) & (0.062) & (0.063) \tabularnewline
d;e & 0.1676 & 0.1127 & 0.0936 \tabularnewline
p-value & (0.0304) & (0.1469) & (0.146) \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301330&T=2

[TABLE]
[ROW][C]Correlations for all pairs of data series with p-values[/C][/ROW]
[ROW][C]pair[/C][C]Pearson r[/C][C]Spearman rho[/C][C]Kendall tau[/C][/ROW]
[ROW][C]a;b[/C][C]0.2337[/C][C]0.2408[/C][C]0.228[/C][/ROW]
[ROW][C]p-value[/C][C](0.0024)[/C][C](0.0017)[/C][C](0.0011)[/C][/ROW]
[ROW][C]a;c[/C][C]0.2706[/C][C]0.1967[/C][C]0.1885[/C][/ROW]
[ROW][C]p-value[/C][C](4e-04)[/C][C](0.0109)[/C][C](0.0105)[/C][/ROW]
[ROW][C]a;d[/C][C]-0.3405[/C][C]-0.4712[/C][C]-0.4466[/C][/ROW]
[ROW][C]p-value[/C][C](0)[/C][C](0)[/C][C](0)[/C][/ROW]
[ROW][C]a;e[/C][C]-0.0315[/C][C]-0.0272[/C][C]-0.025[/C][/ROW]
[ROW][C]p-value[/C][C](0.6861)[/C][C](0.7269)[/C][C](0.7016)[/C][/ROW]
[ROW][C]b;c[/C][C]0.3038[/C][C]0.2984[/C][C]0.2768[/C][/ROW]
[ROW][C]p-value[/C][C](1e-04)[/C][C](1e-04)[/C][C](1e-04)[/C][/ROW]
[ROW][C]b;d[/C][C]0.1007[/C][C]0.0267[/C][C]0.0218[/C][/ROW]
[ROW][C]p-value[/C][C](0.1953)[/C][C](0.7319)[/C][C](0.7519)[/C][/ROW]
[ROW][C]b;e[/C][C]0.096[/C][C]0.1055[/C][C]0.0835[/C][/ROW]
[ROW][C]p-value[/C][C](0.2169)[/C][C](0.1748)[/C][C](0.1806)[/C][/ROW]
[ROW][C]c;d[/C][C]0.3201[/C][C]0.2131[/C][C]0.2024[/C][/ROW]
[ROW][C]p-value[/C][C](0)[/C][C](0.0057)[/C][C](0.0054)[/C][/ROW]
[ROW][C]c;e[/C][C]0.1807[/C][C]0.1447[/C][C]0.1221[/C][/ROW]
[ROW][C]p-value[/C][C](0.0194)[/C][C](0.062)[/C][C](0.063)[/C][/ROW]
[ROW][C]d;e[/C][C]0.1676[/C][C]0.1127[/C][C]0.0936[/C][/ROW]
[ROW][C]p-value[/C][C](0.0304)[/C][C](0.1469)[/C][C](0.146)[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301330&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301330&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Correlations for all pairs of data series with p-values
pairPearson rSpearman rhoKendall tau
a;b0.23370.24080.228
p-value(0.0024)(0.0017)(0.0011)
a;c0.27060.19670.1885
p-value(4e-04)(0.0109)(0.0105)
a;d-0.3405-0.4712-0.4466
p-value(0)(0)(0)
a;e-0.0315-0.0272-0.025
p-value(0.6861)(0.7269)(0.7016)
b;c0.30380.29840.2768
p-value(1e-04)(1e-04)(1e-04)
b;d0.10070.02670.0218
p-value(0.1953)(0.7319)(0.7519)
b;e0.0960.10550.0835
p-value(0.2169)(0.1748)(0.1806)
c;d0.32010.21310.2024
p-value(0)(0.0057)(0.0054)
c;e0.18070.14470.1221
p-value(0.0194)(0.062)(0.063)
d;e0.16760.11270.0936
p-value(0.0304)(0.1469)(0.146)







Meta Analysis of Correlation Tests
Number of significant by total number of Correlations
Type I errorPearson rSpearman rhoKendall tau
0.010.50.40.4
0.020.60.50.5
0.030.60.50.5
0.040.70.50.5
0.050.70.50.5
0.060.70.50.5
0.070.70.60.6
0.080.70.60.6
0.090.70.60.6
0.10.70.60.6

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Correlation Tests \tabularnewline
Number of significant by total number of Correlations \tabularnewline
Type I error & Pearson r & Spearman rho & Kendall tau \tabularnewline
0.01 & 0.5 & 0.4 & 0.4 \tabularnewline
0.02 & 0.6 & 0.5 & 0.5 \tabularnewline
0.03 & 0.6 & 0.5 & 0.5 \tabularnewline
0.04 & 0.7 & 0.5 & 0.5 \tabularnewline
0.05 & 0.7 & 0.5 & 0.5 \tabularnewline
0.06 & 0.7 & 0.5 & 0.5 \tabularnewline
0.07 & 0.7 & 0.6 & 0.6 \tabularnewline
0.08 & 0.7 & 0.6 & 0.6 \tabularnewline
0.09 & 0.7 & 0.6 & 0.6 \tabularnewline
0.1 & 0.7 & 0.6 & 0.6 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301330&T=3

[TABLE]
[ROW][C]Meta Analysis of Correlation Tests[/C][/ROW]
[ROW][C]Number of significant by total number of Correlations[/C][/ROW]
[ROW][C]Type I error[/C][C]Pearson r[/C][C]Spearman rho[/C][C]Kendall tau[/C][/ROW]
[ROW][C]0.01[/C][C]0.5[/C][C]0.4[/C][C]0.4[/C][/ROW]
[ROW][C]0.02[/C][C]0.6[/C][C]0.5[/C][C]0.5[/C][/ROW]
[ROW][C]0.03[/C][C]0.6[/C][C]0.5[/C][C]0.5[/C][/ROW]
[ROW][C]0.04[/C][C]0.7[/C][C]0.5[/C][C]0.5[/C][/ROW]
[ROW][C]0.05[/C][C]0.7[/C][C]0.5[/C][C]0.5[/C][/ROW]
[ROW][C]0.06[/C][C]0.7[/C][C]0.5[/C][C]0.5[/C][/ROW]
[ROW][C]0.07[/C][C]0.7[/C][C]0.6[/C][C]0.6[/C][/ROW]
[ROW][C]0.08[/C][C]0.7[/C][C]0.6[/C][C]0.6[/C][/ROW]
[ROW][C]0.09[/C][C]0.7[/C][C]0.6[/C][C]0.6[/C][/ROW]
[ROW][C]0.1[/C][C]0.7[/C][C]0.6[/C][C]0.6[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301330&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301330&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Correlation Tests
Number of significant by total number of Correlations
Type I errorPearson rSpearman rhoKendall tau
0.010.50.40.4
0.020.60.50.5
0.030.60.50.5
0.040.70.50.5
0.050.70.50.5
0.060.70.50.5
0.070.70.60.6
0.080.70.60.6
0.090.70.60.6
0.10.70.60.6



Parameters (Session):
par1 = kendall ;
Parameters (R input):
par1 = kendall ;
R code (references can be found in the software module):
panel.tau <- function(x, y, digits=2, prefix='', cex.cor)
{
usr <- par('usr'); on.exit(par(usr))
par(usr = c(0, 1, 0, 1))
rr <- cor.test(x, y, method=par1)
r <- round(rr$p.value,2)
txt <- format(c(r, 0.123456789), digits=digits)[1]
txt <- paste(prefix, txt, sep='')
if(missing(cex.cor)) cex <- 0.5/strwidth(txt)
text(0.5, 0.5, txt, cex = cex)
}
panel.hist <- function(x, ...)
{
usr <- par('usr'); on.exit(par(usr))
par(usr = c(usr[1:2], 0, 1.5) )
h <- hist(x, plot = FALSE)
breaks <- h$breaks; nB <- length(breaks)
y <- h$counts; y <- y/max(y)
rect(breaks[-nB], 0, breaks[-1], y, col='grey', ...)
}
x <- na.omit(x)
y <- t(na.omit(t(y)))
bitmap(file='test1.png')
pairs(t(y),diag.panel=panel.hist, upper.panel=panel.smooth, lower.panel=panel.tau, main=main)
dev.off()
load(file='createtable')
n <- length(y[,1])
print(n)
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,paste('Correlations for all pairs of data series (method=',par1,')',sep=''),n+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,' ',header=TRUE)
for (i in 1:n) {
a<-table.element(a,dimnames(t(x))[[2]][i],header=TRUE)
}
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,dimnames(t(x))[[2]][i],header=TRUE)
for (j in 1:n) {
r <- cor.test(y[i,],y[j,],method=par1)
a<-table.element(a,round(r$estimate,3))
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
ncorrs <- (n*n -n)/2
mycorrs <- array(0, dim=c(10,3))
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Correlations for all pairs of data series with p-values',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'pair',1,TRUE)
a<-table.element(a,'Pearson r',1,TRUE)
a<-table.element(a,'Spearman rho',1,TRUE)
a<-table.element(a,'Kendall tau',1,TRUE)
a<-table.row.end(a)
cor.test(y[1,],y[2,],method=par1)
for (i in 1:(n-1))
{
for (j in (i+1):n)
{
a<-table.row.start(a)
dum <- paste(dimnames(t(x))[[2]][i],';',dimnames(t(x))[[2]][j],sep='')
a<-table.element(a,dum,header=TRUE)
rp <- cor.test(y[i,],y[j,],method='pearson')
a<-table.element(a,round(rp$estimate,4))
rs <- cor.test(y[i,],y[j,],method='spearman')
a<-table.element(a,round(rs$estimate,4))
rk <- cor.test(y[i,],y[j,],method='kendall')
a<-table.element(a,round(rk$estimate,4))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=T)
a<-table.element(a,paste('(',round(rp$p.value,4),')',sep=''))
a<-table.element(a,paste('(',round(rs$p.value,4),')',sep=''))
a<-table.element(a,paste('(',round(rk$p.value,4),')',sep=''))
a<-table.row.end(a)
for (iii in 1:10) {
iiid100 <- iii / 100
if (rp$p.value < iiid100) mycorrs[iii, 1] = mycorrs[iii, 1] + 1
if (rs$p.value < iiid100) mycorrs[iii, 2] = mycorrs[iii, 2] + 1
if (rk$p.value < iiid100) mycorrs[iii, 3] = mycorrs[iii, 3] + 1
}
}
}
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Correlation Tests',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Number of significant by total number of Correlations',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Type I error',1,TRUE)
a<-table.element(a,'Pearson r',1,TRUE)
a<-table.element(a,'Spearman rho',1,TRUE)
a<-table.element(a,'Kendall tau',1,TRUE)
a<-table.row.end(a)
for (iii in 1:10) {
iiid100 <- iii / 100
a<-table.row.start(a)
a<-table.element(a,round(iiid100,2),header=T)
a<-table.element(a,round(mycorrs[iii,1]/ncorrs,2))
a<-table.element(a,round(mycorrs[iii,2]/ncorrs,2))
a<-table.element(a,round(mycorrs[iii,3]/ncorrs,2))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')