Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_decompose.wasp
Title produced by softwareClassical Decomposition
Date of computationMon, 19 Dec 2016 12:06:09 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/19/t1482145848jjjwd6h31ipvfyd.htm/, Retrieved Fri, 01 Nov 2024 03:31:26 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=301294, Retrieved Fri, 01 Nov 2024 03:31:26 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact157
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Classical Decomposition] [Classical Decompo...] [2016-12-19 11:06:09] [2e2b863c9581eba851d0277c64dc678f] [Current]
Feedback Forum

Post a new message
Dataseries X:
3440
3620
3600
4140
4820
3940
3860
4680
5000
4480
4600
3660
3660
3780
4140
4000
4340
6440
3880
4780
4960
5340
4640
4180
3860
3760
3860
3460
3620
7220
4480
4440
4940
4820
4420
3940
3560
3660
4140
3680
4540
3820
5680
4520
4640
4820
4740
3900
3300
3520
3840
3500
3300
3840
4000
4180
5020
4540
4520
3680
3580
3500
3440
3560
3320
3220
4180
4460
4420
4620
4220
3660
3440
3700
3500
3240
3200
4180
4100
4120
4240
4020
3780
3560
3360
3240
3540
3300
3280
4200
3340
3900
4380
4120
3780
3380
3260
3320
3380
3100
3240
3100
3240
3640
4140
4240
4040
3760




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301294&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=301294&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301294&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
13440NANA-518.533NA
23620NANA-452.387NA
33600NANA-272.491NA
44140NANA-516.762NA
54820NANA-387.595NA
63940NANA512.3NA
738604285.844162.5123.342-425.842
846804499.184178.33320.842180.825
950004846.054207.5638.55153.95
1044804764.284224.17540.113-284.28
1146004494.594198.33296.259105.408
1236603998.864282.5-283.637-338.863
1336603868.974387.5-518.533-208.967
1437803940.114392.5-452.387-160.113
1541404122.514395-272.49117.4913
1640003912.44429.17-516.76287.5955
1743404079.074466.67-387.595260.929
1864405002.34490512.31437.7
1938804643.344520123.342-763.342
2047804848.344527.5320.842-68.342
2149605153.554515638.55-193.55
2253405020.954480.83540.113319.054
2346404724.594428.33296.259-84.592
2441804147.24430.83-283.63732.8038
2538603969.84488.33-518.533-109.8
2637604046.784499.17-452.387-286.78
2738604211.684484.17-272.491-351.675
2834603944.94461.67-516.762-484.905
2936204043.244430.83-387.595-423.238
3072204923.974411.67512.32296.03
3144804512.514389.17123.342-32.5087
3244404693.344372.5320.842-253.342
3349405018.554380638.55-78.5503
3448204940.954400.83540.113-120.946
3544204744.594448.33296.259-324.592
3639404061.364345-283.637-121.363
3735603734.84253.33-518.533-174.8
3836603854.284306.67-452.387-194.28
3941404025.014297.5-272.491114.991
4036803768.244285-516.762-88.2378
4145403910.744298.33-387.595629.262
4238204822.34310512.3-1002.3
4356804420.844297.5123.3421259.16
4445204601.684280.83320.842-81.6753
4546404901.054262.5638.55-261.05
4648204782.614242.5540.11337.3872
4747404479.594183.33296.259260.408
4839003848.864132.5-283.63751.1372
4933003544.84063.33-518.533-244.8
5035203526.783979.17-452.387-6.77951
5138403708.343980.83-272.491131.658
5235003468.243985-516.76231.7622
5333003576.573964.17-387.595-276.571
5438404458.133945.83512.3-618.134
5540004071.683948.33123.342-71.6753
5641804280.013959.17320.842-100.009
5750204580.223941.67638.55439.783
5845404467.613927.5540.11372.3872
5945204227.093930.83296.259292.908
6036803622.23905.83-283.63757.8038
6135803368.973887.5-518.533211.033
6235003454.283906.67-452.38745.7205
6334403620.843893.33-272.491-180.842
6435603354.93871.67-516.762205.095
6533203474.93862.5-387.595-154.905
6632204361.473849.17512.3-1141.47
6741803965.843842.5123.342214.158
6844604165.843845320.842294.158
6944204494.383855.83638.55-74.3837
7046204385.113845540.113234.887
7142204122.933826.67296.25997.0747
7236603578.033861.67-283.63781.9705
7334403379.83898.33-518.53360.1997
7437003428.453880.83-452.387271.554
7535003586.683859.17-272.491-86.6753
7632403309.93826.67-516.762-69.9045
7732003395.743783.33-387.595-195.738
7841804273.133760.83512.3-93.1337
7941003876.683753.33123.342223.325
8041204051.683730.83320.84268.3247
8142404351.883713.33638.55-111.884
8240204257.613717.5540.113-237.613
8337804019.593723.33296.259-239.592
8435603443.863727.5-283.637116.137
8533603178.133696.67-518.533181.866
8632403203.453655.83-452.38736.5538
8735403380.013652.5-272.491159.991
8833003145.743662.5-516.762154.262
8932803279.073666.67-387.5950.928819
9042004171.473659.17512.328.533
9133403770.843647.5123.342-430.842
9239003967.513646.67320.842-67.5087
9343804281.883643.33638.5598.1163
9441204168.453628.33540.113-48.4462
9537803914.593618.33296.259-134.592
9633803287.23570.83-283.63792.8038
9732603002.33520.83-518.533257.7
9833203053.453505.83-452.387266.554
9933803212.513485-272.491167.491
10031002963.243480-516.762136.762
10132403108.243495.83-387.595131.762
10231004034.83522.5512.3-934.8
1033240NANA123.342NA
1043640NANA320.842NA
1054140NANA638.55NA
1064240NANA540.113NA
1074040NANA296.259NA
1083760NANA-283.637NA

\begin{tabular}{lllllllll}
\hline
Classical Decomposition by Moving Averages \tabularnewline
t & Observations & Fit & Trend & Seasonal & Random \tabularnewline
1 & 3440 & NA & NA & -518.533 & NA \tabularnewline
2 & 3620 & NA & NA & -452.387 & NA \tabularnewline
3 & 3600 & NA & NA & -272.491 & NA \tabularnewline
4 & 4140 & NA & NA & -516.762 & NA \tabularnewline
5 & 4820 & NA & NA & -387.595 & NA \tabularnewline
6 & 3940 & NA & NA & 512.3 & NA \tabularnewline
7 & 3860 & 4285.84 & 4162.5 & 123.342 & -425.842 \tabularnewline
8 & 4680 & 4499.18 & 4178.33 & 320.842 & 180.825 \tabularnewline
9 & 5000 & 4846.05 & 4207.5 & 638.55 & 153.95 \tabularnewline
10 & 4480 & 4764.28 & 4224.17 & 540.113 & -284.28 \tabularnewline
11 & 4600 & 4494.59 & 4198.33 & 296.259 & 105.408 \tabularnewline
12 & 3660 & 3998.86 & 4282.5 & -283.637 & -338.863 \tabularnewline
13 & 3660 & 3868.97 & 4387.5 & -518.533 & -208.967 \tabularnewline
14 & 3780 & 3940.11 & 4392.5 & -452.387 & -160.113 \tabularnewline
15 & 4140 & 4122.51 & 4395 & -272.491 & 17.4913 \tabularnewline
16 & 4000 & 3912.4 & 4429.17 & -516.762 & 87.5955 \tabularnewline
17 & 4340 & 4079.07 & 4466.67 & -387.595 & 260.929 \tabularnewline
18 & 6440 & 5002.3 & 4490 & 512.3 & 1437.7 \tabularnewline
19 & 3880 & 4643.34 & 4520 & 123.342 & -763.342 \tabularnewline
20 & 4780 & 4848.34 & 4527.5 & 320.842 & -68.342 \tabularnewline
21 & 4960 & 5153.55 & 4515 & 638.55 & -193.55 \tabularnewline
22 & 5340 & 5020.95 & 4480.83 & 540.113 & 319.054 \tabularnewline
23 & 4640 & 4724.59 & 4428.33 & 296.259 & -84.592 \tabularnewline
24 & 4180 & 4147.2 & 4430.83 & -283.637 & 32.8038 \tabularnewline
25 & 3860 & 3969.8 & 4488.33 & -518.533 & -109.8 \tabularnewline
26 & 3760 & 4046.78 & 4499.17 & -452.387 & -286.78 \tabularnewline
27 & 3860 & 4211.68 & 4484.17 & -272.491 & -351.675 \tabularnewline
28 & 3460 & 3944.9 & 4461.67 & -516.762 & -484.905 \tabularnewline
29 & 3620 & 4043.24 & 4430.83 & -387.595 & -423.238 \tabularnewline
30 & 7220 & 4923.97 & 4411.67 & 512.3 & 2296.03 \tabularnewline
31 & 4480 & 4512.51 & 4389.17 & 123.342 & -32.5087 \tabularnewline
32 & 4440 & 4693.34 & 4372.5 & 320.842 & -253.342 \tabularnewline
33 & 4940 & 5018.55 & 4380 & 638.55 & -78.5503 \tabularnewline
34 & 4820 & 4940.95 & 4400.83 & 540.113 & -120.946 \tabularnewline
35 & 4420 & 4744.59 & 4448.33 & 296.259 & -324.592 \tabularnewline
36 & 3940 & 4061.36 & 4345 & -283.637 & -121.363 \tabularnewline
37 & 3560 & 3734.8 & 4253.33 & -518.533 & -174.8 \tabularnewline
38 & 3660 & 3854.28 & 4306.67 & -452.387 & -194.28 \tabularnewline
39 & 4140 & 4025.01 & 4297.5 & -272.491 & 114.991 \tabularnewline
40 & 3680 & 3768.24 & 4285 & -516.762 & -88.2378 \tabularnewline
41 & 4540 & 3910.74 & 4298.33 & -387.595 & 629.262 \tabularnewline
42 & 3820 & 4822.3 & 4310 & 512.3 & -1002.3 \tabularnewline
43 & 5680 & 4420.84 & 4297.5 & 123.342 & 1259.16 \tabularnewline
44 & 4520 & 4601.68 & 4280.83 & 320.842 & -81.6753 \tabularnewline
45 & 4640 & 4901.05 & 4262.5 & 638.55 & -261.05 \tabularnewline
46 & 4820 & 4782.61 & 4242.5 & 540.113 & 37.3872 \tabularnewline
47 & 4740 & 4479.59 & 4183.33 & 296.259 & 260.408 \tabularnewline
48 & 3900 & 3848.86 & 4132.5 & -283.637 & 51.1372 \tabularnewline
49 & 3300 & 3544.8 & 4063.33 & -518.533 & -244.8 \tabularnewline
50 & 3520 & 3526.78 & 3979.17 & -452.387 & -6.77951 \tabularnewline
51 & 3840 & 3708.34 & 3980.83 & -272.491 & 131.658 \tabularnewline
52 & 3500 & 3468.24 & 3985 & -516.762 & 31.7622 \tabularnewline
53 & 3300 & 3576.57 & 3964.17 & -387.595 & -276.571 \tabularnewline
54 & 3840 & 4458.13 & 3945.83 & 512.3 & -618.134 \tabularnewline
55 & 4000 & 4071.68 & 3948.33 & 123.342 & -71.6753 \tabularnewline
56 & 4180 & 4280.01 & 3959.17 & 320.842 & -100.009 \tabularnewline
57 & 5020 & 4580.22 & 3941.67 & 638.55 & 439.783 \tabularnewline
58 & 4540 & 4467.61 & 3927.5 & 540.113 & 72.3872 \tabularnewline
59 & 4520 & 4227.09 & 3930.83 & 296.259 & 292.908 \tabularnewline
60 & 3680 & 3622.2 & 3905.83 & -283.637 & 57.8038 \tabularnewline
61 & 3580 & 3368.97 & 3887.5 & -518.533 & 211.033 \tabularnewline
62 & 3500 & 3454.28 & 3906.67 & -452.387 & 45.7205 \tabularnewline
63 & 3440 & 3620.84 & 3893.33 & -272.491 & -180.842 \tabularnewline
64 & 3560 & 3354.9 & 3871.67 & -516.762 & 205.095 \tabularnewline
65 & 3320 & 3474.9 & 3862.5 & -387.595 & -154.905 \tabularnewline
66 & 3220 & 4361.47 & 3849.17 & 512.3 & -1141.47 \tabularnewline
67 & 4180 & 3965.84 & 3842.5 & 123.342 & 214.158 \tabularnewline
68 & 4460 & 4165.84 & 3845 & 320.842 & 294.158 \tabularnewline
69 & 4420 & 4494.38 & 3855.83 & 638.55 & -74.3837 \tabularnewline
70 & 4620 & 4385.11 & 3845 & 540.113 & 234.887 \tabularnewline
71 & 4220 & 4122.93 & 3826.67 & 296.259 & 97.0747 \tabularnewline
72 & 3660 & 3578.03 & 3861.67 & -283.637 & 81.9705 \tabularnewline
73 & 3440 & 3379.8 & 3898.33 & -518.533 & 60.1997 \tabularnewline
74 & 3700 & 3428.45 & 3880.83 & -452.387 & 271.554 \tabularnewline
75 & 3500 & 3586.68 & 3859.17 & -272.491 & -86.6753 \tabularnewline
76 & 3240 & 3309.9 & 3826.67 & -516.762 & -69.9045 \tabularnewline
77 & 3200 & 3395.74 & 3783.33 & -387.595 & -195.738 \tabularnewline
78 & 4180 & 4273.13 & 3760.83 & 512.3 & -93.1337 \tabularnewline
79 & 4100 & 3876.68 & 3753.33 & 123.342 & 223.325 \tabularnewline
80 & 4120 & 4051.68 & 3730.83 & 320.842 & 68.3247 \tabularnewline
81 & 4240 & 4351.88 & 3713.33 & 638.55 & -111.884 \tabularnewline
82 & 4020 & 4257.61 & 3717.5 & 540.113 & -237.613 \tabularnewline
83 & 3780 & 4019.59 & 3723.33 & 296.259 & -239.592 \tabularnewline
84 & 3560 & 3443.86 & 3727.5 & -283.637 & 116.137 \tabularnewline
85 & 3360 & 3178.13 & 3696.67 & -518.533 & 181.866 \tabularnewline
86 & 3240 & 3203.45 & 3655.83 & -452.387 & 36.5538 \tabularnewline
87 & 3540 & 3380.01 & 3652.5 & -272.491 & 159.991 \tabularnewline
88 & 3300 & 3145.74 & 3662.5 & -516.762 & 154.262 \tabularnewline
89 & 3280 & 3279.07 & 3666.67 & -387.595 & 0.928819 \tabularnewline
90 & 4200 & 4171.47 & 3659.17 & 512.3 & 28.533 \tabularnewline
91 & 3340 & 3770.84 & 3647.5 & 123.342 & -430.842 \tabularnewline
92 & 3900 & 3967.51 & 3646.67 & 320.842 & -67.5087 \tabularnewline
93 & 4380 & 4281.88 & 3643.33 & 638.55 & 98.1163 \tabularnewline
94 & 4120 & 4168.45 & 3628.33 & 540.113 & -48.4462 \tabularnewline
95 & 3780 & 3914.59 & 3618.33 & 296.259 & -134.592 \tabularnewline
96 & 3380 & 3287.2 & 3570.83 & -283.637 & 92.8038 \tabularnewline
97 & 3260 & 3002.3 & 3520.83 & -518.533 & 257.7 \tabularnewline
98 & 3320 & 3053.45 & 3505.83 & -452.387 & 266.554 \tabularnewline
99 & 3380 & 3212.51 & 3485 & -272.491 & 167.491 \tabularnewline
100 & 3100 & 2963.24 & 3480 & -516.762 & 136.762 \tabularnewline
101 & 3240 & 3108.24 & 3495.83 & -387.595 & 131.762 \tabularnewline
102 & 3100 & 4034.8 & 3522.5 & 512.3 & -934.8 \tabularnewline
103 & 3240 & NA & NA & 123.342 & NA \tabularnewline
104 & 3640 & NA & NA & 320.842 & NA \tabularnewline
105 & 4140 & NA & NA & 638.55 & NA \tabularnewline
106 & 4240 & NA & NA & 540.113 & NA \tabularnewline
107 & 4040 & NA & NA & 296.259 & NA \tabularnewline
108 & 3760 & NA & NA & -283.637 & NA \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301294&T=1

[TABLE]
[ROW][C]Classical Decomposition by Moving Averages[/C][/ROW]
[ROW][C]t[/C][C]Observations[/C][C]Fit[/C][C]Trend[/C][C]Seasonal[/C][C]Random[/C][/ROW]
[ROW][C]1[/C][C]3440[/C][C]NA[/C][C]NA[/C][C]-518.533[/C][C]NA[/C][/ROW]
[ROW][C]2[/C][C]3620[/C][C]NA[/C][C]NA[/C][C]-452.387[/C][C]NA[/C][/ROW]
[ROW][C]3[/C][C]3600[/C][C]NA[/C][C]NA[/C][C]-272.491[/C][C]NA[/C][/ROW]
[ROW][C]4[/C][C]4140[/C][C]NA[/C][C]NA[/C][C]-516.762[/C][C]NA[/C][/ROW]
[ROW][C]5[/C][C]4820[/C][C]NA[/C][C]NA[/C][C]-387.595[/C][C]NA[/C][/ROW]
[ROW][C]6[/C][C]3940[/C][C]NA[/C][C]NA[/C][C]512.3[/C][C]NA[/C][/ROW]
[ROW][C]7[/C][C]3860[/C][C]4285.84[/C][C]4162.5[/C][C]123.342[/C][C]-425.842[/C][/ROW]
[ROW][C]8[/C][C]4680[/C][C]4499.18[/C][C]4178.33[/C][C]320.842[/C][C]180.825[/C][/ROW]
[ROW][C]9[/C][C]5000[/C][C]4846.05[/C][C]4207.5[/C][C]638.55[/C][C]153.95[/C][/ROW]
[ROW][C]10[/C][C]4480[/C][C]4764.28[/C][C]4224.17[/C][C]540.113[/C][C]-284.28[/C][/ROW]
[ROW][C]11[/C][C]4600[/C][C]4494.59[/C][C]4198.33[/C][C]296.259[/C][C]105.408[/C][/ROW]
[ROW][C]12[/C][C]3660[/C][C]3998.86[/C][C]4282.5[/C][C]-283.637[/C][C]-338.863[/C][/ROW]
[ROW][C]13[/C][C]3660[/C][C]3868.97[/C][C]4387.5[/C][C]-518.533[/C][C]-208.967[/C][/ROW]
[ROW][C]14[/C][C]3780[/C][C]3940.11[/C][C]4392.5[/C][C]-452.387[/C][C]-160.113[/C][/ROW]
[ROW][C]15[/C][C]4140[/C][C]4122.51[/C][C]4395[/C][C]-272.491[/C][C]17.4913[/C][/ROW]
[ROW][C]16[/C][C]4000[/C][C]3912.4[/C][C]4429.17[/C][C]-516.762[/C][C]87.5955[/C][/ROW]
[ROW][C]17[/C][C]4340[/C][C]4079.07[/C][C]4466.67[/C][C]-387.595[/C][C]260.929[/C][/ROW]
[ROW][C]18[/C][C]6440[/C][C]5002.3[/C][C]4490[/C][C]512.3[/C][C]1437.7[/C][/ROW]
[ROW][C]19[/C][C]3880[/C][C]4643.34[/C][C]4520[/C][C]123.342[/C][C]-763.342[/C][/ROW]
[ROW][C]20[/C][C]4780[/C][C]4848.34[/C][C]4527.5[/C][C]320.842[/C][C]-68.342[/C][/ROW]
[ROW][C]21[/C][C]4960[/C][C]5153.55[/C][C]4515[/C][C]638.55[/C][C]-193.55[/C][/ROW]
[ROW][C]22[/C][C]5340[/C][C]5020.95[/C][C]4480.83[/C][C]540.113[/C][C]319.054[/C][/ROW]
[ROW][C]23[/C][C]4640[/C][C]4724.59[/C][C]4428.33[/C][C]296.259[/C][C]-84.592[/C][/ROW]
[ROW][C]24[/C][C]4180[/C][C]4147.2[/C][C]4430.83[/C][C]-283.637[/C][C]32.8038[/C][/ROW]
[ROW][C]25[/C][C]3860[/C][C]3969.8[/C][C]4488.33[/C][C]-518.533[/C][C]-109.8[/C][/ROW]
[ROW][C]26[/C][C]3760[/C][C]4046.78[/C][C]4499.17[/C][C]-452.387[/C][C]-286.78[/C][/ROW]
[ROW][C]27[/C][C]3860[/C][C]4211.68[/C][C]4484.17[/C][C]-272.491[/C][C]-351.675[/C][/ROW]
[ROW][C]28[/C][C]3460[/C][C]3944.9[/C][C]4461.67[/C][C]-516.762[/C][C]-484.905[/C][/ROW]
[ROW][C]29[/C][C]3620[/C][C]4043.24[/C][C]4430.83[/C][C]-387.595[/C][C]-423.238[/C][/ROW]
[ROW][C]30[/C][C]7220[/C][C]4923.97[/C][C]4411.67[/C][C]512.3[/C][C]2296.03[/C][/ROW]
[ROW][C]31[/C][C]4480[/C][C]4512.51[/C][C]4389.17[/C][C]123.342[/C][C]-32.5087[/C][/ROW]
[ROW][C]32[/C][C]4440[/C][C]4693.34[/C][C]4372.5[/C][C]320.842[/C][C]-253.342[/C][/ROW]
[ROW][C]33[/C][C]4940[/C][C]5018.55[/C][C]4380[/C][C]638.55[/C][C]-78.5503[/C][/ROW]
[ROW][C]34[/C][C]4820[/C][C]4940.95[/C][C]4400.83[/C][C]540.113[/C][C]-120.946[/C][/ROW]
[ROW][C]35[/C][C]4420[/C][C]4744.59[/C][C]4448.33[/C][C]296.259[/C][C]-324.592[/C][/ROW]
[ROW][C]36[/C][C]3940[/C][C]4061.36[/C][C]4345[/C][C]-283.637[/C][C]-121.363[/C][/ROW]
[ROW][C]37[/C][C]3560[/C][C]3734.8[/C][C]4253.33[/C][C]-518.533[/C][C]-174.8[/C][/ROW]
[ROW][C]38[/C][C]3660[/C][C]3854.28[/C][C]4306.67[/C][C]-452.387[/C][C]-194.28[/C][/ROW]
[ROW][C]39[/C][C]4140[/C][C]4025.01[/C][C]4297.5[/C][C]-272.491[/C][C]114.991[/C][/ROW]
[ROW][C]40[/C][C]3680[/C][C]3768.24[/C][C]4285[/C][C]-516.762[/C][C]-88.2378[/C][/ROW]
[ROW][C]41[/C][C]4540[/C][C]3910.74[/C][C]4298.33[/C][C]-387.595[/C][C]629.262[/C][/ROW]
[ROW][C]42[/C][C]3820[/C][C]4822.3[/C][C]4310[/C][C]512.3[/C][C]-1002.3[/C][/ROW]
[ROW][C]43[/C][C]5680[/C][C]4420.84[/C][C]4297.5[/C][C]123.342[/C][C]1259.16[/C][/ROW]
[ROW][C]44[/C][C]4520[/C][C]4601.68[/C][C]4280.83[/C][C]320.842[/C][C]-81.6753[/C][/ROW]
[ROW][C]45[/C][C]4640[/C][C]4901.05[/C][C]4262.5[/C][C]638.55[/C][C]-261.05[/C][/ROW]
[ROW][C]46[/C][C]4820[/C][C]4782.61[/C][C]4242.5[/C][C]540.113[/C][C]37.3872[/C][/ROW]
[ROW][C]47[/C][C]4740[/C][C]4479.59[/C][C]4183.33[/C][C]296.259[/C][C]260.408[/C][/ROW]
[ROW][C]48[/C][C]3900[/C][C]3848.86[/C][C]4132.5[/C][C]-283.637[/C][C]51.1372[/C][/ROW]
[ROW][C]49[/C][C]3300[/C][C]3544.8[/C][C]4063.33[/C][C]-518.533[/C][C]-244.8[/C][/ROW]
[ROW][C]50[/C][C]3520[/C][C]3526.78[/C][C]3979.17[/C][C]-452.387[/C][C]-6.77951[/C][/ROW]
[ROW][C]51[/C][C]3840[/C][C]3708.34[/C][C]3980.83[/C][C]-272.491[/C][C]131.658[/C][/ROW]
[ROW][C]52[/C][C]3500[/C][C]3468.24[/C][C]3985[/C][C]-516.762[/C][C]31.7622[/C][/ROW]
[ROW][C]53[/C][C]3300[/C][C]3576.57[/C][C]3964.17[/C][C]-387.595[/C][C]-276.571[/C][/ROW]
[ROW][C]54[/C][C]3840[/C][C]4458.13[/C][C]3945.83[/C][C]512.3[/C][C]-618.134[/C][/ROW]
[ROW][C]55[/C][C]4000[/C][C]4071.68[/C][C]3948.33[/C][C]123.342[/C][C]-71.6753[/C][/ROW]
[ROW][C]56[/C][C]4180[/C][C]4280.01[/C][C]3959.17[/C][C]320.842[/C][C]-100.009[/C][/ROW]
[ROW][C]57[/C][C]5020[/C][C]4580.22[/C][C]3941.67[/C][C]638.55[/C][C]439.783[/C][/ROW]
[ROW][C]58[/C][C]4540[/C][C]4467.61[/C][C]3927.5[/C][C]540.113[/C][C]72.3872[/C][/ROW]
[ROW][C]59[/C][C]4520[/C][C]4227.09[/C][C]3930.83[/C][C]296.259[/C][C]292.908[/C][/ROW]
[ROW][C]60[/C][C]3680[/C][C]3622.2[/C][C]3905.83[/C][C]-283.637[/C][C]57.8038[/C][/ROW]
[ROW][C]61[/C][C]3580[/C][C]3368.97[/C][C]3887.5[/C][C]-518.533[/C][C]211.033[/C][/ROW]
[ROW][C]62[/C][C]3500[/C][C]3454.28[/C][C]3906.67[/C][C]-452.387[/C][C]45.7205[/C][/ROW]
[ROW][C]63[/C][C]3440[/C][C]3620.84[/C][C]3893.33[/C][C]-272.491[/C][C]-180.842[/C][/ROW]
[ROW][C]64[/C][C]3560[/C][C]3354.9[/C][C]3871.67[/C][C]-516.762[/C][C]205.095[/C][/ROW]
[ROW][C]65[/C][C]3320[/C][C]3474.9[/C][C]3862.5[/C][C]-387.595[/C][C]-154.905[/C][/ROW]
[ROW][C]66[/C][C]3220[/C][C]4361.47[/C][C]3849.17[/C][C]512.3[/C][C]-1141.47[/C][/ROW]
[ROW][C]67[/C][C]4180[/C][C]3965.84[/C][C]3842.5[/C][C]123.342[/C][C]214.158[/C][/ROW]
[ROW][C]68[/C][C]4460[/C][C]4165.84[/C][C]3845[/C][C]320.842[/C][C]294.158[/C][/ROW]
[ROW][C]69[/C][C]4420[/C][C]4494.38[/C][C]3855.83[/C][C]638.55[/C][C]-74.3837[/C][/ROW]
[ROW][C]70[/C][C]4620[/C][C]4385.11[/C][C]3845[/C][C]540.113[/C][C]234.887[/C][/ROW]
[ROW][C]71[/C][C]4220[/C][C]4122.93[/C][C]3826.67[/C][C]296.259[/C][C]97.0747[/C][/ROW]
[ROW][C]72[/C][C]3660[/C][C]3578.03[/C][C]3861.67[/C][C]-283.637[/C][C]81.9705[/C][/ROW]
[ROW][C]73[/C][C]3440[/C][C]3379.8[/C][C]3898.33[/C][C]-518.533[/C][C]60.1997[/C][/ROW]
[ROW][C]74[/C][C]3700[/C][C]3428.45[/C][C]3880.83[/C][C]-452.387[/C][C]271.554[/C][/ROW]
[ROW][C]75[/C][C]3500[/C][C]3586.68[/C][C]3859.17[/C][C]-272.491[/C][C]-86.6753[/C][/ROW]
[ROW][C]76[/C][C]3240[/C][C]3309.9[/C][C]3826.67[/C][C]-516.762[/C][C]-69.9045[/C][/ROW]
[ROW][C]77[/C][C]3200[/C][C]3395.74[/C][C]3783.33[/C][C]-387.595[/C][C]-195.738[/C][/ROW]
[ROW][C]78[/C][C]4180[/C][C]4273.13[/C][C]3760.83[/C][C]512.3[/C][C]-93.1337[/C][/ROW]
[ROW][C]79[/C][C]4100[/C][C]3876.68[/C][C]3753.33[/C][C]123.342[/C][C]223.325[/C][/ROW]
[ROW][C]80[/C][C]4120[/C][C]4051.68[/C][C]3730.83[/C][C]320.842[/C][C]68.3247[/C][/ROW]
[ROW][C]81[/C][C]4240[/C][C]4351.88[/C][C]3713.33[/C][C]638.55[/C][C]-111.884[/C][/ROW]
[ROW][C]82[/C][C]4020[/C][C]4257.61[/C][C]3717.5[/C][C]540.113[/C][C]-237.613[/C][/ROW]
[ROW][C]83[/C][C]3780[/C][C]4019.59[/C][C]3723.33[/C][C]296.259[/C][C]-239.592[/C][/ROW]
[ROW][C]84[/C][C]3560[/C][C]3443.86[/C][C]3727.5[/C][C]-283.637[/C][C]116.137[/C][/ROW]
[ROW][C]85[/C][C]3360[/C][C]3178.13[/C][C]3696.67[/C][C]-518.533[/C][C]181.866[/C][/ROW]
[ROW][C]86[/C][C]3240[/C][C]3203.45[/C][C]3655.83[/C][C]-452.387[/C][C]36.5538[/C][/ROW]
[ROW][C]87[/C][C]3540[/C][C]3380.01[/C][C]3652.5[/C][C]-272.491[/C][C]159.991[/C][/ROW]
[ROW][C]88[/C][C]3300[/C][C]3145.74[/C][C]3662.5[/C][C]-516.762[/C][C]154.262[/C][/ROW]
[ROW][C]89[/C][C]3280[/C][C]3279.07[/C][C]3666.67[/C][C]-387.595[/C][C]0.928819[/C][/ROW]
[ROW][C]90[/C][C]4200[/C][C]4171.47[/C][C]3659.17[/C][C]512.3[/C][C]28.533[/C][/ROW]
[ROW][C]91[/C][C]3340[/C][C]3770.84[/C][C]3647.5[/C][C]123.342[/C][C]-430.842[/C][/ROW]
[ROW][C]92[/C][C]3900[/C][C]3967.51[/C][C]3646.67[/C][C]320.842[/C][C]-67.5087[/C][/ROW]
[ROW][C]93[/C][C]4380[/C][C]4281.88[/C][C]3643.33[/C][C]638.55[/C][C]98.1163[/C][/ROW]
[ROW][C]94[/C][C]4120[/C][C]4168.45[/C][C]3628.33[/C][C]540.113[/C][C]-48.4462[/C][/ROW]
[ROW][C]95[/C][C]3780[/C][C]3914.59[/C][C]3618.33[/C][C]296.259[/C][C]-134.592[/C][/ROW]
[ROW][C]96[/C][C]3380[/C][C]3287.2[/C][C]3570.83[/C][C]-283.637[/C][C]92.8038[/C][/ROW]
[ROW][C]97[/C][C]3260[/C][C]3002.3[/C][C]3520.83[/C][C]-518.533[/C][C]257.7[/C][/ROW]
[ROW][C]98[/C][C]3320[/C][C]3053.45[/C][C]3505.83[/C][C]-452.387[/C][C]266.554[/C][/ROW]
[ROW][C]99[/C][C]3380[/C][C]3212.51[/C][C]3485[/C][C]-272.491[/C][C]167.491[/C][/ROW]
[ROW][C]100[/C][C]3100[/C][C]2963.24[/C][C]3480[/C][C]-516.762[/C][C]136.762[/C][/ROW]
[ROW][C]101[/C][C]3240[/C][C]3108.24[/C][C]3495.83[/C][C]-387.595[/C][C]131.762[/C][/ROW]
[ROW][C]102[/C][C]3100[/C][C]4034.8[/C][C]3522.5[/C][C]512.3[/C][C]-934.8[/C][/ROW]
[ROW][C]103[/C][C]3240[/C][C]NA[/C][C]NA[/C][C]123.342[/C][C]NA[/C][/ROW]
[ROW][C]104[/C][C]3640[/C][C]NA[/C][C]NA[/C][C]320.842[/C][C]NA[/C][/ROW]
[ROW][C]105[/C][C]4140[/C][C]NA[/C][C]NA[/C][C]638.55[/C][C]NA[/C][/ROW]
[ROW][C]106[/C][C]4240[/C][C]NA[/C][C]NA[/C][C]540.113[/C][C]NA[/C][/ROW]
[ROW][C]107[/C][C]4040[/C][C]NA[/C][C]NA[/C][C]296.259[/C][C]NA[/C][/ROW]
[ROW][C]108[/C][C]3760[/C][C]NA[/C][C]NA[/C][C]-283.637[/C][C]NA[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301294&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301294&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
13440NANA-518.533NA
23620NANA-452.387NA
33600NANA-272.491NA
44140NANA-516.762NA
54820NANA-387.595NA
63940NANA512.3NA
738604285.844162.5123.342-425.842
846804499.184178.33320.842180.825
950004846.054207.5638.55153.95
1044804764.284224.17540.113-284.28
1146004494.594198.33296.259105.408
1236603998.864282.5-283.637-338.863
1336603868.974387.5-518.533-208.967
1437803940.114392.5-452.387-160.113
1541404122.514395-272.49117.4913
1640003912.44429.17-516.76287.5955
1743404079.074466.67-387.595260.929
1864405002.34490512.31437.7
1938804643.344520123.342-763.342
2047804848.344527.5320.842-68.342
2149605153.554515638.55-193.55
2253405020.954480.83540.113319.054
2346404724.594428.33296.259-84.592
2441804147.24430.83-283.63732.8038
2538603969.84488.33-518.533-109.8
2637604046.784499.17-452.387-286.78
2738604211.684484.17-272.491-351.675
2834603944.94461.67-516.762-484.905
2936204043.244430.83-387.595-423.238
3072204923.974411.67512.32296.03
3144804512.514389.17123.342-32.5087
3244404693.344372.5320.842-253.342
3349405018.554380638.55-78.5503
3448204940.954400.83540.113-120.946
3544204744.594448.33296.259-324.592
3639404061.364345-283.637-121.363
3735603734.84253.33-518.533-174.8
3836603854.284306.67-452.387-194.28
3941404025.014297.5-272.491114.991
4036803768.244285-516.762-88.2378
4145403910.744298.33-387.595629.262
4238204822.34310512.3-1002.3
4356804420.844297.5123.3421259.16
4445204601.684280.83320.842-81.6753
4546404901.054262.5638.55-261.05
4648204782.614242.5540.11337.3872
4747404479.594183.33296.259260.408
4839003848.864132.5-283.63751.1372
4933003544.84063.33-518.533-244.8
5035203526.783979.17-452.387-6.77951
5138403708.343980.83-272.491131.658
5235003468.243985-516.76231.7622
5333003576.573964.17-387.595-276.571
5438404458.133945.83512.3-618.134
5540004071.683948.33123.342-71.6753
5641804280.013959.17320.842-100.009
5750204580.223941.67638.55439.783
5845404467.613927.5540.11372.3872
5945204227.093930.83296.259292.908
6036803622.23905.83-283.63757.8038
6135803368.973887.5-518.533211.033
6235003454.283906.67-452.38745.7205
6334403620.843893.33-272.491-180.842
6435603354.93871.67-516.762205.095
6533203474.93862.5-387.595-154.905
6632204361.473849.17512.3-1141.47
6741803965.843842.5123.342214.158
6844604165.843845320.842294.158
6944204494.383855.83638.55-74.3837
7046204385.113845540.113234.887
7142204122.933826.67296.25997.0747
7236603578.033861.67-283.63781.9705
7334403379.83898.33-518.53360.1997
7437003428.453880.83-452.387271.554
7535003586.683859.17-272.491-86.6753
7632403309.93826.67-516.762-69.9045
7732003395.743783.33-387.595-195.738
7841804273.133760.83512.3-93.1337
7941003876.683753.33123.342223.325
8041204051.683730.83320.84268.3247
8142404351.883713.33638.55-111.884
8240204257.613717.5540.113-237.613
8337804019.593723.33296.259-239.592
8435603443.863727.5-283.637116.137
8533603178.133696.67-518.533181.866
8632403203.453655.83-452.38736.5538
8735403380.013652.5-272.491159.991
8833003145.743662.5-516.762154.262
8932803279.073666.67-387.5950.928819
9042004171.473659.17512.328.533
9133403770.843647.5123.342-430.842
9239003967.513646.67320.842-67.5087
9343804281.883643.33638.5598.1163
9441204168.453628.33540.113-48.4462
9537803914.593618.33296.259-134.592
9633803287.23570.83-283.63792.8038
9732603002.33520.83-518.533257.7
9833203053.453505.83-452.387266.554
9933803212.513485-272.491167.491
10031002963.243480-516.762136.762
10132403108.243495.83-387.595131.762
10231004034.83522.5512.3-934.8
1033240NANA123.342NA
1043640NANA320.842NA
1054140NANA638.55NA
1064240NANA540.113NA
1074040NANA296.259NA
1083760NANA-283.637NA



Parameters (Session):
par1 = additive ; par2 = 12 ;
Parameters (R input):
par1 = additive ; par2 = 12 ;
R code (references can be found in the software module):
par2 <- as.numeric(par2)
x <- ts(x,freq=par2)
m <- decompose(x,type=par1)
m$figure
bitmap(file='test1.png')
plot(m)
dev.off()
mylagmax <- length(x)/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$trend),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$seasonal),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$random),na.action=na.pass,lag.max = mylagmax,main='Random')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
spectrum(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
spectrum(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
cpgram(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
cpgram(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Classical Decomposition by Moving Averages',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observations',header=TRUE)
a<-table.element(a,'Fit',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Random',header=TRUE)
a<-table.row.end(a)
for (i in 1:length(m$trend)) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
if (par1 == 'additive') a<-table.element(a,signif(m$trend[i]+m$seasonal[i],6)) else a<-table.element(a,signif(m$trend[i]*m$seasonal[i],6))
a<-table.element(a,signif(m$trend[i],6))
a<-table.element(a,signif(m$seasonal[i],6))
a<-table.element(a,signif(m$random[i],6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')