Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_autocorrelation.wasp
Title produced by software(Partial) Autocorrelation Function
Date of computationSun, 18 Dec 2016 21:59:54 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/18/t1482094805j0litjve45u54da.htm/, Retrieved Fri, 01 Nov 2024 03:44:12 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=301238, Retrieved Fri, 01 Nov 2024 03:44:12 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact102
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Spectral Analysis] [] [2016-12-16 13:29:44] [683f400e1b95307fc738e729f07c4fce]
- R P   [Spectral Analysis] [] [2016-12-18 18:43:40] [683f400e1b95307fc738e729f07c4fce]
- RMP       [(Partial) Autocorrelation Function] [] [2016-12-18 20:59:54] [404ac5ee4f7301873f6a96ef36861981] [Current]
Feedback Forum

Post a new message
Dataseries X:
6086
6090.5
6103.5
6144
6190.5
6225
6272
6294
6366
6426
6477
6500
6538
6581
6615.5
6639.5
6651
6665
6684
6684.5
6666.5
6666.5
6651
6652
6647
6618.5
6604.5
6572
6556
6535
6515.5
6515
6489
6491
6483.5
6486.5
6486.5
6478.5
6461
6458.5
6446
6420
6397.5
6408
6408.5
6401.5
6408.5
6417.5
6406.5
6426.5
6431.5
6441.5
6446
6450
6468
6488.5
6512
6525
6551
6567.5
6560.5
6572
6574.5
6583.5
6589.5
6600
6601
6586
6590
6616
6641.5
6647
6662
6663.5
6663
6653.5
6642.5
6624.5
6605.5
6604.5
6575
6566
6562.5
6560.5
6502
6552.5
6542.5
6536
6516.5
6506.5
6491.5
6469.5
6445
6426
6355.5
6340
6307.5
6254.5
6230.5
6213
6212.5
6203
6204
6220.5
6205
6199.5
6184.5
6169
6140.5
6144.5
6145.5
6148.5
6145
6133
6138
6104.5
6090.5




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301238&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=301238&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301238&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.95529910.33310
20.9026489.76360
30.8442389.13180
40.7799348.43630
50.7125957.70790
60.6420146.94440
70.5697496.16280
80.4940615.34410
90.420954.55337e-06
100.353943.82840.000104
110.2896173.13270.001095
120.2271482.4570.007739
130.1682471.81990.035668
140.1137631.23050.110482
150.0603450.65270.257606
160.0092990.10060.460027
17-0.039447-0.42670.335196
18-0.085677-0.92670.177985
19-0.127167-1.37550.085799
20-0.164064-1.77460.03928

\begin{tabular}{lllllllll}
\hline
Autocorrelation Function \tabularnewline
Time lag k & ACF(k) & T-STAT & P-value \tabularnewline
1 & 0.955299 & 10.3331 & 0 \tabularnewline
2 & 0.902648 & 9.7636 & 0 \tabularnewline
3 & 0.844238 & 9.1318 & 0 \tabularnewline
4 & 0.779934 & 8.4363 & 0 \tabularnewline
5 & 0.712595 & 7.7079 & 0 \tabularnewline
6 & 0.642014 & 6.9444 & 0 \tabularnewline
7 & 0.569749 & 6.1628 & 0 \tabularnewline
8 & 0.494061 & 5.3441 & 0 \tabularnewline
9 & 0.42095 & 4.5533 & 7e-06 \tabularnewline
10 & 0.35394 & 3.8284 & 0.000104 \tabularnewline
11 & 0.289617 & 3.1327 & 0.001095 \tabularnewline
12 & 0.227148 & 2.457 & 0.007739 \tabularnewline
13 & 0.168247 & 1.8199 & 0.035668 \tabularnewline
14 & 0.113763 & 1.2305 & 0.110482 \tabularnewline
15 & 0.060345 & 0.6527 & 0.257606 \tabularnewline
16 & 0.009299 & 0.1006 & 0.460027 \tabularnewline
17 & -0.039447 & -0.4267 & 0.335196 \tabularnewline
18 & -0.085677 & -0.9267 & 0.177985 \tabularnewline
19 & -0.127167 & -1.3755 & 0.085799 \tabularnewline
20 & -0.164064 & -1.7746 & 0.03928 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301238&T=1

[TABLE]
[ROW][C]Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]ACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.955299[/C][C]10.3331[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]0.902648[/C][C]9.7636[/C][C]0[/C][/ROW]
[ROW][C]3[/C][C]0.844238[/C][C]9.1318[/C][C]0[/C][/ROW]
[ROW][C]4[/C][C]0.779934[/C][C]8.4363[/C][C]0[/C][/ROW]
[ROW][C]5[/C][C]0.712595[/C][C]7.7079[/C][C]0[/C][/ROW]
[ROW][C]6[/C][C]0.642014[/C][C]6.9444[/C][C]0[/C][/ROW]
[ROW][C]7[/C][C]0.569749[/C][C]6.1628[/C][C]0[/C][/ROW]
[ROW][C]8[/C][C]0.494061[/C][C]5.3441[/C][C]0[/C][/ROW]
[ROW][C]9[/C][C]0.42095[/C][C]4.5533[/C][C]7e-06[/C][/ROW]
[ROW][C]10[/C][C]0.35394[/C][C]3.8284[/C][C]0.000104[/C][/ROW]
[ROW][C]11[/C][C]0.289617[/C][C]3.1327[/C][C]0.001095[/C][/ROW]
[ROW][C]12[/C][C]0.227148[/C][C]2.457[/C][C]0.007739[/C][/ROW]
[ROW][C]13[/C][C]0.168247[/C][C]1.8199[/C][C]0.035668[/C][/ROW]
[ROW][C]14[/C][C]0.113763[/C][C]1.2305[/C][C]0.110482[/C][/ROW]
[ROW][C]15[/C][C]0.060345[/C][C]0.6527[/C][C]0.257606[/C][/ROW]
[ROW][C]16[/C][C]0.009299[/C][C]0.1006[/C][C]0.460027[/C][/ROW]
[ROW][C]17[/C][C]-0.039447[/C][C]-0.4267[/C][C]0.335196[/C][/ROW]
[ROW][C]18[/C][C]-0.085677[/C][C]-0.9267[/C][C]0.177985[/C][/ROW]
[ROW][C]19[/C][C]-0.127167[/C][C]-1.3755[/C][C]0.085799[/C][/ROW]
[ROW][C]20[/C][C]-0.164064[/C][C]-1.7746[/C][C]0.03928[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301238&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301238&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.95529910.33310
20.9026489.76360
30.8442389.13180
40.7799348.43630
50.7125957.70790
60.6420146.94440
70.5697496.16280
80.4940615.34410
90.420954.55337e-06
100.353943.82840.000104
110.2896173.13270.001095
120.2271482.4570.007739
130.1682471.81990.035668
140.1137631.23050.110482
150.0603450.65270.257606
160.0092990.10060.460027
17-0.039447-0.42670.335196
18-0.085677-0.92670.177985
19-0.127167-1.37550.085799
20-0.164064-1.77460.03928







Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.95529910.33310
2-0.113807-1.2310.110393
3-0.086659-0.93740.175251
4-0.090415-0.9780.16505
5-0.059086-0.63910.261999
6-0.067202-0.72690.234369
7-0.052783-0.57090.284569
8-0.079534-0.86030.195694
9-0.010998-0.1190.452756
100.0222870.24110.404963
11-0.024769-0.26790.394615
12-0.039024-0.42210.33686
13-0.019407-0.20990.41705
14-0.010582-0.11450.454533
15-0.052311-0.56580.286298
16-0.038156-0.41270.340282
17-0.040254-0.43540.332033
18-0.030333-0.32810.371709
19-0.002914-0.03150.487455
20-0.009183-0.09930.460525

\begin{tabular}{lllllllll}
\hline
Partial Autocorrelation Function \tabularnewline
Time lag k & PACF(k) & T-STAT & P-value \tabularnewline
1 & 0.955299 & 10.3331 & 0 \tabularnewline
2 & -0.113807 & -1.231 & 0.110393 \tabularnewline
3 & -0.086659 & -0.9374 & 0.175251 \tabularnewline
4 & -0.090415 & -0.978 & 0.16505 \tabularnewline
5 & -0.059086 & -0.6391 & 0.261999 \tabularnewline
6 & -0.067202 & -0.7269 & 0.234369 \tabularnewline
7 & -0.052783 & -0.5709 & 0.284569 \tabularnewline
8 & -0.079534 & -0.8603 & 0.195694 \tabularnewline
9 & -0.010998 & -0.119 & 0.452756 \tabularnewline
10 & 0.022287 & 0.2411 & 0.404963 \tabularnewline
11 & -0.024769 & -0.2679 & 0.394615 \tabularnewline
12 & -0.039024 & -0.4221 & 0.33686 \tabularnewline
13 & -0.019407 & -0.2099 & 0.41705 \tabularnewline
14 & -0.010582 & -0.1145 & 0.454533 \tabularnewline
15 & -0.052311 & -0.5658 & 0.286298 \tabularnewline
16 & -0.038156 & -0.4127 & 0.340282 \tabularnewline
17 & -0.040254 & -0.4354 & 0.332033 \tabularnewline
18 & -0.030333 & -0.3281 & 0.371709 \tabularnewline
19 & -0.002914 & -0.0315 & 0.487455 \tabularnewline
20 & -0.009183 & -0.0993 & 0.460525 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301238&T=2

[TABLE]
[ROW][C]Partial Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]PACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.955299[/C][C]10.3331[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]-0.113807[/C][C]-1.231[/C][C]0.110393[/C][/ROW]
[ROW][C]3[/C][C]-0.086659[/C][C]-0.9374[/C][C]0.175251[/C][/ROW]
[ROW][C]4[/C][C]-0.090415[/C][C]-0.978[/C][C]0.16505[/C][/ROW]
[ROW][C]5[/C][C]-0.059086[/C][C]-0.6391[/C][C]0.261999[/C][/ROW]
[ROW][C]6[/C][C]-0.067202[/C][C]-0.7269[/C][C]0.234369[/C][/ROW]
[ROW][C]7[/C][C]-0.052783[/C][C]-0.5709[/C][C]0.284569[/C][/ROW]
[ROW][C]8[/C][C]-0.079534[/C][C]-0.8603[/C][C]0.195694[/C][/ROW]
[ROW][C]9[/C][C]-0.010998[/C][C]-0.119[/C][C]0.452756[/C][/ROW]
[ROW][C]10[/C][C]0.022287[/C][C]0.2411[/C][C]0.404963[/C][/ROW]
[ROW][C]11[/C][C]-0.024769[/C][C]-0.2679[/C][C]0.394615[/C][/ROW]
[ROW][C]12[/C][C]-0.039024[/C][C]-0.4221[/C][C]0.33686[/C][/ROW]
[ROW][C]13[/C][C]-0.019407[/C][C]-0.2099[/C][C]0.41705[/C][/ROW]
[ROW][C]14[/C][C]-0.010582[/C][C]-0.1145[/C][C]0.454533[/C][/ROW]
[ROW][C]15[/C][C]-0.052311[/C][C]-0.5658[/C][C]0.286298[/C][/ROW]
[ROW][C]16[/C][C]-0.038156[/C][C]-0.4127[/C][C]0.340282[/C][/ROW]
[ROW][C]17[/C][C]-0.040254[/C][C]-0.4354[/C][C]0.332033[/C][/ROW]
[ROW][C]18[/C][C]-0.030333[/C][C]-0.3281[/C][C]0.371709[/C][/ROW]
[ROW][C]19[/C][C]-0.002914[/C][C]-0.0315[/C][C]0.487455[/C][/ROW]
[ROW][C]20[/C][C]-0.009183[/C][C]-0.0993[/C][C]0.460525[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301238&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301238&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.95529910.33310
2-0.113807-1.2310.110393
3-0.086659-0.93740.175251
4-0.090415-0.9780.16505
5-0.059086-0.63910.261999
6-0.067202-0.72690.234369
7-0.052783-0.57090.284569
8-0.079534-0.86030.195694
9-0.010998-0.1190.452756
100.0222870.24110.404963
11-0.024769-0.26790.394615
12-0.039024-0.42210.33686
13-0.019407-0.20990.41705
14-0.010582-0.11450.454533
15-0.052311-0.56580.286298
16-0.038156-0.41270.340282
17-0.040254-0.43540.332033
18-0.030333-0.32810.371709
19-0.002914-0.03150.487455
20-0.009183-0.09930.460525



Parameters (Session):
par1 = 60 ; par2 = 1 ; par3 = 0 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ;
Parameters (R input):
par1 = Default ; par2 = 1 ; par3 = 0 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ; par8 = ;
R code (references can be found in the software module):
par8 <- ''
par7 <- '0.95'
par6 <- 'White Noise'
par5 <- '12'
par4 <- '0'
par3 <- '0'
par2 <- '1'
par1 <- '60'
if (par1 == 'Default') {
par1 = 10*log10(length(x))
} else {
par1 <- as.numeric(par1)
}
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
par5 <- as.numeric(par5)
if (par6 == 'White Noise') par6 <- 'white' else par6 <- 'ma'
par7 <- as.numeric(par7)
if (par8 != '') par8 <- as.numeric(par8)
x <- na.omit(x)
ox <- x
if (par8 == '') {
if (par2 == 0) {
x <- log(x)
} else {
x <- (x ^ par2 - 1) / par2
}
} else {
x <- log(x,base=par8)
}
if (par3 > 0) x <- diff(x,lag=1,difference=par3)
if (par4 > 0) x <- diff(x,lag=par5,difference=par4)
bitmap(file='picts.png')
op <- par(mfrow=c(2,1))
plot(ox,type='l',main='Original Time Series',xlab='time',ylab='value')
if (par8=='') {
mytitle <- paste('Working Time Series (lambda=',par2,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(lambda=',par2,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
} else {
mytitle <- paste('Working Time Series (base=',par8,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(base=',par8,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
}
plot(x,type='l', main=mytitle,xlab='time',ylab='value')
par(op)
dev.off()
bitmap(file='pic1.png')
racf <- acf(x, par1, main='Autocorrelation', xlab='time lag', ylab='ACF', ci.type=par6, ci=par7, sub=mysub)
dev.off()
bitmap(file='pic2.png')
rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF',sub=mysub)
dev.off()
(myacf <- c(racf$acf))
(mypacf <- c(rpacf$acf))
lengthx <- length(x)
sqrtn <- sqrt(lengthx)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'ACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 2:(par1+1)) {
a<-table.row.start(a)
a<-table.element(a,i-1,header=TRUE)
a<-table.element(a,round(myacf[i],6))
mytstat <- myacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Partial Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'PACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:par1) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,round(mypacf[i],6))
mytstat <- mypacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')