Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimabackwardselection.wasp
Title produced by softwareARIMA Backward Selection
Date of computationSun, 18 Dec 2016 21:07:06 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/18/t1482091742bq2s13dsxasnab8.htm/, Retrieved Fri, 01 Nov 2024 03:47:37 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=301231, Retrieved Fri, 01 Nov 2024 03:47:37 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact78
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [ARIMA Backward Selection] [ARIMA BACKWARD SE...] [2016-12-18 20:07:06] [33f2a624cfeb2efbc43d2c77b7c0dad6] [Current]
Feedback Forum

Post a new message
Dataseries X:
4870
4240
3800
3990
3290
4710
4210
4440
5040
5070
4900
4790
3890
3450
4080
3280
3130
3310
3860
4570
5110
4820
4250
4210
3610
3710
2760
2710
2710
3290
2670
3620
4440
3910
4610
3760
3460
3020
3360
2610
2670
2480
2610
3320
2800
3030
3740
3060
3040
2620
3190
2750
2630
3290
2430
2730
3690
2980
2590
3360
2370
2200
2330
2370
2200
2430
2400
2840
2870
3320
3090
2680
2420
2550
2420
2430
2330
2520
2630
2570
2800
2680
2430
2790
2420
2750
2350
2330
2290
2330
2490
2480
2760
2590
2950
2570
2960
2540
2400
2470
2390
2310
2470
2490
2510
2690
3060
2690








































Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time9 seconds
R ServerBig Analytics Cloud Computing Center
R Framework error message
Warning: there are blank lines in the 'Data' field.
Please, use NA for missing data - blank lines are simply
 deleted and are NOT treated as missing values.

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time9 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
R Framework error message & 
Warning: there are blank lines in the 'Data' field.
Please, use NA for missing data - blank lines are simply
 deleted and are NOT treated as missing values.
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=301231&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]9 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [ROW]R Framework error message[/C][C]
Warning: there are blank lines in the 'Data' field.
Please, use NA for missing data - blank lines are simply
 deleted and are NOT treated as missing values.
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=301231&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301231&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time9 seconds
R ServerBig Analytics Cloud Computing Center
R Framework error message
Warning: there are blank lines in the 'Data' field.
Please, use NA for missing data - blank lines are simply
 deleted and are NOT treated as missing values.







ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2ar3ma1sar1sar2sma1
Estimates ( 1 )0.08190.14690.2089-0.899-0.01440.0471-0.9999
(p-val)(0.4938 )(0.1996 )(0.0613 )(0 )(0.9084 )(0.7103 )(1e-04 )
Estimates ( 2 )0.08170.14660.2098-0.900200.0524-1
(p-val)(0.4941 )(0.1999 )(0.0596 )(0 )(NA )(0.6591 )(0 )
Estimates ( 3 )0.07270.14180.2172-0.89800-1.001
(p-val)(0.5393 )(0.2152 )(0.0493 )(0 )(NA )(NA )(1e-04 )
Estimates ( 4 )00.12720.2106-0.874800-0.9991
(p-val)(NA )(0.2641 )(0.0552 )(0 )(NA )(NA )(2e-04 )
Estimates ( 5 )000.1929-0.835500-1.0001
(p-val)(NA )(NA )(0.0807 )(0 )(NA )(NA )(2e-04 )
Estimates ( 6 )000-0.784700-1
(p-val)(NA )(NA )(NA )(0 )(NA )(NA )(0 )
Estimates ( 7 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 8 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 9 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 10 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 11 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 12 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 13 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )

\begin{tabular}{lllllllll}
\hline
ARIMA Parameter Estimation and Backward Selection \tabularnewline
Iteration & ar1 & ar2 & ar3 & ma1 & sar1 & sar2 & sma1 \tabularnewline
Estimates ( 1 ) & 0.0819 & 0.1469 & 0.2089 & -0.899 & -0.0144 & 0.0471 & -0.9999 \tabularnewline
(p-val) & (0.4938 ) & (0.1996 ) & (0.0613 ) & (0 ) & (0.9084 ) & (0.7103 ) & (1e-04 ) \tabularnewline
Estimates ( 2 ) & 0.0817 & 0.1466 & 0.2098 & -0.9002 & 0 & 0.0524 & -1 \tabularnewline
(p-val) & (0.4941 ) & (0.1999 ) & (0.0596 ) & (0 ) & (NA ) & (0.6591 ) & (0 ) \tabularnewline
Estimates ( 3 ) & 0.0727 & 0.1418 & 0.2172 & -0.898 & 0 & 0 & -1.001 \tabularnewline
(p-val) & (0.5393 ) & (0.2152 ) & (0.0493 ) & (0 ) & (NA ) & (NA ) & (1e-04 ) \tabularnewline
Estimates ( 4 ) & 0 & 0.1272 & 0.2106 & -0.8748 & 0 & 0 & -0.9991 \tabularnewline
(p-val) & (NA ) & (0.2641 ) & (0.0552 ) & (0 ) & (NA ) & (NA ) & (2e-04 ) \tabularnewline
Estimates ( 5 ) & 0 & 0 & 0.1929 & -0.8355 & 0 & 0 & -1.0001 \tabularnewline
(p-val) & (NA ) & (NA ) & (0.0807 ) & (0 ) & (NA ) & (NA ) & (2e-04 ) \tabularnewline
Estimates ( 6 ) & 0 & 0 & 0 & -0.7847 & 0 & 0 & -1 \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (0 ) & (NA ) & (NA ) & (0 ) \tabularnewline
Estimates ( 7 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 8 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 9 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 10 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 11 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 12 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 13 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301231&T=1

[TABLE]
[ROW][C]ARIMA Parameter Estimation and Backward Selection[/C][/ROW]
[ROW][C]Iteration[/C][C]ar1[/C][C]ar2[/C][C]ar3[/C][C]ma1[/C][C]sar1[/C][C]sar2[/C][C]sma1[/C][/ROW]
[ROW][C]Estimates ( 1 )[/C][C]0.0819[/C][C]0.1469[/C][C]0.2089[/C][C]-0.899[/C][C]-0.0144[/C][C]0.0471[/C][C]-0.9999[/C][/ROW]
[ROW][C](p-val)[/C][C](0.4938 )[/C][C](0.1996 )[/C][C](0.0613 )[/C][C](0 )[/C][C](0.9084 )[/C][C](0.7103 )[/C][C](1e-04 )[/C][/ROW]
[ROW][C]Estimates ( 2 )[/C][C]0.0817[/C][C]0.1466[/C][C]0.2098[/C][C]-0.9002[/C][C]0[/C][C]0.0524[/C][C]-1[/C][/ROW]
[ROW][C](p-val)[/C][C](0.4941 )[/C][C](0.1999 )[/C][C](0.0596 )[/C][C](0 )[/C][C](NA )[/C][C](0.6591 )[/C][C](0 )[/C][/ROW]
[ROW][C]Estimates ( 3 )[/C][C]0.0727[/C][C]0.1418[/C][C]0.2172[/C][C]-0.898[/C][C]0[/C][C]0[/C][C]-1.001[/C][/ROW]
[ROW][C](p-val)[/C][C](0.5393 )[/C][C](0.2152 )[/C][C](0.0493 )[/C][C](0 )[/C][C](NA )[/C][C](NA )[/C][C](1e-04 )[/C][/ROW]
[ROW][C]Estimates ( 4 )[/C][C]0[/C][C]0.1272[/C][C]0.2106[/C][C]-0.8748[/C][C]0[/C][C]0[/C][C]-0.9991[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](0.2641 )[/C][C](0.0552 )[/C][C](0 )[/C][C](NA )[/C][C](NA )[/C][C](2e-04 )[/C][/ROW]
[ROW][C]Estimates ( 5 )[/C][C]0[/C][C]0[/C][C]0.1929[/C][C]-0.8355[/C][C]0[/C][C]0[/C][C]-1.0001[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](0.0807 )[/C][C](0 )[/C][C](NA )[/C][C](NA )[/C][C](2e-04 )[/C][/ROW]
[ROW][C]Estimates ( 6 )[/C][C]0[/C][C]0[/C][C]0[/C][C]-0.7847[/C][C]0[/C][C]0[/C][C]-1[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](0 )[/C][C](NA )[/C][C](NA )[/C][C](0 )[/C][/ROW]
[ROW][C]Estimates ( 7 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 8 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 9 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 10 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 11 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 12 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 13 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301231&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301231&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2ar3ma1sar1sar2sma1
Estimates ( 1 )0.08190.14690.2089-0.899-0.01440.0471-0.9999
(p-val)(0.4938 )(0.1996 )(0.0613 )(0 )(0.9084 )(0.7103 )(1e-04 )
Estimates ( 2 )0.08170.14660.2098-0.900200.0524-1
(p-val)(0.4941 )(0.1999 )(0.0596 )(0 )(NA )(0.6591 )(0 )
Estimates ( 3 )0.07270.14180.2172-0.89800-1.001
(p-val)(0.5393 )(0.2152 )(0.0493 )(0 )(NA )(NA )(1e-04 )
Estimates ( 4 )00.12720.2106-0.874800-0.9991
(p-val)(NA )(0.2641 )(0.0552 )(0 )(NA )(NA )(2e-04 )
Estimates ( 5 )000.1929-0.835500-1.0001
(p-val)(NA )(NA )(0.0807 )(0 )(NA )(NA )(2e-04 )
Estimates ( 6 )000-0.784700-1
(p-val)(NA )(NA )(NA )(0 )(NA )(NA )(0 )
Estimates ( 7 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 8 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 9 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 10 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 11 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 12 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 13 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )







Estimated ARIMA Residuals
Value
-5.83074529638591e-07
1.21018876583616e-06
-4.34199506366755e-05
1.51296689398473e-05
-1.51209140200574e-05
4.90438627333281e-05
-1.72923432546596e-05
-2.84891259377394e-05
-3.18528403276775e-05
-5.98629700351691e-06
1.38003641752966e-05
4.43210611884618e-06
5.69492876915114e-06
-2.85412788827991e-05
5.90367875155817e-05
3.3457548983166e-05
6.0055988618042e-06
-1.95208159142022e-05
5.12485656450111e-05
-1.09486994793714e-05
-2.87073902897762e-05
-1.52969187045376e-05
-4.81470610543927e-05
1.08702261686344e-06
-1.72559758449366e-05
1.45390038340936e-05
-4.49145779878363e-05
2.38068034094425e-05
-1.11692912409536e-05
7.53783786505118e-05
1.89695559372218e-05
-6.42893231555029e-06
5.75124802853903e-05
1.92063606587574e-05
-3.20970177889243e-05
-7.28750436149365e-06
-2.81358525541906e-05
1.1933302676759e-05
-6.63679955462062e-05
-3.60109023890113e-05
-3.32491069206953e-05
-4.98668972485349e-05
4.47000837103467e-05
4.85694842493192e-05
-2.79767305581072e-05
1.45138697823137e-05
6.99844719445008e-05
-3.34318472936949e-05
5.00433398985648e-05
3.21111644137862e-05
2.83168926368149e-05
-3.43349928929783e-05
-1.31583802437178e-05
-6.29325260987047e-06
-1.81138521367231e-05
-2.63524046049546e-05
-2.15785564969111e-07
-5.31408128457358e-05
-1.93298457852183e-05
1.86440524474095e-05
2.23402268830298e-05
-3.35235870723695e-05
-7.82424198764462e-06
-3.54817218512452e-05
-2.07819546985417e-05
-1.17987580997289e-05
-4.17977909644168e-05
2.61940003888844e-05
1.22298248828942e-05
2.79969606781424e-05
4.59834092820515e-05
-2.20464492624938e-05
-9.72607849795494e-06
-8.24283347724449e-05
5.11955351831567e-06
-1.85480851811179e-05
-1.22156379476243e-05
1.04947789100965e-05
-3.01307327750968e-05
2.27519939081683e-05
-2.16045290531333e-06
2.29302105849575e-05
-4.01706233437598e-05
1.24867339370059e-05
-8.25310904807372e-05
-1.96359944512601e-05
-6.65496068200189e-06
-2.112861896532e-05
-2.82152960758863e-05
2.24933661059206e-05
-1.3163823734809e-05
2.5590334776359e-05
3.42664477790742e-05
2.87307003134024e-06
-4.68834855203879e-05
-1.02436781365039e-05

\begin{tabular}{lllllllll}
\hline
Estimated ARIMA Residuals \tabularnewline
Value \tabularnewline
-5.83074529638591e-07 \tabularnewline
1.21018876583616e-06 \tabularnewline
-4.34199506366755e-05 \tabularnewline
1.51296689398473e-05 \tabularnewline
-1.51209140200574e-05 \tabularnewline
4.90438627333281e-05 \tabularnewline
-1.72923432546596e-05 \tabularnewline
-2.84891259377394e-05 \tabularnewline
-3.18528403276775e-05 \tabularnewline
-5.98629700351691e-06 \tabularnewline
1.38003641752966e-05 \tabularnewline
4.43210611884618e-06 \tabularnewline
5.69492876915114e-06 \tabularnewline
-2.85412788827991e-05 \tabularnewline
5.90367875155817e-05 \tabularnewline
3.3457548983166e-05 \tabularnewline
6.0055988618042e-06 \tabularnewline
-1.95208159142022e-05 \tabularnewline
5.12485656450111e-05 \tabularnewline
-1.09486994793714e-05 \tabularnewline
-2.87073902897762e-05 \tabularnewline
-1.52969187045376e-05 \tabularnewline
-4.81470610543927e-05 \tabularnewline
1.08702261686344e-06 \tabularnewline
-1.72559758449366e-05 \tabularnewline
1.45390038340936e-05 \tabularnewline
-4.49145779878363e-05 \tabularnewline
2.38068034094425e-05 \tabularnewline
-1.11692912409536e-05 \tabularnewline
7.53783786505118e-05 \tabularnewline
1.89695559372218e-05 \tabularnewline
-6.42893231555029e-06 \tabularnewline
5.75124802853903e-05 \tabularnewline
1.92063606587574e-05 \tabularnewline
-3.20970177889243e-05 \tabularnewline
-7.28750436149365e-06 \tabularnewline
-2.81358525541906e-05 \tabularnewline
1.1933302676759e-05 \tabularnewline
-6.63679955462062e-05 \tabularnewline
-3.60109023890113e-05 \tabularnewline
-3.32491069206953e-05 \tabularnewline
-4.98668972485349e-05 \tabularnewline
4.47000837103467e-05 \tabularnewline
4.85694842493192e-05 \tabularnewline
-2.79767305581072e-05 \tabularnewline
1.45138697823137e-05 \tabularnewline
6.99844719445008e-05 \tabularnewline
-3.34318472936949e-05 \tabularnewline
5.00433398985648e-05 \tabularnewline
3.21111644137862e-05 \tabularnewline
2.83168926368149e-05 \tabularnewline
-3.43349928929783e-05 \tabularnewline
-1.31583802437178e-05 \tabularnewline
-6.29325260987047e-06 \tabularnewline
-1.81138521367231e-05 \tabularnewline
-2.63524046049546e-05 \tabularnewline
-2.15785564969111e-07 \tabularnewline
-5.31408128457358e-05 \tabularnewline
-1.93298457852183e-05 \tabularnewline
1.86440524474095e-05 \tabularnewline
2.23402268830298e-05 \tabularnewline
-3.35235870723695e-05 \tabularnewline
-7.82424198764462e-06 \tabularnewline
-3.54817218512452e-05 \tabularnewline
-2.07819546985417e-05 \tabularnewline
-1.17987580997289e-05 \tabularnewline
-4.17977909644168e-05 \tabularnewline
2.61940003888844e-05 \tabularnewline
1.22298248828942e-05 \tabularnewline
2.79969606781424e-05 \tabularnewline
4.59834092820515e-05 \tabularnewline
-2.20464492624938e-05 \tabularnewline
-9.72607849795494e-06 \tabularnewline
-8.24283347724449e-05 \tabularnewline
5.11955351831567e-06 \tabularnewline
-1.85480851811179e-05 \tabularnewline
-1.22156379476243e-05 \tabularnewline
1.04947789100965e-05 \tabularnewline
-3.01307327750968e-05 \tabularnewline
2.27519939081683e-05 \tabularnewline
-2.16045290531333e-06 \tabularnewline
2.29302105849575e-05 \tabularnewline
-4.01706233437598e-05 \tabularnewline
1.24867339370059e-05 \tabularnewline
-8.25310904807372e-05 \tabularnewline
-1.96359944512601e-05 \tabularnewline
-6.65496068200189e-06 \tabularnewline
-2.112861896532e-05 \tabularnewline
-2.82152960758863e-05 \tabularnewline
2.24933661059206e-05 \tabularnewline
-1.3163823734809e-05 \tabularnewline
2.5590334776359e-05 \tabularnewline
3.42664477790742e-05 \tabularnewline
2.87307003134024e-06 \tabularnewline
-4.68834855203879e-05 \tabularnewline
-1.02436781365039e-05 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301231&T=2

[TABLE]
[ROW][C]Estimated ARIMA Residuals[/C][/ROW]
[ROW][C]Value[/C][/ROW]
[ROW][C]-5.83074529638591e-07[/C][/ROW]
[ROW][C]1.21018876583616e-06[/C][/ROW]
[ROW][C]-4.34199506366755e-05[/C][/ROW]
[ROW][C]1.51296689398473e-05[/C][/ROW]
[ROW][C]-1.51209140200574e-05[/C][/ROW]
[ROW][C]4.90438627333281e-05[/C][/ROW]
[ROW][C]-1.72923432546596e-05[/C][/ROW]
[ROW][C]-2.84891259377394e-05[/C][/ROW]
[ROW][C]-3.18528403276775e-05[/C][/ROW]
[ROW][C]-5.98629700351691e-06[/C][/ROW]
[ROW][C]1.38003641752966e-05[/C][/ROW]
[ROW][C]4.43210611884618e-06[/C][/ROW]
[ROW][C]5.69492876915114e-06[/C][/ROW]
[ROW][C]-2.85412788827991e-05[/C][/ROW]
[ROW][C]5.90367875155817e-05[/C][/ROW]
[ROW][C]3.3457548983166e-05[/C][/ROW]
[ROW][C]6.0055988618042e-06[/C][/ROW]
[ROW][C]-1.95208159142022e-05[/C][/ROW]
[ROW][C]5.12485656450111e-05[/C][/ROW]
[ROW][C]-1.09486994793714e-05[/C][/ROW]
[ROW][C]-2.87073902897762e-05[/C][/ROW]
[ROW][C]-1.52969187045376e-05[/C][/ROW]
[ROW][C]-4.81470610543927e-05[/C][/ROW]
[ROW][C]1.08702261686344e-06[/C][/ROW]
[ROW][C]-1.72559758449366e-05[/C][/ROW]
[ROW][C]1.45390038340936e-05[/C][/ROW]
[ROW][C]-4.49145779878363e-05[/C][/ROW]
[ROW][C]2.38068034094425e-05[/C][/ROW]
[ROW][C]-1.11692912409536e-05[/C][/ROW]
[ROW][C]7.53783786505118e-05[/C][/ROW]
[ROW][C]1.89695559372218e-05[/C][/ROW]
[ROW][C]-6.42893231555029e-06[/C][/ROW]
[ROW][C]5.75124802853903e-05[/C][/ROW]
[ROW][C]1.92063606587574e-05[/C][/ROW]
[ROW][C]-3.20970177889243e-05[/C][/ROW]
[ROW][C]-7.28750436149365e-06[/C][/ROW]
[ROW][C]-2.81358525541906e-05[/C][/ROW]
[ROW][C]1.1933302676759e-05[/C][/ROW]
[ROW][C]-6.63679955462062e-05[/C][/ROW]
[ROW][C]-3.60109023890113e-05[/C][/ROW]
[ROW][C]-3.32491069206953e-05[/C][/ROW]
[ROW][C]-4.98668972485349e-05[/C][/ROW]
[ROW][C]4.47000837103467e-05[/C][/ROW]
[ROW][C]4.85694842493192e-05[/C][/ROW]
[ROW][C]-2.79767305581072e-05[/C][/ROW]
[ROW][C]1.45138697823137e-05[/C][/ROW]
[ROW][C]6.99844719445008e-05[/C][/ROW]
[ROW][C]-3.34318472936949e-05[/C][/ROW]
[ROW][C]5.00433398985648e-05[/C][/ROW]
[ROW][C]3.21111644137862e-05[/C][/ROW]
[ROW][C]2.83168926368149e-05[/C][/ROW]
[ROW][C]-3.43349928929783e-05[/C][/ROW]
[ROW][C]-1.31583802437178e-05[/C][/ROW]
[ROW][C]-6.29325260987047e-06[/C][/ROW]
[ROW][C]-1.81138521367231e-05[/C][/ROW]
[ROW][C]-2.63524046049546e-05[/C][/ROW]
[ROW][C]-2.15785564969111e-07[/C][/ROW]
[ROW][C]-5.31408128457358e-05[/C][/ROW]
[ROW][C]-1.93298457852183e-05[/C][/ROW]
[ROW][C]1.86440524474095e-05[/C][/ROW]
[ROW][C]2.23402268830298e-05[/C][/ROW]
[ROW][C]-3.35235870723695e-05[/C][/ROW]
[ROW][C]-7.82424198764462e-06[/C][/ROW]
[ROW][C]-3.54817218512452e-05[/C][/ROW]
[ROW][C]-2.07819546985417e-05[/C][/ROW]
[ROW][C]-1.17987580997289e-05[/C][/ROW]
[ROW][C]-4.17977909644168e-05[/C][/ROW]
[ROW][C]2.61940003888844e-05[/C][/ROW]
[ROW][C]1.22298248828942e-05[/C][/ROW]
[ROW][C]2.79969606781424e-05[/C][/ROW]
[ROW][C]4.59834092820515e-05[/C][/ROW]
[ROW][C]-2.20464492624938e-05[/C][/ROW]
[ROW][C]-9.72607849795494e-06[/C][/ROW]
[ROW][C]-8.24283347724449e-05[/C][/ROW]
[ROW][C]5.11955351831567e-06[/C][/ROW]
[ROW][C]-1.85480851811179e-05[/C][/ROW]
[ROW][C]-1.22156379476243e-05[/C][/ROW]
[ROW][C]1.04947789100965e-05[/C][/ROW]
[ROW][C]-3.01307327750968e-05[/C][/ROW]
[ROW][C]2.27519939081683e-05[/C][/ROW]
[ROW][C]-2.16045290531333e-06[/C][/ROW]
[ROW][C]2.29302105849575e-05[/C][/ROW]
[ROW][C]-4.01706233437598e-05[/C][/ROW]
[ROW][C]1.24867339370059e-05[/C][/ROW]
[ROW][C]-8.25310904807372e-05[/C][/ROW]
[ROW][C]-1.96359944512601e-05[/C][/ROW]
[ROW][C]-6.65496068200189e-06[/C][/ROW]
[ROW][C]-2.112861896532e-05[/C][/ROW]
[ROW][C]-2.82152960758863e-05[/C][/ROW]
[ROW][C]2.24933661059206e-05[/C][/ROW]
[ROW][C]-1.3163823734809e-05[/C][/ROW]
[ROW][C]2.5590334776359e-05[/C][/ROW]
[ROW][C]3.42664477790742e-05[/C][/ROW]
[ROW][C]2.87307003134024e-06[/C][/ROW]
[ROW][C]-4.68834855203879e-05[/C][/ROW]
[ROW][C]-1.02436781365039e-05[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301231&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301231&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimated ARIMA Residuals
Value
-5.83074529638591e-07
1.21018876583616e-06
-4.34199506366755e-05
1.51296689398473e-05
-1.51209140200574e-05
4.90438627333281e-05
-1.72923432546596e-05
-2.84891259377394e-05
-3.18528403276775e-05
-5.98629700351691e-06
1.38003641752966e-05
4.43210611884618e-06
5.69492876915114e-06
-2.85412788827991e-05
5.90367875155817e-05
3.3457548983166e-05
6.0055988618042e-06
-1.95208159142022e-05
5.12485656450111e-05
-1.09486994793714e-05
-2.87073902897762e-05
-1.52969187045376e-05
-4.81470610543927e-05
1.08702261686344e-06
-1.72559758449366e-05
1.45390038340936e-05
-4.49145779878363e-05
2.38068034094425e-05
-1.11692912409536e-05
7.53783786505118e-05
1.89695559372218e-05
-6.42893231555029e-06
5.75124802853903e-05
1.92063606587574e-05
-3.20970177889243e-05
-7.28750436149365e-06
-2.81358525541906e-05
1.1933302676759e-05
-6.63679955462062e-05
-3.60109023890113e-05
-3.32491069206953e-05
-4.98668972485349e-05
4.47000837103467e-05
4.85694842493192e-05
-2.79767305581072e-05
1.45138697823137e-05
6.99844719445008e-05
-3.34318472936949e-05
5.00433398985648e-05
3.21111644137862e-05
2.83168926368149e-05
-3.43349928929783e-05
-1.31583802437178e-05
-6.29325260987047e-06
-1.81138521367231e-05
-2.63524046049546e-05
-2.15785564969111e-07
-5.31408128457358e-05
-1.93298457852183e-05
1.86440524474095e-05
2.23402268830298e-05
-3.35235870723695e-05
-7.82424198764462e-06
-3.54817218512452e-05
-2.07819546985417e-05
-1.17987580997289e-05
-4.17977909644168e-05
2.61940003888844e-05
1.22298248828942e-05
2.79969606781424e-05
4.59834092820515e-05
-2.20464492624938e-05
-9.72607849795494e-06
-8.24283347724449e-05
5.11955351831567e-06
-1.85480851811179e-05
-1.22156379476243e-05
1.04947789100965e-05
-3.01307327750968e-05
2.27519939081683e-05
-2.16045290531333e-06
2.29302105849575e-05
-4.01706233437598e-05
1.24867339370059e-05
-8.25310904807372e-05
-1.96359944512601e-05
-6.65496068200189e-06
-2.112861896532e-05
-2.82152960758863e-05
2.24933661059206e-05
-1.3163823734809e-05
2.5590334776359e-05
3.42664477790742e-05
2.87307003134024e-06
-4.68834855203879e-05
-1.02436781365039e-05



Parameters (Session):
par4 = 12 ;
Parameters (R input):
par1 = FALSE ; par2 = -1.0 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = 3 ; par7 = 1 ; par8 = 2 ; par9 = 1 ;
R code (references can be found in the software module):
par9 <- '1'
par8 <- '2'
par7 <- '1'
par6 <- '3'
par5 <- '12'
par4 <- '1'
par3 <- '1'
par2 <- '-1.0'
par1 <- 'FALSE'
library(lattice)
if (par1 == 'TRUE') par1 <- TRUE
if (par1 == 'FALSE') par1 <- FALSE
par2 <- as.numeric(par2) #Box-Cox lambda transformation parameter
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #degree (p) of the non-seasonal AR(p) polynomial
par7 <- as.numeric(par7) #degree (q) of the non-seasonal MA(q) polynomial
par8 <- as.numeric(par8) #degree (P) of the seasonal AR(P) polynomial
par9 <- as.numeric(par9) #degree (Q) of the seasonal MA(Q) polynomial
armaGR <- function(arima.out, names, n){
try1 <- arima.out$coef
try2 <- sqrt(diag(arima.out$var.coef))
try.data.frame <- data.frame(matrix(NA,ncol=4,nrow=length(names)))
dimnames(try.data.frame) <- list(names,c('coef','std','tstat','pv'))
try.data.frame[,1] <- try1
for(i in 1:length(try2)) try.data.frame[which(rownames(try.data.frame)==names(try2)[i]),2] <- try2[i]
try.data.frame[,3] <- try.data.frame[,1] / try.data.frame[,2]
try.data.frame[,4] <- round((1-pt(abs(try.data.frame[,3]),df=n-(length(try2)+1)))*2,5)
vector <- rep(NA,length(names))
vector[is.na(try.data.frame[,4])] <- 0
maxi <- which.max(try.data.frame[,4])
continue <- max(try.data.frame[,4],na.rm=TRUE) > .05
vector[maxi] <- 0
list(summary=try.data.frame,next.vector=vector,continue=continue)
}
arimaSelect <- function(series, order=c(13,0,0), seasonal=list(order=c(2,0,0),period=12), include.mean=F){
nrc <- order[1]+order[3]+seasonal$order[1]+seasonal$order[3]
coeff <- matrix(NA, nrow=nrc*2, ncol=nrc)
pval <- matrix(NA, nrow=nrc*2, ncol=nrc)
mylist <- rep(list(NULL), nrc)
names <- NULL
if(order[1] > 0) names <- paste('ar',1:order[1],sep='')
if(order[3] > 0) names <- c( names , paste('ma',1:order[3],sep='') )
if(seasonal$order[1] > 0) names <- c(names, paste('sar',1:seasonal$order[1],sep=''))
if(seasonal$order[3] > 0) names <- c(names, paste('sma',1:seasonal$order[3],sep=''))
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML')
mylist[[1]] <- arima.out
last.arma <- armaGR(arima.out, names, length(series))
mystop <- FALSE
i <- 1
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- 2
aic <- arima.out$aic
while(!mystop){
mylist[[i]] <- arima.out
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML', fixed=last.arma$next.vector)
aic <- c(aic, arima.out$aic)
last.arma <- armaGR(arima.out, names, length(series))
mystop <- !last.arma$continue
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- i+1
}
list(coeff, pval, mylist, aic=aic)
}
arimaSelectplot <- function(arimaSelect.out,noms,choix){
noms <- names(arimaSelect.out[[3]][[1]]$coef)
coeff <- arimaSelect.out[[1]]
k <- min(which(is.na(coeff[,1])))-1
coeff <- coeff[1:k,]
pval <- arimaSelect.out[[2]][1:k,]
aic <- arimaSelect.out$aic[1:k]
coeff[coeff==0] <- NA
n <- ncol(coeff)
if(missing(choix)) choix <- k
layout(matrix(c(1,1,1,2,
3,3,3,2,
3,3,3,4,
5,6,7,7),nr=4),
widths=c(10,35,45,15),
heights=c(30,30,15,15))
couleurs <- rainbow(75)[1:50]#(50)
ticks <- pretty(coeff)
par(mar=c(1,1,3,1))
plot(aic,k:1-.5,type='o',pch=21,bg='blue',cex=2,axes=F,lty=2,xpd=NA)
points(aic[choix],k-choix+.5,pch=21,cex=4,bg=2,xpd=NA)
title('aic',line=2)
par(mar=c(3,0,0,0))
plot(0,axes=F,xlab='',ylab='',xlim=range(ticks),ylim=c(.1,1))
rect(xleft = min(ticks) + (0:49)/50*(max(ticks)-min(ticks)),
xright = min(ticks) + (1:50)/50*(max(ticks)-min(ticks)),
ytop = rep(1,50),
ybottom= rep(0,50),col=couleurs,border=NA)
axis(1,ticks)
rect(xleft=min(ticks),xright=max(ticks),ytop=1,ybottom=0)
text(mean(coeff,na.rm=T),.5,'coefficients',cex=2,font=2)
par(mar=c(1,1,3,1))
image(1:n,1:k,t(coeff[k:1,]),axes=F,col=couleurs,zlim=range(ticks))
for(i in 1:n) for(j in 1:k) if(!is.na(coeff[j,i])) {
if(pval[j,i]<.01) symb = 'green'
else if( (pval[j,i]<.05) & (pval[j,i]>=.01)) symb = 'orange'
else if( (pval[j,i]<.1) & (pval[j,i]>=.05)) symb = 'red'
else symb = 'black'
polygon(c(i+.5 ,i+.2 ,i+.5 ,i+.5),
c(k-j+0.5,k-j+0.5,k-j+0.8,k-j+0.5),
col=symb)
if(j==choix) {
rect(xleft=i-.5,
xright=i+.5,
ybottom=k-j+1.5,
ytop=k-j+.5,
lwd=4)
text(i,
k-j+1,
round(coeff[j,i],2),
cex=1.2,
font=2)
}
else{
rect(xleft=i-.5,xright=i+.5,ybottom=k-j+1.5,ytop=k-j+.5)
text(i,k-j+1,round(coeff[j,i],2),cex=1.2,font=1)
}
}
axis(3,1:n,noms)
par(mar=c(0.5,0,0,0.5))
plot(0,axes=F,xlab='',ylab='',type='n',xlim=c(0,8),ylim=c(-.2,.8))
cols <- c('green','orange','red','black')
niv <- c('0','0.01','0.05','0.1')
for(i in 0:3){
polygon(c(1+2*i ,1+2*i ,1+2*i-.5 ,1+2*i),
c(.4 ,.7 , .4 , .4),
col=cols[i+1])
text(2*i,0.5,niv[i+1],cex=1.5)
}
text(8,.5,1,cex=1.5)
text(4,0,'p-value',cex=2)
box()
residus <- arimaSelect.out[[3]][[choix]]$res
par(mar=c(1,2,4,1))
acf(residus,main='')
title('acf',line=.5)
par(mar=c(1,2,4,1))
pacf(residus,main='')
title('pacf',line=.5)
par(mar=c(2,2,4,1))
qqnorm(residus,main='')
title('qq-norm',line=.5)
qqline(residus)
residus
}
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
(selection <- arimaSelect(x, order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5)))
bitmap(file='test1.png')
resid <- arimaSelectplot(selection)
dev.off()
resid
bitmap(file='test2.png')
acf(resid,length(resid)/2, main='Residual Autocorrelation Function')
dev.off()
bitmap(file='test3.png')
pacf(resid,length(resid)/2, main='Residual Partial Autocorrelation Function')
dev.off()
bitmap(file='test4.png')
cpgram(resid, main='Residual Cumulative Periodogram')
dev.off()
bitmap(file='test5.png')
hist(resid, main='Residual Histogram', xlab='values of Residuals')
dev.off()
bitmap(file='test6.png')
densityplot(~resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test7.png')
qqnorm(resid, main='Residual Normal Q-Q Plot')
qqline(resid)
dev.off()
ncols <- length(selection[[1]][1,])
nrows <- length(selection[[2]][,1])-1
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ARIMA Parameter Estimation and Backward Selection', ncols+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Iteration', header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,names(selection[[3]][[1]]$coef)[i],header=TRUE)
}
a<-table.row.end(a)
for (j in 1:nrows) {
a<-table.row.start(a)
mydum <- 'Estimates ('
mydum <- paste(mydum,j)
mydum <- paste(mydum,')')
a<-table.element(a,mydum, header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,round(selection[[1]][j,i],4))
}
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'(p-val)', header=TRUE)
for (i in 1:ncols) {
mydum <- '('
mydum <- paste(mydum,round(selection[[2]][j,i],4),sep='')
mydum <- paste(mydum,')')
a<-table.element(a,mydum)
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimated ARIMA Residuals', 1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Value', 1,TRUE)
a<-table.row.end(a)
for (i in (par4*par5+par3):length(resid)) {
a<-table.row.start(a)
a<-table.element(a,resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')