Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_autocorrelation.wasp
Title produced by software(Partial) Autocorrelation Function
Date of computationSun, 18 Dec 2016 20:08:03 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/18/t148208811467cw8s4qwnqomxb.htm/, Retrieved Fri, 01 Nov 2024 03:30:41 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=301224, Retrieved Fri, 01 Nov 2024 03:30:41 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact80
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [ARIMA Forecasting] [ ARIMA FORECAST] [2016-12-15 19:00:32] [d1d385d9b7e195437bdc484ddbefdda4]
- RMP     [(Partial) Autocorrelation Function] [AUtocorrelation ] [2016-12-18 19:08:03] [b95f76f605693b3a3343a287ab24f42a] [Current]
Feedback Forum

Post a new message
Dataseries X:
4480
4580
5360
4960
5140
5000
5080
5160
5080
5500
5260
5160
4500
4740
5840
5340
5500
5820
5620
5920
5980
6340
6220
5900
5280
5500
6460
5920
6240
6120
5980
6380
5920
6360
5860
5320
4780
4800
5480
5220
5380
5220
5200
5260
5060
5880
5580
5020
6060
5980
6680
6560
6680
6420
6660
7000
6780
7460
6960
6560
6060
6140
7160
6920
7140
7180
7340
7480
7620
8280
7740
7700
7080
7100
8380
7840
7880
8300
8140
8320
8340
8740
8520
8260
7260
7360
8620
8220
8360
8400
8080
8400
8500
8820
8580
7740
7640
7480
8900
7920
8560
8640
8340
9100
8720
9360
8800
8060
7380
7040
8020
7800
8380
8480
8320
8780
8360
9540
8880
7960
7660
7820
8680
8560
8720
8920




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301224&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=301224&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301224&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.91175410.23440
20.8569799.61960
30.8231649.240
40.7907188.87580
50.7937588.90990
60.7587428.51690
70.7510868.43090
80.7036187.89810
90.6722917.54640
100.6675687.49340
110.6683557.50230
120.6872157.7140
130.6071556.81530
140.5576916.26010
150.5304765.95460
160.5067335.68810
170.5215635.85450
180.4970025.57880
190.4965925.57420
200.4645555.21460
210.4379454.91591e-06

\begin{tabular}{lllllllll}
\hline
Autocorrelation Function \tabularnewline
Time lag k & ACF(k) & T-STAT & P-value \tabularnewline
1 & 0.911754 & 10.2344 & 0 \tabularnewline
2 & 0.856979 & 9.6196 & 0 \tabularnewline
3 & 0.823164 & 9.24 & 0 \tabularnewline
4 & 0.790718 & 8.8758 & 0 \tabularnewline
5 & 0.793758 & 8.9099 & 0 \tabularnewline
6 & 0.758742 & 8.5169 & 0 \tabularnewline
7 & 0.751086 & 8.4309 & 0 \tabularnewline
8 & 0.703618 & 7.8981 & 0 \tabularnewline
9 & 0.672291 & 7.5464 & 0 \tabularnewline
10 & 0.667568 & 7.4934 & 0 \tabularnewline
11 & 0.668355 & 7.5023 & 0 \tabularnewline
12 & 0.687215 & 7.714 & 0 \tabularnewline
13 & 0.607155 & 6.8153 & 0 \tabularnewline
14 & 0.557691 & 6.2601 & 0 \tabularnewline
15 & 0.530476 & 5.9546 & 0 \tabularnewline
16 & 0.506733 & 5.6881 & 0 \tabularnewline
17 & 0.521563 & 5.8545 & 0 \tabularnewline
18 & 0.497002 & 5.5788 & 0 \tabularnewline
19 & 0.496592 & 5.5742 & 0 \tabularnewline
20 & 0.464555 & 5.2146 & 0 \tabularnewline
21 & 0.437945 & 4.9159 & 1e-06 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301224&T=1

[TABLE]
[ROW][C]Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]ACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.911754[/C][C]10.2344[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]0.856979[/C][C]9.6196[/C][C]0[/C][/ROW]
[ROW][C]3[/C][C]0.823164[/C][C]9.24[/C][C]0[/C][/ROW]
[ROW][C]4[/C][C]0.790718[/C][C]8.8758[/C][C]0[/C][/ROW]
[ROW][C]5[/C][C]0.793758[/C][C]8.9099[/C][C]0[/C][/ROW]
[ROW][C]6[/C][C]0.758742[/C][C]8.5169[/C][C]0[/C][/ROW]
[ROW][C]7[/C][C]0.751086[/C][C]8.4309[/C][C]0[/C][/ROW]
[ROW][C]8[/C][C]0.703618[/C][C]7.8981[/C][C]0[/C][/ROW]
[ROW][C]9[/C][C]0.672291[/C][C]7.5464[/C][C]0[/C][/ROW]
[ROW][C]10[/C][C]0.667568[/C][C]7.4934[/C][C]0[/C][/ROW]
[ROW][C]11[/C][C]0.668355[/C][C]7.5023[/C][C]0[/C][/ROW]
[ROW][C]12[/C][C]0.687215[/C][C]7.714[/C][C]0[/C][/ROW]
[ROW][C]13[/C][C]0.607155[/C][C]6.8153[/C][C]0[/C][/ROW]
[ROW][C]14[/C][C]0.557691[/C][C]6.2601[/C][C]0[/C][/ROW]
[ROW][C]15[/C][C]0.530476[/C][C]5.9546[/C][C]0[/C][/ROW]
[ROW][C]16[/C][C]0.506733[/C][C]5.6881[/C][C]0[/C][/ROW]
[ROW][C]17[/C][C]0.521563[/C][C]5.8545[/C][C]0[/C][/ROW]
[ROW][C]18[/C][C]0.497002[/C][C]5.5788[/C][C]0[/C][/ROW]
[ROW][C]19[/C][C]0.496592[/C][C]5.5742[/C][C]0[/C][/ROW]
[ROW][C]20[/C][C]0.464555[/C][C]5.2146[/C][C]0[/C][/ROW]
[ROW][C]21[/C][C]0.437945[/C][C]4.9159[/C][C]1e-06[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301224&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301224&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.91175410.23440
20.8569799.61960
30.8231649.240
40.7907188.87580
50.7937588.90990
60.7587428.51690
70.7510868.43090
80.7036187.89810
90.6722917.54640
100.6675687.49340
110.6683557.50230
120.6872157.7140
130.6071556.81530
140.5576916.26010
150.5304765.95460
160.5067335.68810
170.5215635.85450
180.4970025.57880
190.4965925.57420
200.4645555.21460
210.4379454.91591e-06







Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.91175410.23440
20.1522381.70890.044969
30.1332481.49570.068615
40.0460870.51730.302918
50.2372192.66280.004381
6-0.129717-1.45610.07393
70.1655491.85830.032731
8-0.249825-2.80430.002921
90.111711.25390.106092
100.0154180.17310.431439
110.2272082.55040.005979
120.0287710.3230.373634
13-0.459295-5.15560
14-0.00232-0.0260.489631
150.040210.45140.326254
160.1254121.40770.080835
170.0641030.71960.236565
18-0.044112-0.49520.310676
190.0641750.72040.23632
200.0068230.07660.469535
210.0309980.3480.364228

\begin{tabular}{lllllllll}
\hline
Partial Autocorrelation Function \tabularnewline
Time lag k & PACF(k) & T-STAT & P-value \tabularnewline
1 & 0.911754 & 10.2344 & 0 \tabularnewline
2 & 0.152238 & 1.7089 & 0.044969 \tabularnewline
3 & 0.133248 & 1.4957 & 0.068615 \tabularnewline
4 & 0.046087 & 0.5173 & 0.302918 \tabularnewline
5 & 0.237219 & 2.6628 & 0.004381 \tabularnewline
6 & -0.129717 & -1.4561 & 0.07393 \tabularnewline
7 & 0.165549 & 1.8583 & 0.032731 \tabularnewline
8 & -0.249825 & -2.8043 & 0.002921 \tabularnewline
9 & 0.11171 & 1.2539 & 0.106092 \tabularnewline
10 & 0.015418 & 0.1731 & 0.431439 \tabularnewline
11 & 0.227208 & 2.5504 & 0.005979 \tabularnewline
12 & 0.028771 & 0.323 & 0.373634 \tabularnewline
13 & -0.459295 & -5.1556 & 0 \tabularnewline
14 & -0.00232 & -0.026 & 0.489631 \tabularnewline
15 & 0.04021 & 0.4514 & 0.326254 \tabularnewline
16 & 0.125412 & 1.4077 & 0.080835 \tabularnewline
17 & 0.064103 & 0.7196 & 0.236565 \tabularnewline
18 & -0.044112 & -0.4952 & 0.310676 \tabularnewline
19 & 0.064175 & 0.7204 & 0.23632 \tabularnewline
20 & 0.006823 & 0.0766 & 0.469535 \tabularnewline
21 & 0.030998 & 0.348 & 0.364228 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301224&T=2

[TABLE]
[ROW][C]Partial Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]PACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.911754[/C][C]10.2344[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]0.152238[/C][C]1.7089[/C][C]0.044969[/C][/ROW]
[ROW][C]3[/C][C]0.133248[/C][C]1.4957[/C][C]0.068615[/C][/ROW]
[ROW][C]4[/C][C]0.046087[/C][C]0.5173[/C][C]0.302918[/C][/ROW]
[ROW][C]5[/C][C]0.237219[/C][C]2.6628[/C][C]0.004381[/C][/ROW]
[ROW][C]6[/C][C]-0.129717[/C][C]-1.4561[/C][C]0.07393[/C][/ROW]
[ROW][C]7[/C][C]0.165549[/C][C]1.8583[/C][C]0.032731[/C][/ROW]
[ROW][C]8[/C][C]-0.249825[/C][C]-2.8043[/C][C]0.002921[/C][/ROW]
[ROW][C]9[/C][C]0.11171[/C][C]1.2539[/C][C]0.106092[/C][/ROW]
[ROW][C]10[/C][C]0.015418[/C][C]0.1731[/C][C]0.431439[/C][/ROW]
[ROW][C]11[/C][C]0.227208[/C][C]2.5504[/C][C]0.005979[/C][/ROW]
[ROW][C]12[/C][C]0.028771[/C][C]0.323[/C][C]0.373634[/C][/ROW]
[ROW][C]13[/C][C]-0.459295[/C][C]-5.1556[/C][C]0[/C][/ROW]
[ROW][C]14[/C][C]-0.00232[/C][C]-0.026[/C][C]0.489631[/C][/ROW]
[ROW][C]15[/C][C]0.04021[/C][C]0.4514[/C][C]0.326254[/C][/ROW]
[ROW][C]16[/C][C]0.125412[/C][C]1.4077[/C][C]0.080835[/C][/ROW]
[ROW][C]17[/C][C]0.064103[/C][C]0.7196[/C][C]0.236565[/C][/ROW]
[ROW][C]18[/C][C]-0.044112[/C][C]-0.4952[/C][C]0.310676[/C][/ROW]
[ROW][C]19[/C][C]0.064175[/C][C]0.7204[/C][C]0.23632[/C][/ROW]
[ROW][C]20[/C][C]0.006823[/C][C]0.0766[/C][C]0.469535[/C][/ROW]
[ROW][C]21[/C][C]0.030998[/C][C]0.348[/C][C]0.364228[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301224&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301224&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.91175410.23440
20.1522381.70890.044969
30.1332481.49570.068615
40.0460870.51730.302918
50.2372192.66280.004381
6-0.129717-1.45610.07393
70.1655491.85830.032731
8-0.249825-2.80430.002921
90.111711.25390.106092
100.0154180.17310.431439
110.2272082.55040.005979
120.0287710.3230.373634
13-0.459295-5.15560
14-0.00232-0.0260.489631
150.040210.45140.326254
160.1254121.40770.080835
170.0641030.71960.236565
18-0.044112-0.49520.310676
190.0641750.72040.23632
200.0068230.07660.469535
210.0309980.3480.364228



Parameters (Session):
par1 = 12 ; par2 = -0.5 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = 3 ; par7 = 0 ; par8 = 0 ; par9 = 1 ; par10 = FALSE ;
Parameters (R input):
par1 = Default ; par2 = 0.0 ; par3 = 0 ; par4 = 0 ; par5 = 1 ; par6 = White Noise ; par7 = 0.95 ; par8 = ;
R code (references can be found in the software module):
par8 <- ''
par7 <- '0.95'
par6 <- 'White Noise'
par5 <- '12'
par4 <- '0'
par3 <- '0'
par2 <- '0.0'
par1 <- 'Default'
if (par1 == 'Default') {
par1 = 10*log10(length(x))
} else {
par1 <- as.numeric(par1)
}
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
par5 <- as.numeric(par5)
if (par6 == 'White Noise') par6 <- 'white' else par6 <- 'ma'
par7 <- as.numeric(par7)
if (par8 != '') par8 <- as.numeric(par8)
x <- na.omit(x)
ox <- x
if (par8 == '') {
if (par2 == 0) {
x <- log(x)
} else {
x <- (x ^ par2 - 1) / par2
}
} else {
x <- log(x,base=par8)
}
if (par3 > 0) x <- diff(x,lag=1,difference=par3)
if (par4 > 0) x <- diff(x,lag=par5,difference=par4)
bitmap(file='picts.png')
op <- par(mfrow=c(2,1))
plot(ox,type='l',main='Original Time Series',xlab='time',ylab='value')
if (par8=='') {
mytitle <- paste('Working Time Series (lambda=',par2,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(lambda=',par2,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
} else {
mytitle <- paste('Working Time Series (base=',par8,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(base=',par8,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
}
plot(x,type='l', main=mytitle,xlab='time',ylab='value')
par(op)
dev.off()
bitmap(file='pic1.png')
racf <- acf(x, par1, main='Autocorrelation', xlab='time lag', ylab='ACF', ci.type=par6, ci=par7, sub=mysub)
dev.off()
bitmap(file='pic2.png')
rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF',sub=mysub)
dev.off()
(myacf <- c(racf$acf))
(mypacf <- c(rpacf$acf))
lengthx <- length(x)
sqrtn <- sqrt(lengthx)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'ACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 2:(par1+1)) {
a<-table.row.start(a)
a<-table.element(a,i-1,header=TRUE)
a<-table.element(a,round(myacf[i],6))
mytstat <- myacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Partial Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'PACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:par1) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,round(mypacf[i],6))
mytstat <- mypacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')