Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimaforecasting.wasp
Title produced by softwareARIMA Forecasting
Date of computationSun, 18 Dec 2016 17:53:00 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/18/t1482080050i924w72u0qcmb3s.htm/, Retrieved Fri, 01 Nov 2024 03:29:41 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=301180, Retrieved Fri, 01 Nov 2024 03:29:41 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact80
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [ARIMA Forecasting] [N1030 ARIMA Forecast] [2016-12-18 16:53:00] [2e11ca31a00cf8de75c33c1af2d59434] [Current]
Feedback Forum

Post a new message
Dataseries X:
3203.4
3248.4
3446.2
3448.6
3535
3586.8
3722.4
3796.6
3755
3654.4
3485.2
3348.6
3177
3207.2
3236.2
3358.8
3436
3563.2
3588.8
3645.4
3801.2
3856.2
4056.4
3894.4
3844.4
3712.2
3765.4
3874.8
3777
3879.2
3879
4043.2
4118.8
4103.2
4188.8
4496.6
4646
4710
4713
4440
4498.2
4266.6
4253.4
4133.2




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301180&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=301180&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301180&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[26])
203645.4-------
213801.2-------
223856.2-------
234056.4-------
243894.4-------
253844.4-------
263712.2-------
273765.43844.64213643.32374045.96050.22020.90140.66380.9014
283874.83815.79753465.19464166.40040.37080.61090.41070.7188
2937774035.20783466.14114604.27450.18690.70970.47090.867
303879.23932.37763202.37514662.38010.44320.66170.54060.7228
3138794003.61863111.18964896.04760.39220.60770.63670.7389
324043.23914.97932914.43454915.5240.40080.52810.65440.6544
334118.84109.72242953.65275265.79220.49390.54490.72030.7498
344103.24061.45752774.96525347.94990.47460.46520.61190.7027
354188.84288.71682838.23555739.19820.44630.5990.75540.782
364496.64136.84442553.86845719.82050.3280.47440.62510.7005
3746464206.94452479.25525934.63380.30920.37120.64510.7127
3847104086.9822246.65985927.30410.25350.27580.51860.6551
3947134282.17842277.63296286.7240.33680.33790.56350.7113
4044404212.93892056.48186369.3960.41820.32470.53970.6755
414498.24441.22122094.76216787.68040.4810.50040.58350.7287
424266.64294.7511785.42266804.07940.49120.43690.43740.6755
434253.44390.08341705.48177074.68520.46030.53590.42590.6897
444133.24277.9081451.42377104.39220.460.50680.38220.6526

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast \tabularnewline
time & Y[t] & F[t] & 95% LB & 95% UB & p-value(H0: Y[t] = F[t]) & P(F[t]>Y[t-1]) & P(F[t]>Y[t-s]) & P(F[t]>Y[26]) \tabularnewline
20 & 3645.4 & - & - & - & - & - & - & - \tabularnewline
21 & 3801.2 & - & - & - & - & - & - & - \tabularnewline
22 & 3856.2 & - & - & - & - & - & - & - \tabularnewline
23 & 4056.4 & - & - & - & - & - & - & - \tabularnewline
24 & 3894.4 & - & - & - & - & - & - & - \tabularnewline
25 & 3844.4 & - & - & - & - & - & - & - \tabularnewline
26 & 3712.2 & - & - & - & - & - & - & - \tabularnewline
27 & 3765.4 & 3844.6421 & 3643.3237 & 4045.9605 & 0.2202 & 0.9014 & 0.6638 & 0.9014 \tabularnewline
28 & 3874.8 & 3815.7975 & 3465.1946 & 4166.4004 & 0.3708 & 0.6109 & 0.4107 & 0.7188 \tabularnewline
29 & 3777 & 4035.2078 & 3466.1411 & 4604.2745 & 0.1869 & 0.7097 & 0.4709 & 0.867 \tabularnewline
30 & 3879.2 & 3932.3776 & 3202.3751 & 4662.3801 & 0.4432 & 0.6617 & 0.5406 & 0.7228 \tabularnewline
31 & 3879 & 4003.6186 & 3111.1896 & 4896.0476 & 0.3922 & 0.6077 & 0.6367 & 0.7389 \tabularnewline
32 & 4043.2 & 3914.9793 & 2914.4345 & 4915.524 & 0.4008 & 0.5281 & 0.6544 & 0.6544 \tabularnewline
33 & 4118.8 & 4109.7224 & 2953.6527 & 5265.7922 & 0.4939 & 0.5449 & 0.7203 & 0.7498 \tabularnewline
34 & 4103.2 & 4061.4575 & 2774.9652 & 5347.9499 & 0.4746 & 0.4652 & 0.6119 & 0.7027 \tabularnewline
35 & 4188.8 & 4288.7168 & 2838.2355 & 5739.1982 & 0.4463 & 0.599 & 0.7554 & 0.782 \tabularnewline
36 & 4496.6 & 4136.8444 & 2553.8684 & 5719.8205 & 0.328 & 0.4744 & 0.6251 & 0.7005 \tabularnewline
37 & 4646 & 4206.9445 & 2479.2552 & 5934.6338 & 0.3092 & 0.3712 & 0.6451 & 0.7127 \tabularnewline
38 & 4710 & 4086.982 & 2246.6598 & 5927.3041 & 0.2535 & 0.2758 & 0.5186 & 0.6551 \tabularnewline
39 & 4713 & 4282.1784 & 2277.6329 & 6286.724 & 0.3368 & 0.3379 & 0.5635 & 0.7113 \tabularnewline
40 & 4440 & 4212.9389 & 2056.4818 & 6369.396 & 0.4182 & 0.3247 & 0.5397 & 0.6755 \tabularnewline
41 & 4498.2 & 4441.2212 & 2094.7621 & 6787.6804 & 0.481 & 0.5004 & 0.5835 & 0.7287 \tabularnewline
42 & 4266.6 & 4294.751 & 1785.4226 & 6804.0794 & 0.4912 & 0.4369 & 0.4374 & 0.6755 \tabularnewline
43 & 4253.4 & 4390.0834 & 1705.4817 & 7074.6852 & 0.4603 & 0.5359 & 0.4259 & 0.6897 \tabularnewline
44 & 4133.2 & 4277.908 & 1451.4237 & 7104.3922 & 0.46 & 0.5068 & 0.3822 & 0.6526 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301180&T=1

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast[/C][/ROW]
[ROW][C]time[/C][C]Y[t][/C][C]F[t][/C][C]95% LB[/C][C]95% UB[/C][C]p-value(H0: Y[t] = F[t])[/C][C]P(F[t]>Y[t-1])[/C][C]P(F[t]>Y[t-s])[/C][C]P(F[t]>Y[26])[/C][/ROW]
[ROW][C]20[/C][C]3645.4[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]21[/C][C]3801.2[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]22[/C][C]3856.2[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]23[/C][C]4056.4[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]24[/C][C]3894.4[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]25[/C][C]3844.4[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]26[/C][C]3712.2[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]27[/C][C]3765.4[/C][C]3844.6421[/C][C]3643.3237[/C][C]4045.9605[/C][C]0.2202[/C][C]0.9014[/C][C]0.6638[/C][C]0.9014[/C][/ROW]
[ROW][C]28[/C][C]3874.8[/C][C]3815.7975[/C][C]3465.1946[/C][C]4166.4004[/C][C]0.3708[/C][C]0.6109[/C][C]0.4107[/C][C]0.7188[/C][/ROW]
[ROW][C]29[/C][C]3777[/C][C]4035.2078[/C][C]3466.1411[/C][C]4604.2745[/C][C]0.1869[/C][C]0.7097[/C][C]0.4709[/C][C]0.867[/C][/ROW]
[ROW][C]30[/C][C]3879.2[/C][C]3932.3776[/C][C]3202.3751[/C][C]4662.3801[/C][C]0.4432[/C][C]0.6617[/C][C]0.5406[/C][C]0.7228[/C][/ROW]
[ROW][C]31[/C][C]3879[/C][C]4003.6186[/C][C]3111.1896[/C][C]4896.0476[/C][C]0.3922[/C][C]0.6077[/C][C]0.6367[/C][C]0.7389[/C][/ROW]
[ROW][C]32[/C][C]4043.2[/C][C]3914.9793[/C][C]2914.4345[/C][C]4915.524[/C][C]0.4008[/C][C]0.5281[/C][C]0.6544[/C][C]0.6544[/C][/ROW]
[ROW][C]33[/C][C]4118.8[/C][C]4109.7224[/C][C]2953.6527[/C][C]5265.7922[/C][C]0.4939[/C][C]0.5449[/C][C]0.7203[/C][C]0.7498[/C][/ROW]
[ROW][C]34[/C][C]4103.2[/C][C]4061.4575[/C][C]2774.9652[/C][C]5347.9499[/C][C]0.4746[/C][C]0.4652[/C][C]0.6119[/C][C]0.7027[/C][/ROW]
[ROW][C]35[/C][C]4188.8[/C][C]4288.7168[/C][C]2838.2355[/C][C]5739.1982[/C][C]0.4463[/C][C]0.599[/C][C]0.7554[/C][C]0.782[/C][/ROW]
[ROW][C]36[/C][C]4496.6[/C][C]4136.8444[/C][C]2553.8684[/C][C]5719.8205[/C][C]0.328[/C][C]0.4744[/C][C]0.6251[/C][C]0.7005[/C][/ROW]
[ROW][C]37[/C][C]4646[/C][C]4206.9445[/C][C]2479.2552[/C][C]5934.6338[/C][C]0.3092[/C][C]0.3712[/C][C]0.6451[/C][C]0.7127[/C][/ROW]
[ROW][C]38[/C][C]4710[/C][C]4086.982[/C][C]2246.6598[/C][C]5927.3041[/C][C]0.2535[/C][C]0.2758[/C][C]0.5186[/C][C]0.6551[/C][/ROW]
[ROW][C]39[/C][C]4713[/C][C]4282.1784[/C][C]2277.6329[/C][C]6286.724[/C][C]0.3368[/C][C]0.3379[/C][C]0.5635[/C][C]0.7113[/C][/ROW]
[ROW][C]40[/C][C]4440[/C][C]4212.9389[/C][C]2056.4818[/C][C]6369.396[/C][C]0.4182[/C][C]0.3247[/C][C]0.5397[/C][C]0.6755[/C][/ROW]
[ROW][C]41[/C][C]4498.2[/C][C]4441.2212[/C][C]2094.7621[/C][C]6787.6804[/C][C]0.481[/C][C]0.5004[/C][C]0.5835[/C][C]0.7287[/C][/ROW]
[ROW][C]42[/C][C]4266.6[/C][C]4294.751[/C][C]1785.4226[/C][C]6804.0794[/C][C]0.4912[/C][C]0.4369[/C][C]0.4374[/C][C]0.6755[/C][/ROW]
[ROW][C]43[/C][C]4253.4[/C][C]4390.0834[/C][C]1705.4817[/C][C]7074.6852[/C][C]0.4603[/C][C]0.5359[/C][C]0.4259[/C][C]0.6897[/C][/ROW]
[ROW][C]44[/C][C]4133.2[/C][C]4277.908[/C][C]1451.4237[/C][C]7104.3922[/C][C]0.46[/C][C]0.5068[/C][C]0.3822[/C][C]0.6526[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301180&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301180&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[26])
203645.4-------
213801.2-------
223856.2-------
234056.4-------
243894.4-------
253844.4-------
263712.2-------
273765.43844.64213643.32374045.96050.22020.90140.66380.9014
283874.83815.79753465.19464166.40040.37080.61090.41070.7188
2937774035.20783466.14114604.27450.18690.70970.47090.867
303879.23932.37763202.37514662.38010.44320.66170.54060.7228
3138794003.61863111.18964896.04760.39220.60770.63670.7389
324043.23914.97932914.43454915.5240.40080.52810.65440.6544
334118.84109.72242953.65275265.79220.49390.54490.72030.7498
344103.24061.45752774.96525347.94990.47460.46520.61190.7027
354188.84288.71682838.23555739.19820.44630.5990.75540.782
364496.64136.84442553.86845719.82050.3280.47440.62510.7005
3746464206.94452479.25525934.63380.30920.37120.64510.7127
3847104086.9822246.65985927.30410.25350.27580.51860.6551
3947134282.17842277.63296286.7240.33680.33790.56350.7113
4044404212.93892056.48186369.3960.41820.32470.53970.6755
414498.24441.22122094.76216787.68040.4810.50040.58350.7287
424266.64294.7511785.42266804.07940.49120.43690.43740.6755
434253.44390.08341705.48177074.68520.46030.53590.42590.6897
444133.24277.9081451.42377104.39220.460.50680.38220.6526







Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
270.0267-0.0210.0210.02086279.316300-0.720.72
280.04690.01520.01810.01813481.29264880.304569.85920.53610.628
290.072-0.06840.03490.034166671.278525477.2958159.6161-2.34611.2007
300.0947-0.01370.02960.0292827.855619814.9357140.7655-0.48321.0213
310.1137-0.03210.03010.029515529.795818957.9078137.6877-1.13231.0435
320.13040.03170.03040.0316440.552918538.3486136.15561.1651.0638
330.14350.00220.02630.02682.40215901.7848126.10230.08250.9236
340.16160.01020.02430.0241742.432914131.8658118.87750.37930.8556
350.1726-0.02390.02430.0249983.374113670.9223116.9227-0.90780.8614
360.19520.080.02980.0299129424.069625246.237158.89063.26881.1021
370.20950.09450.03570.0362192769.728540475.6454201.18563.98931.3646
380.22970.13230.04380.045388151.470369448.6308263.53115.66081.7226
390.23880.09140.04740.0489185607.236878383.9082279.97133.91451.8912
400.26120.05110.04770.049251556.755376467.683276.52792.06311.9035
410.26960.01270.04540.04673246.580871586.2761267.55610.51771.8111
420.2981-0.00660.04290.0442792.480267161.6639259.1557-0.25581.7139
430.312-0.03210.04230.043518682.357864309.94253.594-1.24191.6861
440.3371-0.0350.04190.04320940.396661900.5209248.7982-1.31481.6655

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast Performance \tabularnewline
time & % S.E. & PE & MAPE & sMAPE & Sq.E & MSE & RMSE & ScaledE & MASE \tabularnewline
27 & 0.0267 & -0.021 & 0.021 & 0.0208 & 6279.3163 & 0 & 0 & -0.72 & 0.72 \tabularnewline
28 & 0.0469 & 0.0152 & 0.0181 & 0.0181 & 3481.2926 & 4880.3045 & 69.8592 & 0.5361 & 0.628 \tabularnewline
29 & 0.072 & -0.0684 & 0.0349 & 0.0341 & 66671.2785 & 25477.2958 & 159.6161 & -2.3461 & 1.2007 \tabularnewline
30 & 0.0947 & -0.0137 & 0.0296 & 0.029 & 2827.8556 & 19814.9357 & 140.7655 & -0.4832 & 1.0213 \tabularnewline
31 & 0.1137 & -0.0321 & 0.0301 & 0.0295 & 15529.7958 & 18957.9078 & 137.6877 & -1.1323 & 1.0435 \tabularnewline
32 & 0.1304 & 0.0317 & 0.0304 & 0.03 & 16440.5529 & 18538.3486 & 136.1556 & 1.165 & 1.0638 \tabularnewline
33 & 0.1435 & 0.0022 & 0.0263 & 0.026 & 82.402 & 15901.7848 & 126.1023 & 0.0825 & 0.9236 \tabularnewline
34 & 0.1616 & 0.0102 & 0.0243 & 0.024 & 1742.4329 & 14131.8658 & 118.8775 & 0.3793 & 0.8556 \tabularnewline
35 & 0.1726 & -0.0239 & 0.0243 & 0.024 & 9983.3741 & 13670.9223 & 116.9227 & -0.9078 & 0.8614 \tabularnewline
36 & 0.1952 & 0.08 & 0.0298 & 0.0299 & 129424.0696 & 25246.237 & 158.8906 & 3.2688 & 1.1021 \tabularnewline
37 & 0.2095 & 0.0945 & 0.0357 & 0.0362 & 192769.7285 & 40475.6454 & 201.1856 & 3.9893 & 1.3646 \tabularnewline
38 & 0.2297 & 0.1323 & 0.0438 & 0.045 & 388151.4703 & 69448.6308 & 263.5311 & 5.6608 & 1.7226 \tabularnewline
39 & 0.2388 & 0.0914 & 0.0474 & 0.0489 & 185607.2368 & 78383.9082 & 279.9713 & 3.9145 & 1.8912 \tabularnewline
40 & 0.2612 & 0.0511 & 0.0477 & 0.0492 & 51556.7553 & 76467.683 & 276.5279 & 2.0631 & 1.9035 \tabularnewline
41 & 0.2696 & 0.0127 & 0.0454 & 0.0467 & 3246.5808 & 71586.2761 & 267.5561 & 0.5177 & 1.8111 \tabularnewline
42 & 0.2981 & -0.0066 & 0.0429 & 0.0442 & 792.4802 & 67161.6639 & 259.1557 & -0.2558 & 1.7139 \tabularnewline
43 & 0.312 & -0.0321 & 0.0423 & 0.0435 & 18682.3578 & 64309.94 & 253.594 & -1.2419 & 1.6861 \tabularnewline
44 & 0.3371 & -0.035 & 0.0419 & 0.043 & 20940.3966 & 61900.5209 & 248.7982 & -1.3148 & 1.6655 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301180&T=2

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast Performance[/C][/ROW]
[ROW][C]time[/C][C]% S.E.[/C][C]PE[/C][C]MAPE[/C][C]sMAPE[/C][C]Sq.E[/C][C]MSE[/C][C]RMSE[/C][C]ScaledE[/C][C]MASE[/C][/ROW]
[ROW][C]27[/C][C]0.0267[/C][C]-0.021[/C][C]0.021[/C][C]0.0208[/C][C]6279.3163[/C][C]0[/C][C]0[/C][C]-0.72[/C][C]0.72[/C][/ROW]
[ROW][C]28[/C][C]0.0469[/C][C]0.0152[/C][C]0.0181[/C][C]0.0181[/C][C]3481.2926[/C][C]4880.3045[/C][C]69.8592[/C][C]0.5361[/C][C]0.628[/C][/ROW]
[ROW][C]29[/C][C]0.072[/C][C]-0.0684[/C][C]0.0349[/C][C]0.0341[/C][C]66671.2785[/C][C]25477.2958[/C][C]159.6161[/C][C]-2.3461[/C][C]1.2007[/C][/ROW]
[ROW][C]30[/C][C]0.0947[/C][C]-0.0137[/C][C]0.0296[/C][C]0.029[/C][C]2827.8556[/C][C]19814.9357[/C][C]140.7655[/C][C]-0.4832[/C][C]1.0213[/C][/ROW]
[ROW][C]31[/C][C]0.1137[/C][C]-0.0321[/C][C]0.0301[/C][C]0.0295[/C][C]15529.7958[/C][C]18957.9078[/C][C]137.6877[/C][C]-1.1323[/C][C]1.0435[/C][/ROW]
[ROW][C]32[/C][C]0.1304[/C][C]0.0317[/C][C]0.0304[/C][C]0.03[/C][C]16440.5529[/C][C]18538.3486[/C][C]136.1556[/C][C]1.165[/C][C]1.0638[/C][/ROW]
[ROW][C]33[/C][C]0.1435[/C][C]0.0022[/C][C]0.0263[/C][C]0.026[/C][C]82.402[/C][C]15901.7848[/C][C]126.1023[/C][C]0.0825[/C][C]0.9236[/C][/ROW]
[ROW][C]34[/C][C]0.1616[/C][C]0.0102[/C][C]0.0243[/C][C]0.024[/C][C]1742.4329[/C][C]14131.8658[/C][C]118.8775[/C][C]0.3793[/C][C]0.8556[/C][/ROW]
[ROW][C]35[/C][C]0.1726[/C][C]-0.0239[/C][C]0.0243[/C][C]0.024[/C][C]9983.3741[/C][C]13670.9223[/C][C]116.9227[/C][C]-0.9078[/C][C]0.8614[/C][/ROW]
[ROW][C]36[/C][C]0.1952[/C][C]0.08[/C][C]0.0298[/C][C]0.0299[/C][C]129424.0696[/C][C]25246.237[/C][C]158.8906[/C][C]3.2688[/C][C]1.1021[/C][/ROW]
[ROW][C]37[/C][C]0.2095[/C][C]0.0945[/C][C]0.0357[/C][C]0.0362[/C][C]192769.7285[/C][C]40475.6454[/C][C]201.1856[/C][C]3.9893[/C][C]1.3646[/C][/ROW]
[ROW][C]38[/C][C]0.2297[/C][C]0.1323[/C][C]0.0438[/C][C]0.045[/C][C]388151.4703[/C][C]69448.6308[/C][C]263.5311[/C][C]5.6608[/C][C]1.7226[/C][/ROW]
[ROW][C]39[/C][C]0.2388[/C][C]0.0914[/C][C]0.0474[/C][C]0.0489[/C][C]185607.2368[/C][C]78383.9082[/C][C]279.9713[/C][C]3.9145[/C][C]1.8912[/C][/ROW]
[ROW][C]40[/C][C]0.2612[/C][C]0.0511[/C][C]0.0477[/C][C]0.0492[/C][C]51556.7553[/C][C]76467.683[/C][C]276.5279[/C][C]2.0631[/C][C]1.9035[/C][/ROW]
[ROW][C]41[/C][C]0.2696[/C][C]0.0127[/C][C]0.0454[/C][C]0.0467[/C][C]3246.5808[/C][C]71586.2761[/C][C]267.5561[/C][C]0.5177[/C][C]1.8111[/C][/ROW]
[ROW][C]42[/C][C]0.2981[/C][C]-0.0066[/C][C]0.0429[/C][C]0.0442[/C][C]792.4802[/C][C]67161.6639[/C][C]259.1557[/C][C]-0.2558[/C][C]1.7139[/C][/ROW]
[ROW][C]43[/C][C]0.312[/C][C]-0.0321[/C][C]0.0423[/C][C]0.0435[/C][C]18682.3578[/C][C]64309.94[/C][C]253.594[/C][C]-1.2419[/C][C]1.6861[/C][/ROW]
[ROW][C]44[/C][C]0.3371[/C][C]-0.035[/C][C]0.0419[/C][C]0.043[/C][C]20940.3966[/C][C]61900.5209[/C][C]248.7982[/C][C]-1.3148[/C][C]1.6655[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301180&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301180&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
270.0267-0.0210.0210.02086279.316300-0.720.72
280.04690.01520.01810.01813481.29264880.304569.85920.53610.628
290.072-0.06840.03490.034166671.278525477.2958159.6161-2.34611.2007
300.0947-0.01370.02960.0292827.855619814.9357140.7655-0.48321.0213
310.1137-0.03210.03010.029515529.795818957.9078137.6877-1.13231.0435
320.13040.03170.03040.0316440.552918538.3486136.15561.1651.0638
330.14350.00220.02630.02682.40215901.7848126.10230.08250.9236
340.16160.01020.02430.0241742.432914131.8658118.87750.37930.8556
350.1726-0.02390.02430.0249983.374113670.9223116.9227-0.90780.8614
360.19520.080.02980.0299129424.069625246.237158.89063.26881.1021
370.20950.09450.03570.0362192769.728540475.6454201.18563.98931.3646
380.22970.13230.04380.045388151.470369448.6308263.53115.66081.7226
390.23880.09140.04740.0489185607.236878383.9082279.97133.91451.8912
400.26120.05110.04770.049251556.755376467.683276.52792.06311.9035
410.26960.01270.04540.04673246.580871586.2761267.55610.51771.8111
420.2981-0.00660.04290.0442792.480267161.6639259.1557-0.25581.7139
430.312-0.03210.04230.043518682.357864309.94253.594-1.24191.6861
440.3371-0.0350.04190.04320940.396661900.5209248.7982-1.31481.6655



Parameters (Session):
par1 = 6 ; par2 = Double ; par3 = additive ; par4 = 12 ;
Parameters (R input):
par1 = 18 ; par2 = 1 ; par3 = 1 ; par4 = 1 ; par5 = 6 ; par6 = 3 ; par7 = 1 ; par8 = 2 ; par9 = 1 ; par10 = FALSE ;
R code (references can be found in the software module):
par10 <- 'FALSE'
par9 <- '0'
par8 <- '2'
par7 <- '1'
par6 <- '3'
par5 <- '6'
par4 <- '1'
par3 <- '1'
par2 <- '1'
par1 <- '18'
par1 <- as.numeric(par1) #cut off periods
par2 <- as.numeric(par2) #lambda
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #p
par7 <- as.numeric(par7) #q
par8 <- as.numeric(par8) #P
par9 <- as.numeric(par9) #Q
if (par10 == 'TRUE') par10 <- TRUE
if (par10 == 'FALSE') par10 <- FALSE
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
lx <- length(x)
first <- lx - 2*par1
nx <- lx - par1
nx1 <- nx + 1
fx <- lx - nx
if (fx < 1) {
fx <- par5*2
nx1 <- lx + fx - 1
first <- lx - 2*fx
}
first <- 1
if (fx < 3) fx <- round(lx/10,0)
(arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML'))
(forecast <- predict(arima.out,fx))
(lb <- forecast$pred - 1.96 * forecast$se)
(ub <- forecast$pred + 1.96 * forecast$se)
if (par2 == 0) {
x <- exp(x)
forecast$pred <- exp(forecast$pred)
lb <- exp(lb)
ub <- exp(ub)
}
if (par2 != 0) {
x <- x^(1/par2)
forecast$pred <- forecast$pred^(1/par2)
lb <- lb^(1/par2)
ub <- ub^(1/par2)
}
if (par2 < 0) {
olb <- lb
lb <- ub
ub <- olb
}
(actandfor <- c(x[1:nx], forecast$pred))
(perc.se <- (ub-forecast$pred)/1.96/forecast$pred)
bitmap(file='test1.png')
opar <- par(mar=c(4,4,2,2),las=1)
ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub))
plot(x,ylim=ylim,type='n',xlim=c(first,lx))
usr <- par('usr')
rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon')
rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender')
abline(h= (-3:3)*2 , col ='gray', lty =3)
polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA)
lines(nx1:lx, lb , lty=2)
lines(nx1:lx, ub , lty=2)
lines(x, lwd=2)
lines(nx1:lx, forecast$pred , lwd=2 , col ='white')
box()
par(opar)
dev.off()
prob.dec <- array(NA, dim=fx)
prob.sdec <- array(NA, dim=fx)
prob.ldec <- array(NA, dim=fx)
prob.pval <- array(NA, dim=fx)
perf.pe <- array(0, dim=fx)
perf.spe <- array(0, dim=fx)
perf.scalederr <- array(0, dim=fx)
perf.mase <- array(0, dim=fx)
perf.mase1 <- array(0, dim=fx)
perf.mape <- array(0, dim=fx)
perf.smape <- array(0, dim=fx)
perf.mape1 <- array(0, dim=fx)
perf.smape1 <- array(0,dim=fx)
perf.se <- array(0, dim=fx)
perf.mse <- array(0, dim=fx)
perf.mse1 <- array(0, dim=fx)
perf.rmse <- array(0, dim=fx)
perf.scaleddenom <- 0
for (i in 2:fx) {
perf.scaleddenom = perf.scaleddenom + abs(x[nx+i] - x[nx+i-1])
}
perf.scaleddenom = perf.scaleddenom / (fx-1)
for (i in 1:fx) {
locSD <- (ub[i] - forecast$pred[i]) / 1.96
perf.scalederr[i] = (x[nx+i] - forecast$pred[i]) / perf.scaleddenom
perf.pe[i] = (x[nx+i] - forecast$pred[i]) / x[nx+i]
perf.spe[i] = 2*(x[nx+i] - forecast$pred[i]) / (x[nx+i] + forecast$pred[i])
perf.se[i] = (x[nx+i] - forecast$pred[i])^2
prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD)
prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD)
prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD)
prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD)
}
perf.mape[1] = abs(perf.pe[1])
perf.smape[1] = abs(perf.spe[1])
perf.mape1[1] = perf.mape[1]
perf.smape1[1] = perf.smape[1]
perf.mse[1] = perf.se[1]
perf.mase[1] = abs(perf.scalederr[1])
perf.mase1[1] = perf.mase[1]
for (i in 2:fx) {
perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i])
perf.mape1[i] = perf.mape[i] / i
perf.smape[i] = perf.smape[i-1] + abs(perf.spe[i])
perf.smape1[i] = perf.smape[i] / i
perf.mse[i] = perf.mse[i-1] + perf.se[i]
perf.mse1[i] = perf.mse[i] / i
perf.mase[i] = perf.mase[i-1] + abs(perf.scalederr[i])
perf.mase1[i] = perf.mase[i] / i
}
perf.rmse = sqrt(perf.mse1)
bitmap(file='test2.png')
plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub)))
dum <- forecast$pred
dum[1:par1] <- x[(nx+1):lx]
lines(dum, lty=1)
lines(ub,lty=3)
lines(lb,lty=3)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'Y[t]',1,header=TRUE)
a<-table.element(a,'F[t]',1,header=TRUE)
a<-table.element(a,'95% LB',1,header=TRUE)
a<-table.element(a,'95% UB',1,header=TRUE)
a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE)
mylab <- paste('P(F[t]>Y[',nx,sep='')
mylab <- paste(mylab,'])',sep='')
a<-table.element(a,mylab,1,header=TRUE)
a<-table.row.end(a)
for (i in (nx-par5):nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.row.end(a)
}
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(x[nx+i],4))
a<-table.element(a,round(forecast$pred[i],4))
a<-table.element(a,round(lb[i],4))
a<-table.element(a,round(ub[i],4))
a<-table.element(a,round((1-prob.pval[i]),4))
a<-table.element(a,round((1-prob.dec[i]),4))
a<-table.element(a,round((1-prob.sdec[i]),4))
a<-table.element(a,round((1-prob.ldec[i]),4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',10,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'% S.E.',1,header=TRUE)
a<-table.element(a,'PE',1,header=TRUE)
a<-table.element(a,'MAPE',1,header=TRUE)
a<-table.element(a,'sMAPE',1,header=TRUE)
a<-table.element(a,'Sq.E',1,header=TRUE)
a<-table.element(a,'MSE',1,header=TRUE)
a<-table.element(a,'RMSE',1,header=TRUE)
a<-table.element(a,'ScaledE',1,header=TRUE)
a<-table.element(a,'MASE',1,header=TRUE)
a<-table.row.end(a)
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(perc.se[i],4))
a<-table.element(a,round(perf.pe[i],4))
a<-table.element(a,round(perf.mape1[i],4))
a<-table.element(a,round(perf.smape1[i],4))
a<-table.element(a,round(perf.se[i],4))
a<-table.element(a,round(perf.mse1[i],4))
a<-table.element(a,round(perf.rmse[i],4))
a<-table.element(a,round(perf.scalederr[i],4))
a<-table.element(a,round(perf.mase1[i],4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')