Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_autocorrelation.wasp
Title produced by software(Partial) Autocorrelation Function
Date of computationSun, 18 Dec 2016 17:34:04 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/18/t14820789509xwkjmwz1qc8n0r.htm/, Retrieved Fri, 01 Nov 2024 03:39:44 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=301171, Retrieved Fri, 01 Nov 2024 03:39:44 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact88
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [(Partial) Autocorrelation Function] [N1030 ACF] [2016-12-18 16:34:04] [2e11ca31a00cf8de75c33c1af2d59434] [Current]
Feedback Forum

Post a new message
Dataseries X:
3203.4
3248.4
3446.2
3448.6
3535
3586.8
3722.4
3796.6
3755
3654.4
3485.2
3348.6
3177
3207.2
3236.2
3358.8
3436
3563.2
3588.8
3645.4
3801.2
3856.2
4056.4
3894.4
3844.4
3712.2
3765.4
3874.8
3777
3879.2
3879
4043.2
4118.8
4103.2
4188.8
4496.6
4646
4710
4713
4440
4498.2
4266.6
4253.4
4133.2




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301171&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=301171&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301171&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.2366141.55160.064046
20.3486612.28630.013611
3-0.079287-0.51990.302892
4-0.087765-0.57550.283971
5-0.058358-0.38270.351922
6-0.31202-2.04610.023449
7-0.232719-1.5260.067162
8-0.344635-2.25990.014474
9-0.075767-0.49680.310916
10-0.271214-1.77850.041199
11-0.021867-0.14340.443326
12-0.158825-1.04150.151736
130.2017091.32270.096465
140.2238071.46760.074745
150.241541.58390.060274
160.2580121.69190.04895

\begin{tabular}{lllllllll}
\hline
Autocorrelation Function \tabularnewline
Time lag k & ACF(k) & T-STAT & P-value \tabularnewline
1 & 0.236614 & 1.5516 & 0.064046 \tabularnewline
2 & 0.348661 & 2.2863 & 0.013611 \tabularnewline
3 & -0.079287 & -0.5199 & 0.302892 \tabularnewline
4 & -0.087765 & -0.5755 & 0.283971 \tabularnewline
5 & -0.058358 & -0.3827 & 0.351922 \tabularnewline
6 & -0.31202 & -2.0461 & 0.023449 \tabularnewline
7 & -0.232719 & -1.526 & 0.067162 \tabularnewline
8 & -0.344635 & -2.2599 & 0.014474 \tabularnewline
9 & -0.075767 & -0.4968 & 0.310916 \tabularnewline
10 & -0.271214 & -1.7785 & 0.041199 \tabularnewline
11 & -0.021867 & -0.1434 & 0.443326 \tabularnewline
12 & -0.158825 & -1.0415 & 0.151736 \tabularnewline
13 & 0.201709 & 1.3227 & 0.096465 \tabularnewline
14 & 0.223807 & 1.4676 & 0.074745 \tabularnewline
15 & 0.24154 & 1.5839 & 0.060274 \tabularnewline
16 & 0.258012 & 1.6919 & 0.04895 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301171&T=1

[TABLE]
[ROW][C]Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]ACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.236614[/C][C]1.5516[/C][C]0.064046[/C][/ROW]
[ROW][C]2[/C][C]0.348661[/C][C]2.2863[/C][C]0.013611[/C][/ROW]
[ROW][C]3[/C][C]-0.079287[/C][C]-0.5199[/C][C]0.302892[/C][/ROW]
[ROW][C]4[/C][C]-0.087765[/C][C]-0.5755[/C][C]0.283971[/C][/ROW]
[ROW][C]5[/C][C]-0.058358[/C][C]-0.3827[/C][C]0.351922[/C][/ROW]
[ROW][C]6[/C][C]-0.31202[/C][C]-2.0461[/C][C]0.023449[/C][/ROW]
[ROW][C]7[/C][C]-0.232719[/C][C]-1.526[/C][C]0.067162[/C][/ROW]
[ROW][C]8[/C][C]-0.344635[/C][C]-2.2599[/C][C]0.014474[/C][/ROW]
[ROW][C]9[/C][C]-0.075767[/C][C]-0.4968[/C][C]0.310916[/C][/ROW]
[ROW][C]10[/C][C]-0.271214[/C][C]-1.7785[/C][C]0.041199[/C][/ROW]
[ROW][C]11[/C][C]-0.021867[/C][C]-0.1434[/C][C]0.443326[/C][/ROW]
[ROW][C]12[/C][C]-0.158825[/C][C]-1.0415[/C][C]0.151736[/C][/ROW]
[ROW][C]13[/C][C]0.201709[/C][C]1.3227[/C][C]0.096465[/C][/ROW]
[ROW][C]14[/C][C]0.223807[/C][C]1.4676[/C][C]0.074745[/C][/ROW]
[ROW][C]15[/C][C]0.24154[/C][C]1.5839[/C][C]0.060274[/C][/ROW]
[ROW][C]16[/C][C]0.258012[/C][C]1.6919[/C][C]0.04895[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301171&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301171&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.2366141.55160.064046
20.3486612.28630.013611
3-0.079287-0.51990.302892
4-0.087765-0.57550.283971
5-0.058358-0.38270.351922
6-0.31202-2.04610.023449
7-0.232719-1.5260.067162
8-0.344635-2.25990.014474
9-0.075767-0.49680.310916
10-0.271214-1.77850.041199
11-0.021867-0.14340.443326
12-0.158825-1.04150.151736
130.2017091.32270.096465
140.2238071.46760.074745
150.241541.58390.060274
160.2580121.69190.04895







Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.2366141.55160.064046
20.3100332.0330.024127
3-0.245602-1.61050.057301
4-0.165561-1.08570.141841
50.1313470.86130.196925
6-0.320725-2.10310.020672
7-0.229446-1.50460.069871
8-0.051954-0.34070.367499
90.0914410.59960.275953
10-0.395909-2.59610.006425
11-0.0293-0.19210.424272
12-0.025999-0.17050.432715
130.1187620.77880.220188
140.0202570.13280.447473
150.0169260.1110.456069
160.0378030.24790.4027

\begin{tabular}{lllllllll}
\hline
Partial Autocorrelation Function \tabularnewline
Time lag k & PACF(k) & T-STAT & P-value \tabularnewline
1 & 0.236614 & 1.5516 & 0.064046 \tabularnewline
2 & 0.310033 & 2.033 & 0.024127 \tabularnewline
3 & -0.245602 & -1.6105 & 0.057301 \tabularnewline
4 & -0.165561 & -1.0857 & 0.141841 \tabularnewline
5 & 0.131347 & 0.8613 & 0.196925 \tabularnewline
6 & -0.320725 & -2.1031 & 0.020672 \tabularnewline
7 & -0.229446 & -1.5046 & 0.069871 \tabularnewline
8 & -0.051954 & -0.3407 & 0.367499 \tabularnewline
9 & 0.091441 & 0.5996 & 0.275953 \tabularnewline
10 & -0.395909 & -2.5961 & 0.006425 \tabularnewline
11 & -0.0293 & -0.1921 & 0.424272 \tabularnewline
12 & -0.025999 & -0.1705 & 0.432715 \tabularnewline
13 & 0.118762 & 0.7788 & 0.220188 \tabularnewline
14 & 0.020257 & 0.1328 & 0.447473 \tabularnewline
15 & 0.016926 & 0.111 & 0.456069 \tabularnewline
16 & 0.037803 & 0.2479 & 0.4027 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301171&T=2

[TABLE]
[ROW][C]Partial Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]PACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.236614[/C][C]1.5516[/C][C]0.064046[/C][/ROW]
[ROW][C]2[/C][C]0.310033[/C][C]2.033[/C][C]0.024127[/C][/ROW]
[ROW][C]3[/C][C]-0.245602[/C][C]-1.6105[/C][C]0.057301[/C][/ROW]
[ROW][C]4[/C][C]-0.165561[/C][C]-1.0857[/C][C]0.141841[/C][/ROW]
[ROW][C]5[/C][C]0.131347[/C][C]0.8613[/C][C]0.196925[/C][/ROW]
[ROW][C]6[/C][C]-0.320725[/C][C]-2.1031[/C][C]0.020672[/C][/ROW]
[ROW][C]7[/C][C]-0.229446[/C][C]-1.5046[/C][C]0.069871[/C][/ROW]
[ROW][C]8[/C][C]-0.051954[/C][C]-0.3407[/C][C]0.367499[/C][/ROW]
[ROW][C]9[/C][C]0.091441[/C][C]0.5996[/C][C]0.275953[/C][/ROW]
[ROW][C]10[/C][C]-0.395909[/C][C]-2.5961[/C][C]0.006425[/C][/ROW]
[ROW][C]11[/C][C]-0.0293[/C][C]-0.1921[/C][C]0.424272[/C][/ROW]
[ROW][C]12[/C][C]-0.025999[/C][C]-0.1705[/C][C]0.432715[/C][/ROW]
[ROW][C]13[/C][C]0.118762[/C][C]0.7788[/C][C]0.220188[/C][/ROW]
[ROW][C]14[/C][C]0.020257[/C][C]0.1328[/C][C]0.447473[/C][/ROW]
[ROW][C]15[/C][C]0.016926[/C][C]0.111[/C][C]0.456069[/C][/ROW]
[ROW][C]16[/C][C]0.037803[/C][C]0.2479[/C][C]0.4027[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301171&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301171&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.2366141.55160.064046
20.3100332.0330.024127
3-0.245602-1.61050.057301
4-0.165561-1.08570.141841
50.1313470.86130.196925
6-0.320725-2.10310.020672
7-0.229446-1.50460.069871
8-0.051954-0.34070.367499
90.0914410.59960.275953
10-0.395909-2.59610.006425
11-0.0293-0.19210.424272
12-0.025999-0.17050.432715
130.1187620.77880.220188
140.0202570.13280.447473
150.0169260.1110.456069
160.0378030.24790.4027



Parameters (Session):
par1 = Default ; par2 = 1 ; par3 = 1 ; par4 = 0 ; par5 = 1 ; par6 = White Noise ; par7 = 0.95 ;
Parameters (R input):
par1 = Default ; par2 = 1 ; par3 = 1 ; par4 = 0 ; par5 = 1 ; par6 = White Noise ; par7 = 0.95 ; par8 = ;
R code (references can be found in the software module):
if (par1 == 'Default') {
par1 = 10*log10(length(x))
} else {
par1 <- as.numeric(par1)
}
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
par5 <- as.numeric(par5)
if (par6 == 'White Noise') par6 <- 'white' else par6 <- 'ma'
par7 <- as.numeric(par7)
if (par8 != '') par8 <- as.numeric(par8)
x <- na.omit(x)
ox <- x
if (par8 == '') {
if (par2 == 0) {
x <- log(x)
} else {
x <- (x ^ par2 - 1) / par2
}
} else {
x <- log(x,base=par8)
}
if (par3 > 0) x <- diff(x,lag=1,difference=par3)
if (par4 > 0) x <- diff(x,lag=par5,difference=par4)
bitmap(file='picts.png')
op <- par(mfrow=c(2,1))
plot(ox,type='l',main='Original Time Series',xlab='time',ylab='value')
if (par8=='') {
mytitle <- paste('Working Time Series (lambda=',par2,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(lambda=',par2,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
} else {
mytitle <- paste('Working Time Series (base=',par8,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(base=',par8,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
}
plot(x,type='l', main=mytitle,xlab='time',ylab='value')
par(op)
dev.off()
bitmap(file='pic1.png')
racf <- acf(x, par1, main='Autocorrelation', xlab='time lag', ylab='ACF', ci.type=par6, ci=par7, sub=mysub)
dev.off()
bitmap(file='pic2.png')
rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF',sub=mysub)
dev.off()
(myacf <- c(racf$acf))
(mypacf <- c(rpacf$acf))
lengthx <- length(x)
sqrtn <- sqrt(lengthx)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'ACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 2:(par1+1)) {
a<-table.row.start(a)
a<-table.element(a,i-1,header=TRUE)
a<-table.element(a,round(myacf[i],6))
mytstat <- myacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Partial Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'PACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:par1) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,round(mypacf[i],6))
mytstat <- mypacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')