Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimaforecasting.wasp
Title produced by softwareARIMA Forecasting
Date of computationSun, 18 Dec 2016 16:41:28 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/18/t1482075701hiv10uu7he8dbjo.htm/, Retrieved Fri, 01 Nov 2024 03:47:58 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=301146, Retrieved Fri, 01 Nov 2024 03:47:58 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact78
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [ARIMA Forecasting] [] [2016-12-18 15:41:28] [94ac3c9a028ddd47e8862e80eac9f626] [Current]
Feedback Forum

Post a new message
Dataseries X:
3830.8
3732.6
3733.5
3808.5
3860.5
3844.4
3864.5
3803.1
3756.1
3771.1
3754.4
3759.6
3783.5
3886.5
3944.4
4012.1
4089.5
4144
4166.4
4194.2
4221.8
4254.8
4309
4333.5
4390.5
4387.7
4412.6
4427.1
4460
4515.3
4559.3
4625.5
4655.3
4704.8
4734.5
4779.7
4817.6
4839
4839
4856.7
4890.8
4902.7
4882.6
4833.8
4796.7




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301146&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=301146&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301146&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[45])
334655.3-------
344704.8-------
354734.5-------
364779.7-------
374817.6-------
384839-------
394839-------
404856.7-------
414890.8-------
424902.7-------
434882.6-------
444833.8-------
454796.7-------
46NA4779.71154711.73274847.6903NA0.31210.98460.3121
47NA4776.38224642.46044910.304NANA0.730.3831
48NA4777.46314575.7874979.1392NANA0.49130.4258
49NA4777.3974512.94035041.8536NANA0.38290.4431
50NA4774.66494450.61835098.7116NANA0.34860.447
51NA4770.0234387.29985152.7462NANA0.3620.4457
52NA4764.68944322.03155207.3474NANA0.34190.4436
53NA4759.45844254.51425264.4025NANA0.30510.4425
54NA4754.57394184.66945324.4784NANA0.30520.4424
55NA4749.95624112.53365387.3788NANA0.34170.4429
56NA4745.44424038.16325452.7252NANA0.40330.4435
57NA4740.92613961.61625520.236NANA0.44420.4442
58NA4736.36333882.94535589.7814NANANA0.4449
59NA4731.76363802.25661.3271NANANA0.4455
60NA4727.14793719.42735734.8684NANANA0.4462
61NA4722.53193634.67155810.3923NANANA0.4468
62NA4717.92163547.9745887.8692NANANA0.4475
63NA4713.31653459.37435967.2586NANANA0.4482
64NA4708.71373368.916048.5173NANANA0.4488
65NA4704.1113276.61736131.6048NANANA0.4494
66NA4699.50773182.53076216.4848NANANA0.45
67NA4694.90373086.68346303.1239NANANA0.4506
68NA4690.29932989.10726391.4914NANANA0.4512
69NA4685.69492889.83226481.5576NANANA0.4518

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast \tabularnewline
time & Y[t] & F[t] & 95% LB & 95% UB & p-value(H0: Y[t] = F[t]) & P(F[t]>Y[t-1]) & P(F[t]>Y[t-s]) & P(F[t]>Y[45]) \tabularnewline
33 & 4655.3 & - & - & - & - & - & - & - \tabularnewline
34 & 4704.8 & - & - & - & - & - & - & - \tabularnewline
35 & 4734.5 & - & - & - & - & - & - & - \tabularnewline
36 & 4779.7 & - & - & - & - & - & - & - \tabularnewline
37 & 4817.6 & - & - & - & - & - & - & - \tabularnewline
38 & 4839 & - & - & - & - & - & - & - \tabularnewline
39 & 4839 & - & - & - & - & - & - & - \tabularnewline
40 & 4856.7 & - & - & - & - & - & - & - \tabularnewline
41 & 4890.8 & - & - & - & - & - & - & - \tabularnewline
42 & 4902.7 & - & - & - & - & - & - & - \tabularnewline
43 & 4882.6 & - & - & - & - & - & - & - \tabularnewline
44 & 4833.8 & - & - & - & - & - & - & - \tabularnewline
45 & 4796.7 & - & - & - & - & - & - & - \tabularnewline
46 & NA & 4779.7115 & 4711.7327 & 4847.6903 & NA & 0.3121 & 0.9846 & 0.3121 \tabularnewline
47 & NA & 4776.3822 & 4642.4604 & 4910.304 & NA & NA & 0.73 & 0.3831 \tabularnewline
48 & NA & 4777.4631 & 4575.787 & 4979.1392 & NA & NA & 0.4913 & 0.4258 \tabularnewline
49 & NA & 4777.397 & 4512.9403 & 5041.8536 & NA & NA & 0.3829 & 0.4431 \tabularnewline
50 & NA & 4774.6649 & 4450.6183 & 5098.7116 & NA & NA & 0.3486 & 0.447 \tabularnewline
51 & NA & 4770.023 & 4387.2998 & 5152.7462 & NA & NA & 0.362 & 0.4457 \tabularnewline
52 & NA & 4764.6894 & 4322.0315 & 5207.3474 & NA & NA & 0.3419 & 0.4436 \tabularnewline
53 & NA & 4759.4584 & 4254.5142 & 5264.4025 & NA & NA & 0.3051 & 0.4425 \tabularnewline
54 & NA & 4754.5739 & 4184.6694 & 5324.4784 & NA & NA & 0.3052 & 0.4424 \tabularnewline
55 & NA & 4749.9562 & 4112.5336 & 5387.3788 & NA & NA & 0.3417 & 0.4429 \tabularnewline
56 & NA & 4745.4442 & 4038.1632 & 5452.7252 & NA & NA & 0.4033 & 0.4435 \tabularnewline
57 & NA & 4740.9261 & 3961.6162 & 5520.236 & NA & NA & 0.4442 & 0.4442 \tabularnewline
58 & NA & 4736.3633 & 3882.9453 & 5589.7814 & NA & NA & NA & 0.4449 \tabularnewline
59 & NA & 4731.7636 & 3802.2 & 5661.3271 & NA & NA & NA & 0.4455 \tabularnewline
60 & NA & 4727.1479 & 3719.4273 & 5734.8684 & NA & NA & NA & 0.4462 \tabularnewline
61 & NA & 4722.5319 & 3634.6715 & 5810.3923 & NA & NA & NA & 0.4468 \tabularnewline
62 & NA & 4717.9216 & 3547.974 & 5887.8692 & NA & NA & NA & 0.4475 \tabularnewline
63 & NA & 4713.3165 & 3459.3743 & 5967.2586 & NA & NA & NA & 0.4482 \tabularnewline
64 & NA & 4708.7137 & 3368.91 & 6048.5173 & NA & NA & NA & 0.4488 \tabularnewline
65 & NA & 4704.111 & 3276.6173 & 6131.6048 & NA & NA & NA & 0.4494 \tabularnewline
66 & NA & 4699.5077 & 3182.5307 & 6216.4848 & NA & NA & NA & 0.45 \tabularnewline
67 & NA & 4694.9037 & 3086.6834 & 6303.1239 & NA & NA & NA & 0.4506 \tabularnewline
68 & NA & 4690.2993 & 2989.1072 & 6391.4914 & NA & NA & NA & 0.4512 \tabularnewline
69 & NA & 4685.6949 & 2889.8322 & 6481.5576 & NA & NA & NA & 0.4518 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301146&T=1

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast[/C][/ROW]
[ROW][C]time[/C][C]Y[t][/C][C]F[t][/C][C]95% LB[/C][C]95% UB[/C][C]p-value(H0: Y[t] = F[t])[/C][C]P(F[t]>Y[t-1])[/C][C]P(F[t]>Y[t-s])[/C][C]P(F[t]>Y[45])[/C][/ROW]
[ROW][C]33[/C][C]4655.3[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]34[/C][C]4704.8[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]35[/C][C]4734.5[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]36[/C][C]4779.7[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]37[/C][C]4817.6[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]38[/C][C]4839[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]39[/C][C]4839[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]40[/C][C]4856.7[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]41[/C][C]4890.8[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]42[/C][C]4902.7[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]43[/C][C]4882.6[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]44[/C][C]4833.8[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]45[/C][C]4796.7[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]46[/C][C]NA[/C][C]4779.7115[/C][C]4711.7327[/C][C]4847.6903[/C][C]NA[/C][C]0.3121[/C][C]0.9846[/C][C]0.3121[/C][/ROW]
[ROW][C]47[/C][C]NA[/C][C]4776.3822[/C][C]4642.4604[/C][C]4910.304[/C][C]NA[/C][C]NA[/C][C]0.73[/C][C]0.3831[/C][/ROW]
[ROW][C]48[/C][C]NA[/C][C]4777.4631[/C][C]4575.787[/C][C]4979.1392[/C][C]NA[/C][C]NA[/C][C]0.4913[/C][C]0.4258[/C][/ROW]
[ROW][C]49[/C][C]NA[/C][C]4777.397[/C][C]4512.9403[/C][C]5041.8536[/C][C]NA[/C][C]NA[/C][C]0.3829[/C][C]0.4431[/C][/ROW]
[ROW][C]50[/C][C]NA[/C][C]4774.6649[/C][C]4450.6183[/C][C]5098.7116[/C][C]NA[/C][C]NA[/C][C]0.3486[/C][C]0.447[/C][/ROW]
[ROW][C]51[/C][C]NA[/C][C]4770.023[/C][C]4387.2998[/C][C]5152.7462[/C][C]NA[/C][C]NA[/C][C]0.362[/C][C]0.4457[/C][/ROW]
[ROW][C]52[/C][C]NA[/C][C]4764.6894[/C][C]4322.0315[/C][C]5207.3474[/C][C]NA[/C][C]NA[/C][C]0.3419[/C][C]0.4436[/C][/ROW]
[ROW][C]53[/C][C]NA[/C][C]4759.4584[/C][C]4254.5142[/C][C]5264.4025[/C][C]NA[/C][C]NA[/C][C]0.3051[/C][C]0.4425[/C][/ROW]
[ROW][C]54[/C][C]NA[/C][C]4754.5739[/C][C]4184.6694[/C][C]5324.4784[/C][C]NA[/C][C]NA[/C][C]0.3052[/C][C]0.4424[/C][/ROW]
[ROW][C]55[/C][C]NA[/C][C]4749.9562[/C][C]4112.5336[/C][C]5387.3788[/C][C]NA[/C][C]NA[/C][C]0.3417[/C][C]0.4429[/C][/ROW]
[ROW][C]56[/C][C]NA[/C][C]4745.4442[/C][C]4038.1632[/C][C]5452.7252[/C][C]NA[/C][C]NA[/C][C]0.4033[/C][C]0.4435[/C][/ROW]
[ROW][C]57[/C][C]NA[/C][C]4740.9261[/C][C]3961.6162[/C][C]5520.236[/C][C]NA[/C][C]NA[/C][C]0.4442[/C][C]0.4442[/C][/ROW]
[ROW][C]58[/C][C]NA[/C][C]4736.3633[/C][C]3882.9453[/C][C]5589.7814[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.4449[/C][/ROW]
[ROW][C]59[/C][C]NA[/C][C]4731.7636[/C][C]3802.2[/C][C]5661.3271[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.4455[/C][/ROW]
[ROW][C]60[/C][C]NA[/C][C]4727.1479[/C][C]3719.4273[/C][C]5734.8684[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.4462[/C][/ROW]
[ROW][C]61[/C][C]NA[/C][C]4722.5319[/C][C]3634.6715[/C][C]5810.3923[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.4468[/C][/ROW]
[ROW][C]62[/C][C]NA[/C][C]4717.9216[/C][C]3547.974[/C][C]5887.8692[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.4475[/C][/ROW]
[ROW][C]63[/C][C]NA[/C][C]4713.3165[/C][C]3459.3743[/C][C]5967.2586[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.4482[/C][/ROW]
[ROW][C]64[/C][C]NA[/C][C]4708.7137[/C][C]3368.91[/C][C]6048.5173[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.4488[/C][/ROW]
[ROW][C]65[/C][C]NA[/C][C]4704.111[/C][C]3276.6173[/C][C]6131.6048[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.4494[/C][/ROW]
[ROW][C]66[/C][C]NA[/C][C]4699.5077[/C][C]3182.5307[/C][C]6216.4848[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.45[/C][/ROW]
[ROW][C]67[/C][C]NA[/C][C]4694.9037[/C][C]3086.6834[/C][C]6303.1239[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.4506[/C][/ROW]
[ROW][C]68[/C][C]NA[/C][C]4690.2993[/C][C]2989.1072[/C][C]6391.4914[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.4512[/C][/ROW]
[ROW][C]69[/C][C]NA[/C][C]4685.6949[/C][C]2889.8322[/C][C]6481.5576[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.4518[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301146&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301146&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[45])
334655.3-------
344704.8-------
354734.5-------
364779.7-------
374817.6-------
384839-------
394839-------
404856.7-------
414890.8-------
424902.7-------
434882.6-------
444833.8-------
454796.7-------
46NA4779.71154711.73274847.6903NA0.31210.98460.3121
47NA4776.38224642.46044910.304NANA0.730.3831
48NA4777.46314575.7874979.1392NANA0.49130.4258
49NA4777.3974512.94035041.8536NANA0.38290.4431
50NA4774.66494450.61835098.7116NANA0.34860.447
51NA4770.0234387.29985152.7462NANA0.3620.4457
52NA4764.68944322.03155207.3474NANA0.34190.4436
53NA4759.45844254.51425264.4025NANA0.30510.4425
54NA4754.57394184.66945324.4784NANA0.30520.4424
55NA4749.95624112.53365387.3788NANA0.34170.4429
56NA4745.44424038.16325452.7252NANA0.40330.4435
57NA4740.92613961.61625520.236NANA0.44420.4442
58NA4736.36333882.94535589.7814NANANA0.4449
59NA4731.76363802.25661.3271NANANA0.4455
60NA4727.14793719.42735734.8684NANANA0.4462
61NA4722.53193634.67155810.3923NANANA0.4468
62NA4717.92163547.9745887.8692NANANA0.4475
63NA4713.31653459.37435967.2586NANANA0.4482
64NA4708.71373368.916048.5173NANANA0.4488
65NA4704.1113276.61736131.6048NANANA0.4494
66NA4699.50773182.53076216.4848NANANA0.45
67NA4694.90373086.68346303.1239NANANA0.4506
68NA4690.29932989.10726391.4914NANANA0.4512
69NA4685.69492889.83226481.5576NANANA0.4518







Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
460.0073NANANANA00NANA
470.0143NANANANANANANANA
480.0215NANANANANANANANA
490.0282NANANANANANANANA
500.0346NANANANANANANANA
510.0409NANANANANANANANA
520.0474NANANANANANANANA
530.0541NANANANANANANANA
540.0612NANANANANANANANA
550.0685NANANANANANANANA
560.076NANANANANANANANA
570.0839NANANANANANANANA
580.0919NANANANANANANANA
590.1002NANANANANANANANA
600.1088NANANANANANANANA
610.1175NANANANANANANANA
620.1265NANANANANANANANA
630.1357NANANANANANANANA
640.1452NANANANANANANANA
650.1548NANANANANANANANA
660.1647NANANANANANANANA
670.1748NANANANANANANANA
680.1851NANANANANANANANA
690.1955NANANANANANANANA

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast Performance \tabularnewline
time & % S.E. & PE & MAPE & sMAPE & Sq.E & MSE & RMSE & ScaledE & MASE \tabularnewline
46 & 0.0073 & NA & NA & NA & NA & 0 & 0 & NA & NA \tabularnewline
47 & 0.0143 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
48 & 0.0215 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
49 & 0.0282 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
50 & 0.0346 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
51 & 0.0409 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
52 & 0.0474 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
53 & 0.0541 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
54 & 0.0612 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
55 & 0.0685 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
56 & 0.076 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
57 & 0.0839 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
58 & 0.0919 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
59 & 0.1002 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
60 & 0.1088 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
61 & 0.1175 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
62 & 0.1265 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
63 & 0.1357 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
64 & 0.1452 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
65 & 0.1548 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
66 & 0.1647 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
67 & 0.1748 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
68 & 0.1851 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
69 & 0.1955 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301146&T=2

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast Performance[/C][/ROW]
[ROW][C]time[/C][C]% S.E.[/C][C]PE[/C][C]MAPE[/C][C]sMAPE[/C][C]Sq.E[/C][C]MSE[/C][C]RMSE[/C][C]ScaledE[/C][C]MASE[/C][/ROW]
[ROW][C]46[/C][C]0.0073[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0[/C][C]0[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]47[/C][C]0.0143[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]48[/C][C]0.0215[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]49[/C][C]0.0282[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]50[/C][C]0.0346[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]51[/C][C]0.0409[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]52[/C][C]0.0474[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]53[/C][C]0.0541[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]54[/C][C]0.0612[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]55[/C][C]0.0685[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]56[/C][C]0.076[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]57[/C][C]0.0839[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]58[/C][C]0.0919[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]59[/C][C]0.1002[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]60[/C][C]0.1088[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]61[/C][C]0.1175[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]62[/C][C]0.1265[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]63[/C][C]0.1357[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]64[/C][C]0.1452[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]65[/C][C]0.1548[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]66[/C][C]0.1647[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]67[/C][C]0.1748[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]68[/C][C]0.1851[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]69[/C][C]0.1955[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301146&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301146&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
460.0073NANANANA00NANA
470.0143NANANANANANANANA
480.0215NANANANANANANANA
490.0282NANANANANANANANA
500.0346NANANANANANANANA
510.0409NANANANANANANANA
520.0474NANANANANANANANA
530.0541NANANANANANANANA
540.0612NANANANANANANANA
550.0685NANANANANANANANA
560.076NANANANANANANANA
570.0839NANANANANANANANA
580.0919NANANANANANANANA
590.1002NANANANANANANANA
600.1088NANANANANANANANA
610.1175NANANANANANANANA
620.1265NANANANANANANANA
630.1357NANANANANANANANA
640.1452NANANANANANANANA
650.1548NANANANANANANANA
660.1647NANANANANANANANA
670.1748NANANANANANANANA
680.1851NANANANANANANANA
690.1955NANANANANANANANA



Parameters (Session):
par1 = 1 ; par2 = 1 ; par3 = 0 ; par4 = 12 ;
Parameters (R input):
par1 = 0 ; par2 = 1 ; par3 = 2 ; par4 = 0 ; par5 = 12 ; par6 = 3 ; par7 = 1 ; par8 = 0 ; par9 = 0 ; par10 = FALSE ;
R code (references can be found in the software module):
par10 <- 'FALSE'
par9 <- '0'
par8 <- '0'
par7 <- '1'
par6 <- '3'
par5 <- '12'
par4 <- '0'
par3 <- '2'
par2 <- '1'
par1 <- '10'
par1 <- as.numeric(par1) #cut off periods
par2 <- as.numeric(par2) #lambda
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #p
par7 <- as.numeric(par7) #q
par8 <- as.numeric(par8) #P
par9 <- as.numeric(par9) #Q
if (par10 == 'TRUE') par10 <- TRUE
if (par10 == 'FALSE') par10 <- FALSE
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
lx <- length(x)
first <- lx - 2*par1
nx <- lx - par1
nx1 <- nx + 1
fx <- lx - nx
if (fx < 1) {
fx <- par5*2
nx1 <- lx + fx - 1
first <- lx - 2*fx
}
first <- 1
if (fx < 3) fx <- round(lx/10,0)
(arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML'))
(forecast <- predict(arima.out,fx))
(lb <- forecast$pred - 1.96 * forecast$se)
(ub <- forecast$pred + 1.96 * forecast$se)
if (par2 == 0) {
x <- exp(x)
forecast$pred <- exp(forecast$pred)
lb <- exp(lb)
ub <- exp(ub)
}
if (par2 != 0) {
x <- x^(1/par2)
forecast$pred <- forecast$pred^(1/par2)
lb <- lb^(1/par2)
ub <- ub^(1/par2)
}
if (par2 < 0) {
olb <- lb
lb <- ub
ub <- olb
}
(actandfor <- c(x[1:nx], forecast$pred))
(perc.se <- (ub-forecast$pred)/1.96/forecast$pred)
bitmap(file='test1.png')
opar <- par(mar=c(4,4,2,2),las=1)
ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub))
plot(x,ylim=ylim,type='n',xlim=c(first,lx))
usr <- par('usr')
rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon')
rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender')
abline(h= (-3:3)*2 , col ='gray', lty =3)
polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA)
lines(nx1:lx, lb , lty=2)
lines(nx1:lx, ub , lty=2)
lines(x, lwd=2)
lines(nx1:lx, forecast$pred , lwd=2 , col ='white')
box()
par(opar)
dev.off()
prob.dec <- array(NA, dim=fx)
prob.sdec <- array(NA, dim=fx)
prob.ldec <- array(NA, dim=fx)
prob.pval <- array(NA, dim=fx)
perf.pe <- array(0, dim=fx)
perf.spe <- array(0, dim=fx)
perf.scalederr <- array(0, dim=fx)
perf.mase <- array(0, dim=fx)
perf.mase1 <- array(0, dim=fx)
perf.mape <- array(0, dim=fx)
perf.smape <- array(0, dim=fx)
perf.mape1 <- array(0, dim=fx)
perf.smape1 <- array(0,dim=fx)
perf.se <- array(0, dim=fx)
perf.mse <- array(0, dim=fx)
perf.mse1 <- array(0, dim=fx)
perf.rmse <- array(0, dim=fx)
perf.scaleddenom <- 0
for (i in 2:fx) {
perf.scaleddenom = perf.scaleddenom + abs(x[nx+i] - x[nx+i-1])
}
perf.scaleddenom = perf.scaleddenom / (fx-1)
for (i in 1:fx) {
locSD <- (ub[i] - forecast$pred[i]) / 1.96
perf.scalederr[i] = (x[nx+i] - forecast$pred[i]) / perf.scaleddenom
perf.pe[i] = (x[nx+i] - forecast$pred[i]) / x[nx+i]
perf.spe[i] = 2*(x[nx+i] - forecast$pred[i]) / (x[nx+i] + forecast$pred[i])
perf.se[i] = (x[nx+i] - forecast$pred[i])^2
prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD)
prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD)
prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD)
prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD)
}
perf.mape[1] = abs(perf.pe[1])
perf.smape[1] = abs(perf.spe[1])
perf.mape1[1] = perf.mape[1]
perf.smape1[1] = perf.smape[1]
perf.mse[1] = perf.se[1]
perf.mase[1] = abs(perf.scalederr[1])
perf.mase1[1] = perf.mase[1]
for (i in 2:fx) {
perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i])
perf.mape1[i] = perf.mape[i] / i
perf.smape[i] = perf.smape[i-1] + abs(perf.spe[i])
perf.smape1[i] = perf.smape[i] / i
perf.mse[i] = perf.mse[i-1] + perf.se[i]
perf.mse1[i] = perf.mse[i] / i
perf.mase[i] = perf.mase[i-1] + abs(perf.scalederr[i])
perf.mase1[i] = perf.mase[i] / i
}
perf.rmse = sqrt(perf.mse1)
bitmap(file='test2.png')
plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub)))
dum <- forecast$pred
dum[1:par1] <- x[(nx+1):lx]
lines(dum, lty=1)
lines(ub,lty=3)
lines(lb,lty=3)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'Y[t]',1,header=TRUE)
a<-table.element(a,'F[t]',1,header=TRUE)
a<-table.element(a,'95% LB',1,header=TRUE)
a<-table.element(a,'95% UB',1,header=TRUE)
a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE)
mylab <- paste('P(F[t]>Y[',nx,sep='')
mylab <- paste(mylab,'])',sep='')
a<-table.element(a,mylab,1,header=TRUE)
a<-table.row.end(a)
for (i in (nx-par5):nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.row.end(a)
}
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(x[nx+i],4))
a<-table.element(a,round(forecast$pred[i],4))
a<-table.element(a,round(lb[i],4))
a<-table.element(a,round(ub[i],4))
a<-table.element(a,round((1-prob.pval[i]),4))
a<-table.element(a,round((1-prob.dec[i]),4))
a<-table.element(a,round((1-prob.sdec[i]),4))
a<-table.element(a,round((1-prob.ldec[i]),4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',10,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'% S.E.',1,header=TRUE)
a<-table.element(a,'PE',1,header=TRUE)
a<-table.element(a,'MAPE',1,header=TRUE)
a<-table.element(a,'sMAPE',1,header=TRUE)
a<-table.element(a,'Sq.E',1,header=TRUE)
a<-table.element(a,'MSE',1,header=TRUE)
a<-table.element(a,'RMSE',1,header=TRUE)
a<-table.element(a,'ScaledE',1,header=TRUE)
a<-table.element(a,'MASE',1,header=TRUE)
a<-table.row.end(a)
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(perc.se[i],4))
a<-table.element(a,round(perf.pe[i],4))
a<-table.element(a,round(perf.mape1[i],4))
a<-table.element(a,round(perf.smape1[i],4))
a<-table.element(a,round(perf.se[i],4))
a<-table.element(a,round(perf.mse1[i],4))
a<-table.element(a,round(perf.rmse[i],4))
a<-table.element(a,round(perf.scalederr[i],4))
a<-table.element(a,round(perf.mase1[i],4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')