Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimaforecasting.wasp
Title produced by softwareARIMA Forecasting
Date of computationSun, 18 Dec 2016 16:35:48 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/18/t14820754355tsq4abeffsajpd.htm/, Retrieved Fri, 01 Nov 2024 03:30:39 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=301142, Retrieved Fri, 01 Nov 2024 03:30:39 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact104
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [ARIMA Forecasting] [] [2016-12-18 15:35:48] [94ac3c9a028ddd47e8862e80eac9f626] [Current]
Feedback Forum

Post a new message
Dataseries X:
3830.8
3732.6
3733.5
3808.5
3860.5
3844.4
3864.5
3803.1
3756.1
3771.1
3754.4
3759.6
3783.5
3886.5
3944.4
4012.1
4089.5
4144
4166.4
4194.2
4221.8
4254.8
4309
4333.5
4390.5
4387.7
4412.6
4427.1
4460
4515.3
4559.3
4625.5
4655.3
4704.8
4734.5
4779.7
4817.6
4839
4839
4856.7
4890.8
4902.7
4882.6
4833.8
4796.7




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301142&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=301142&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301142&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[31])
194166.4-------
204194.2-------
214221.8-------
224254.8-------
234309-------
244333.5-------
254390.5-------
264387.7-------
274412.6-------
284427.1-------
294460-------
304515.3-------
314559.3-------
324625.54597.29934520.78524673.81350.2350.834810.8348
334655.34631.02974484.44154777.61790.37280.529510.8312
344704.84664.16714450.31664878.01760.35480.53240.99990.8318
354734.54697.84674423.15464972.53870.39680.48020.99720.8386
364779.74732.22074400.36135064.08020.38960.49460.99070.8464
374817.64766.94654378.87265155.02050.3990.47430.97140.8529
3848394801.74584356.54915246.94250.43490.47220.96580.8571
3948394836.49324332.45465340.53170.49610.49610.95040.8595
404856.74871.17844306.38765435.96930.480.54450.93840.8604
414890.84905.83054278.43545533.22560.48130.5610.91820.8605
424902.74940.47554248.71565632.23550.45740.5560.88580.8599
434882.64975.1254217.29615732.9540.40540.57430.85890.8589
444833.85009.78024184.20335835.35710.3380.61870.81920.8576
454796.75044.43854149.44825939.42890.29370.67770.80290.856

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast \tabularnewline
time & Y[t] & F[t] & 95% LB & 95% UB & p-value(H0: Y[t] = F[t]) & P(F[t]>Y[t-1]) & P(F[t]>Y[t-s]) & P(F[t]>Y[31]) \tabularnewline
19 & 4166.4 & - & - & - & - & - & - & - \tabularnewline
20 & 4194.2 & - & - & - & - & - & - & - \tabularnewline
21 & 4221.8 & - & - & - & - & - & - & - \tabularnewline
22 & 4254.8 & - & - & - & - & - & - & - \tabularnewline
23 & 4309 & - & - & - & - & - & - & - \tabularnewline
24 & 4333.5 & - & - & - & - & - & - & - \tabularnewline
25 & 4390.5 & - & - & - & - & - & - & - \tabularnewline
26 & 4387.7 & - & - & - & - & - & - & - \tabularnewline
27 & 4412.6 & - & - & - & - & - & - & - \tabularnewline
28 & 4427.1 & - & - & - & - & - & - & - \tabularnewline
29 & 4460 & - & - & - & - & - & - & - \tabularnewline
30 & 4515.3 & - & - & - & - & - & - & - \tabularnewline
31 & 4559.3 & - & - & - & - & - & - & - \tabularnewline
32 & 4625.5 & 4597.2993 & 4520.7852 & 4673.8135 & 0.235 & 0.8348 & 1 & 0.8348 \tabularnewline
33 & 4655.3 & 4631.0297 & 4484.4415 & 4777.6179 & 0.3728 & 0.5295 & 1 & 0.8312 \tabularnewline
34 & 4704.8 & 4664.1671 & 4450.3166 & 4878.0176 & 0.3548 & 0.5324 & 0.9999 & 0.8318 \tabularnewline
35 & 4734.5 & 4697.8467 & 4423.1546 & 4972.5387 & 0.3968 & 0.4802 & 0.9972 & 0.8386 \tabularnewline
36 & 4779.7 & 4732.2207 & 4400.3613 & 5064.0802 & 0.3896 & 0.4946 & 0.9907 & 0.8464 \tabularnewline
37 & 4817.6 & 4766.9465 & 4378.8726 & 5155.0205 & 0.399 & 0.4743 & 0.9714 & 0.8529 \tabularnewline
38 & 4839 & 4801.7458 & 4356.5491 & 5246.9425 & 0.4349 & 0.4722 & 0.9658 & 0.8571 \tabularnewline
39 & 4839 & 4836.4932 & 4332.4546 & 5340.5317 & 0.4961 & 0.4961 & 0.9504 & 0.8595 \tabularnewline
40 & 4856.7 & 4871.1784 & 4306.3876 & 5435.9693 & 0.48 & 0.5445 & 0.9384 & 0.8604 \tabularnewline
41 & 4890.8 & 4905.8305 & 4278.4354 & 5533.2256 & 0.4813 & 0.561 & 0.9182 & 0.8605 \tabularnewline
42 & 4902.7 & 4940.4755 & 4248.7156 & 5632.2355 & 0.4574 & 0.556 & 0.8858 & 0.8599 \tabularnewline
43 & 4882.6 & 4975.125 & 4217.2961 & 5732.954 & 0.4054 & 0.5743 & 0.8589 & 0.8589 \tabularnewline
44 & 4833.8 & 5009.7802 & 4184.2033 & 5835.3571 & 0.338 & 0.6187 & 0.8192 & 0.8576 \tabularnewline
45 & 4796.7 & 5044.4385 & 4149.4482 & 5939.4289 & 0.2937 & 0.6777 & 0.8029 & 0.856 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301142&T=1

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast[/C][/ROW]
[ROW][C]time[/C][C]Y[t][/C][C]F[t][/C][C]95% LB[/C][C]95% UB[/C][C]p-value(H0: Y[t] = F[t])[/C][C]P(F[t]>Y[t-1])[/C][C]P(F[t]>Y[t-s])[/C][C]P(F[t]>Y[31])[/C][/ROW]
[ROW][C]19[/C][C]4166.4[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]20[/C][C]4194.2[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]21[/C][C]4221.8[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]22[/C][C]4254.8[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]23[/C][C]4309[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]24[/C][C]4333.5[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]25[/C][C]4390.5[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]26[/C][C]4387.7[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]27[/C][C]4412.6[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]28[/C][C]4427.1[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]29[/C][C]4460[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]30[/C][C]4515.3[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]31[/C][C]4559.3[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]32[/C][C]4625.5[/C][C]4597.2993[/C][C]4520.7852[/C][C]4673.8135[/C][C]0.235[/C][C]0.8348[/C][C]1[/C][C]0.8348[/C][/ROW]
[ROW][C]33[/C][C]4655.3[/C][C]4631.0297[/C][C]4484.4415[/C][C]4777.6179[/C][C]0.3728[/C][C]0.5295[/C][C]1[/C][C]0.8312[/C][/ROW]
[ROW][C]34[/C][C]4704.8[/C][C]4664.1671[/C][C]4450.3166[/C][C]4878.0176[/C][C]0.3548[/C][C]0.5324[/C][C]0.9999[/C][C]0.8318[/C][/ROW]
[ROW][C]35[/C][C]4734.5[/C][C]4697.8467[/C][C]4423.1546[/C][C]4972.5387[/C][C]0.3968[/C][C]0.4802[/C][C]0.9972[/C][C]0.8386[/C][/ROW]
[ROW][C]36[/C][C]4779.7[/C][C]4732.2207[/C][C]4400.3613[/C][C]5064.0802[/C][C]0.3896[/C][C]0.4946[/C][C]0.9907[/C][C]0.8464[/C][/ROW]
[ROW][C]37[/C][C]4817.6[/C][C]4766.9465[/C][C]4378.8726[/C][C]5155.0205[/C][C]0.399[/C][C]0.4743[/C][C]0.9714[/C][C]0.8529[/C][/ROW]
[ROW][C]38[/C][C]4839[/C][C]4801.7458[/C][C]4356.5491[/C][C]5246.9425[/C][C]0.4349[/C][C]0.4722[/C][C]0.9658[/C][C]0.8571[/C][/ROW]
[ROW][C]39[/C][C]4839[/C][C]4836.4932[/C][C]4332.4546[/C][C]5340.5317[/C][C]0.4961[/C][C]0.4961[/C][C]0.9504[/C][C]0.8595[/C][/ROW]
[ROW][C]40[/C][C]4856.7[/C][C]4871.1784[/C][C]4306.3876[/C][C]5435.9693[/C][C]0.48[/C][C]0.5445[/C][C]0.9384[/C][C]0.8604[/C][/ROW]
[ROW][C]41[/C][C]4890.8[/C][C]4905.8305[/C][C]4278.4354[/C][C]5533.2256[/C][C]0.4813[/C][C]0.561[/C][C]0.9182[/C][C]0.8605[/C][/ROW]
[ROW][C]42[/C][C]4902.7[/C][C]4940.4755[/C][C]4248.7156[/C][C]5632.2355[/C][C]0.4574[/C][C]0.556[/C][C]0.8858[/C][C]0.8599[/C][/ROW]
[ROW][C]43[/C][C]4882.6[/C][C]4975.125[/C][C]4217.2961[/C][C]5732.954[/C][C]0.4054[/C][C]0.5743[/C][C]0.8589[/C][C]0.8589[/C][/ROW]
[ROW][C]44[/C][C]4833.8[/C][C]5009.7802[/C][C]4184.2033[/C][C]5835.3571[/C][C]0.338[/C][C]0.6187[/C][C]0.8192[/C][C]0.8576[/C][/ROW]
[ROW][C]45[/C][C]4796.7[/C][C]5044.4385[/C][C]4149.4482[/C][C]5939.4289[/C][C]0.2937[/C][C]0.6777[/C][C]0.8029[/C][C]0.856[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301142&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301142&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[31])
194166.4-------
204194.2-------
214221.8-------
224254.8-------
234309-------
244333.5-------
254390.5-------
264387.7-------
274412.6-------
284427.1-------
294460-------
304515.3-------
314559.3-------
324625.54597.29934520.78524673.81350.2350.834810.8348
334655.34631.02974484.44154777.61790.37280.529510.8312
344704.84664.16714450.31664878.01760.35480.53240.99990.8318
354734.54697.84674423.15464972.53870.39680.48020.99720.8386
364779.74732.22074400.36135064.08020.38960.49460.99070.8464
374817.64766.94654378.87265155.02050.3990.47430.97140.8529
3848394801.74584356.54915246.94250.43490.47220.96580.8571
3948394836.49324332.45465340.53170.49610.49610.95040.8595
404856.74871.17844306.38765435.96930.480.54450.93840.8604
414890.84905.83054278.43545533.22560.48130.5610.91820.8605
424902.74940.47554248.71565632.23550.45740.5560.88580.8599
434882.64975.1254217.29615732.9540.40540.57430.85890.8589
444833.85009.78024184.20335835.35710.3380.61870.81920.8576
454796.75044.43854149.44825939.42890.29370.67770.80290.856







Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
320.00850.00610.00610.0061795.2788000.95670.9567
330.01610.00520.00570.0057589.048692.163426.3090.82340.89
340.02340.00860.00660.00671651.03271011.786531.80861.37851.0528
350.02980.00770.00690.00691343.4671094.706633.08641.24351.1005
360.03580.00990.00750.00762254.28191326.621736.42281.61071.2025
370.04150.01050.0080.00812565.77461533.147239.15541.71841.2885
380.04730.00770.0080.0081387.87621512.394238.88951.26381.285
390.05325e-040.0070.00716.28421324.130436.38860.0851.135
400.0592-0.0030.00660.0066209.62481200.296534.6453-0.49121.0635
410.0652-0.00310.00620.0063225.9161102.858433.2093-0.50991.0081
420.0714-0.00770.00640.00641426.98931132.324933.65-1.28151.033
430.0777-0.01890.00740.00748560.8821751.371341.8494-3.13891.2085
440.0841-0.03640.00970.009630969.04623998.884763.2367-5.97011.5747
450.0905-0.05160.01270.012561374.38268097.134689.9841-8.40452.0626

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast Performance \tabularnewline
time & % S.E. & PE & MAPE & sMAPE & Sq.E & MSE & RMSE & ScaledE & MASE \tabularnewline
32 & 0.0085 & 0.0061 & 0.0061 & 0.0061 & 795.2788 & 0 & 0 & 0.9567 & 0.9567 \tabularnewline
33 & 0.0161 & 0.0052 & 0.0057 & 0.0057 & 589.048 & 692.1634 & 26.309 & 0.8234 & 0.89 \tabularnewline
34 & 0.0234 & 0.0086 & 0.0066 & 0.0067 & 1651.0327 & 1011.7865 & 31.8086 & 1.3785 & 1.0528 \tabularnewline
35 & 0.0298 & 0.0077 & 0.0069 & 0.0069 & 1343.467 & 1094.7066 & 33.0864 & 1.2435 & 1.1005 \tabularnewline
36 & 0.0358 & 0.0099 & 0.0075 & 0.0076 & 2254.2819 & 1326.6217 & 36.4228 & 1.6107 & 1.2025 \tabularnewline
37 & 0.0415 & 0.0105 & 0.008 & 0.0081 & 2565.7746 & 1533.1472 & 39.1554 & 1.7184 & 1.2885 \tabularnewline
38 & 0.0473 & 0.0077 & 0.008 & 0.008 & 1387.8762 & 1512.3942 & 38.8895 & 1.2638 & 1.285 \tabularnewline
39 & 0.0532 & 5e-04 & 0.007 & 0.0071 & 6.2842 & 1324.1304 & 36.3886 & 0.085 & 1.135 \tabularnewline
40 & 0.0592 & -0.003 & 0.0066 & 0.0066 & 209.6248 & 1200.2965 & 34.6453 & -0.4912 & 1.0635 \tabularnewline
41 & 0.0652 & -0.0031 & 0.0062 & 0.0063 & 225.916 & 1102.8584 & 33.2093 & -0.5099 & 1.0081 \tabularnewline
42 & 0.0714 & -0.0077 & 0.0064 & 0.0064 & 1426.9893 & 1132.3249 & 33.65 & -1.2815 & 1.033 \tabularnewline
43 & 0.0777 & -0.0189 & 0.0074 & 0.0074 & 8560.882 & 1751.3713 & 41.8494 & -3.1389 & 1.2085 \tabularnewline
44 & 0.0841 & -0.0364 & 0.0097 & 0.0096 & 30969.0462 & 3998.8847 & 63.2367 & -5.9701 & 1.5747 \tabularnewline
45 & 0.0905 & -0.0516 & 0.0127 & 0.0125 & 61374.3826 & 8097.1346 & 89.9841 & -8.4045 & 2.0626 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301142&T=2

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast Performance[/C][/ROW]
[ROW][C]time[/C][C]% S.E.[/C][C]PE[/C][C]MAPE[/C][C]sMAPE[/C][C]Sq.E[/C][C]MSE[/C][C]RMSE[/C][C]ScaledE[/C][C]MASE[/C][/ROW]
[ROW][C]32[/C][C]0.0085[/C][C]0.0061[/C][C]0.0061[/C][C]0.0061[/C][C]795.2788[/C][C]0[/C][C]0[/C][C]0.9567[/C][C]0.9567[/C][/ROW]
[ROW][C]33[/C][C]0.0161[/C][C]0.0052[/C][C]0.0057[/C][C]0.0057[/C][C]589.048[/C][C]692.1634[/C][C]26.309[/C][C]0.8234[/C][C]0.89[/C][/ROW]
[ROW][C]34[/C][C]0.0234[/C][C]0.0086[/C][C]0.0066[/C][C]0.0067[/C][C]1651.0327[/C][C]1011.7865[/C][C]31.8086[/C][C]1.3785[/C][C]1.0528[/C][/ROW]
[ROW][C]35[/C][C]0.0298[/C][C]0.0077[/C][C]0.0069[/C][C]0.0069[/C][C]1343.467[/C][C]1094.7066[/C][C]33.0864[/C][C]1.2435[/C][C]1.1005[/C][/ROW]
[ROW][C]36[/C][C]0.0358[/C][C]0.0099[/C][C]0.0075[/C][C]0.0076[/C][C]2254.2819[/C][C]1326.6217[/C][C]36.4228[/C][C]1.6107[/C][C]1.2025[/C][/ROW]
[ROW][C]37[/C][C]0.0415[/C][C]0.0105[/C][C]0.008[/C][C]0.0081[/C][C]2565.7746[/C][C]1533.1472[/C][C]39.1554[/C][C]1.7184[/C][C]1.2885[/C][/ROW]
[ROW][C]38[/C][C]0.0473[/C][C]0.0077[/C][C]0.008[/C][C]0.008[/C][C]1387.8762[/C][C]1512.3942[/C][C]38.8895[/C][C]1.2638[/C][C]1.285[/C][/ROW]
[ROW][C]39[/C][C]0.0532[/C][C]5e-04[/C][C]0.007[/C][C]0.0071[/C][C]6.2842[/C][C]1324.1304[/C][C]36.3886[/C][C]0.085[/C][C]1.135[/C][/ROW]
[ROW][C]40[/C][C]0.0592[/C][C]-0.003[/C][C]0.0066[/C][C]0.0066[/C][C]209.6248[/C][C]1200.2965[/C][C]34.6453[/C][C]-0.4912[/C][C]1.0635[/C][/ROW]
[ROW][C]41[/C][C]0.0652[/C][C]-0.0031[/C][C]0.0062[/C][C]0.0063[/C][C]225.916[/C][C]1102.8584[/C][C]33.2093[/C][C]-0.5099[/C][C]1.0081[/C][/ROW]
[ROW][C]42[/C][C]0.0714[/C][C]-0.0077[/C][C]0.0064[/C][C]0.0064[/C][C]1426.9893[/C][C]1132.3249[/C][C]33.65[/C][C]-1.2815[/C][C]1.033[/C][/ROW]
[ROW][C]43[/C][C]0.0777[/C][C]-0.0189[/C][C]0.0074[/C][C]0.0074[/C][C]8560.882[/C][C]1751.3713[/C][C]41.8494[/C][C]-3.1389[/C][C]1.2085[/C][/ROW]
[ROW][C]44[/C][C]0.0841[/C][C]-0.0364[/C][C]0.0097[/C][C]0.0096[/C][C]30969.0462[/C][C]3998.8847[/C][C]63.2367[/C][C]-5.9701[/C][C]1.5747[/C][/ROW]
[ROW][C]45[/C][C]0.0905[/C][C]-0.0516[/C][C]0.0127[/C][C]0.0125[/C][C]61374.3826[/C][C]8097.1346[/C][C]89.9841[/C][C]-8.4045[/C][C]2.0626[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301142&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301142&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
320.00850.00610.00610.0061795.2788000.95670.9567
330.01610.00520.00570.0057589.048692.163426.3090.82340.89
340.02340.00860.00660.00671651.03271011.786531.80861.37851.0528
350.02980.00770.00690.00691343.4671094.706633.08641.24351.1005
360.03580.00990.00750.00762254.28191326.621736.42281.61071.2025
370.04150.01050.0080.00812565.77461533.147239.15541.71841.2885
380.04730.00770.0080.0081387.87621512.394238.88951.26381.285
390.05325e-040.0070.00716.28421324.130436.38860.0851.135
400.0592-0.0030.00660.0066209.62481200.296534.6453-0.49121.0635
410.0652-0.00310.00620.0063225.9161102.858433.2093-0.50991.0081
420.0714-0.00770.00640.00641426.98931132.324933.65-1.28151.033
430.0777-0.01890.00740.00748560.8821751.371341.8494-3.13891.2085
440.0841-0.03640.00970.009630969.04623998.884763.2367-5.97011.5747
450.0905-0.05160.01270.012561374.38268097.134689.9841-8.40452.0626



Parameters (Session):
par1 = 1 ; par2 = 1 ; par3 = 0 ; par4 = 12 ;
Parameters (R input):
par1 = 14 ; par2 = 1 ; par3 = 2 ; par4 = 0 ; par5 = 12 ; par6 = 3 ; par7 = 1 ; par8 = 0 ; par9 = 0 ; par10 = FALSE ;
R code (references can be found in the software module):
par10 <- 'FALSE'
par9 <- '0'
par8 <- '0'
par7 <- '1'
par6 <- '3'
par5 <- '12'
par4 <- '0'
par3 <- '2'
par2 <- '1'
par1 <- '1'
par1 <- as.numeric(par1) #cut off periods
par2 <- as.numeric(par2) #lambda
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #p
par7 <- as.numeric(par7) #q
par8 <- as.numeric(par8) #P
par9 <- as.numeric(par9) #Q
if (par10 == 'TRUE') par10 <- TRUE
if (par10 == 'FALSE') par10 <- FALSE
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
lx <- length(x)
first <- lx - 2*par1
nx <- lx - par1
nx1 <- nx + 1
fx <- lx - nx
if (fx < 1) {
fx <- par5*2
nx1 <- lx + fx - 1
first <- lx - 2*fx
}
first <- 1
if (fx < 3) fx <- round(lx/10,0)
(arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML'))
(forecast <- predict(arima.out,fx))
(lb <- forecast$pred - 1.96 * forecast$se)
(ub <- forecast$pred + 1.96 * forecast$se)
if (par2 == 0) {
x <- exp(x)
forecast$pred <- exp(forecast$pred)
lb <- exp(lb)
ub <- exp(ub)
}
if (par2 != 0) {
x <- x^(1/par2)
forecast$pred <- forecast$pred^(1/par2)
lb <- lb^(1/par2)
ub <- ub^(1/par2)
}
if (par2 < 0) {
olb <- lb
lb <- ub
ub <- olb
}
(actandfor <- c(x[1:nx], forecast$pred))
(perc.se <- (ub-forecast$pred)/1.96/forecast$pred)
bitmap(file='test1.png')
opar <- par(mar=c(4,4,2,2),las=1)
ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub))
plot(x,ylim=ylim,type='n',xlim=c(first,lx))
usr <- par('usr')
rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon')
rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender')
abline(h= (-3:3)*2 , col ='gray', lty =3)
polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA)
lines(nx1:lx, lb , lty=2)
lines(nx1:lx, ub , lty=2)
lines(x, lwd=2)
lines(nx1:lx, forecast$pred , lwd=2 , col ='white')
box()
par(opar)
dev.off()
prob.dec <- array(NA, dim=fx)
prob.sdec <- array(NA, dim=fx)
prob.ldec <- array(NA, dim=fx)
prob.pval <- array(NA, dim=fx)
perf.pe <- array(0, dim=fx)
perf.spe <- array(0, dim=fx)
perf.scalederr <- array(0, dim=fx)
perf.mase <- array(0, dim=fx)
perf.mase1 <- array(0, dim=fx)
perf.mape <- array(0, dim=fx)
perf.smape <- array(0, dim=fx)
perf.mape1 <- array(0, dim=fx)
perf.smape1 <- array(0,dim=fx)
perf.se <- array(0, dim=fx)
perf.mse <- array(0, dim=fx)
perf.mse1 <- array(0, dim=fx)
perf.rmse <- array(0, dim=fx)
perf.scaleddenom <- 0
for (i in 2:fx) {
perf.scaleddenom = perf.scaleddenom + abs(x[nx+i] - x[nx+i-1])
}
perf.scaleddenom = perf.scaleddenom / (fx-1)
for (i in 1:fx) {
locSD <- (ub[i] - forecast$pred[i]) / 1.96
perf.scalederr[i] = (x[nx+i] - forecast$pred[i]) / perf.scaleddenom
perf.pe[i] = (x[nx+i] - forecast$pred[i]) / x[nx+i]
perf.spe[i] = 2*(x[nx+i] - forecast$pred[i]) / (x[nx+i] + forecast$pred[i])
perf.se[i] = (x[nx+i] - forecast$pred[i])^2
prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD)
prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD)
prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD)
prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD)
}
perf.mape[1] = abs(perf.pe[1])
perf.smape[1] = abs(perf.spe[1])
perf.mape1[1] = perf.mape[1]
perf.smape1[1] = perf.smape[1]
perf.mse[1] = perf.se[1]
perf.mase[1] = abs(perf.scalederr[1])
perf.mase1[1] = perf.mase[1]
for (i in 2:fx) {
perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i])
perf.mape1[i] = perf.mape[i] / i
perf.smape[i] = perf.smape[i-1] + abs(perf.spe[i])
perf.smape1[i] = perf.smape[i] / i
perf.mse[i] = perf.mse[i-1] + perf.se[i]
perf.mse1[i] = perf.mse[i] / i
perf.mase[i] = perf.mase[i-1] + abs(perf.scalederr[i])
perf.mase1[i] = perf.mase[i] / i
}
perf.rmse = sqrt(perf.mse1)
bitmap(file='test2.png')
plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub)))
dum <- forecast$pred
dum[1:par1] <- x[(nx+1):lx]
lines(dum, lty=1)
lines(ub,lty=3)
lines(lb,lty=3)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'Y[t]',1,header=TRUE)
a<-table.element(a,'F[t]',1,header=TRUE)
a<-table.element(a,'95% LB',1,header=TRUE)
a<-table.element(a,'95% UB',1,header=TRUE)
a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE)
mylab <- paste('P(F[t]>Y[',nx,sep='')
mylab <- paste(mylab,'])',sep='')
a<-table.element(a,mylab,1,header=TRUE)
a<-table.row.end(a)
for (i in (nx-par5):nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.row.end(a)
}
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(x[nx+i],4))
a<-table.element(a,round(forecast$pred[i],4))
a<-table.element(a,round(lb[i],4))
a<-table.element(a,round(ub[i],4))
a<-table.element(a,round((1-prob.pval[i]),4))
a<-table.element(a,round((1-prob.dec[i]),4))
a<-table.element(a,round((1-prob.sdec[i]),4))
a<-table.element(a,round((1-prob.ldec[i]),4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',10,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'% S.E.',1,header=TRUE)
a<-table.element(a,'PE',1,header=TRUE)
a<-table.element(a,'MAPE',1,header=TRUE)
a<-table.element(a,'sMAPE',1,header=TRUE)
a<-table.element(a,'Sq.E',1,header=TRUE)
a<-table.element(a,'MSE',1,header=TRUE)
a<-table.element(a,'RMSE',1,header=TRUE)
a<-table.element(a,'ScaledE',1,header=TRUE)
a<-table.element(a,'MASE',1,header=TRUE)
a<-table.row.end(a)
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(perc.se[i],4))
a<-table.element(a,round(perf.pe[i],4))
a<-table.element(a,round(perf.mape1[i],4))
a<-table.element(a,round(perf.smape1[i],4))
a<-table.element(a,round(perf.se[i],4))
a<-table.element(a,round(perf.mse1[i],4))
a<-table.element(a,round(perf.rmse[i],4))
a<-table.element(a,round(perf.scalederr[i],4))
a<-table.element(a,round(perf.mase1[i],4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')