Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimabackwardselection.wasp
Title produced by softwareARIMA Backward Selection
Date of computationSun, 18 Dec 2016 16:28:28 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/18/t1482074925ypzgsx89wif785k.htm/, Retrieved Fri, 01 Nov 2024 03:36:10 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=301137, Retrieved Fri, 01 Nov 2024 03:36:10 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact85
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [ARIMA Backward Selection] [] [2016-12-18 15:28:28] [94ac3c9a028ddd47e8862e80eac9f626] [Current]
Feedback Forum

Post a new message
Dataseries X:
3830.8
3732.6
3733.5
3808.5
3860.5
3844.4
3864.5
3803.1
3756.1
3771.1
3754.4
3759.6
3783.5
3886.5
3944.4
4012.1
4089.5
4144
4166.4
4194.2
4221.8
4254.8
4309
4333.5
4390.5
4387.7
4412.6
4427.1
4460
4515.3
4559.3
4625.5
4655.3
4704.8
4734.5
4779.7
4817.6
4839
4839
4856.7
4890.8
4902.7
4882.6
4833.8
4796.7




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301137&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=301137&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301137&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2ar3ma1
Estimates ( 1 )0.489-0.0286-0.1449-0.7916
(p-val)(0.0433 )(0.8807 )(0.4766 )(2e-04 )
Estimates ( 2 )0.48780-0.1507-0.7986
(p-val)(0.0411 )(NA )(0.4507 )(1e-04 )
Estimates ( 3 )0.627200-1
(p-val)(3e-04 )(NA )(NA )(0 )
Estimates ( 4 )NANANANA
(p-val)(NA )(NA )(NA )(NA )
Estimates ( 5 )NANANANA
(p-val)(NA )(NA )(NA )(NA )
Estimates ( 6 )NANANANA
(p-val)(NA )(NA )(NA )(NA )
Estimates ( 7 )NANANANA
(p-val)(NA )(NA )(NA )(NA )

\begin{tabular}{lllllllll}
\hline
ARIMA Parameter Estimation and Backward Selection \tabularnewline
Iteration & ar1 & ar2 & ar3 & ma1 \tabularnewline
Estimates ( 1 ) & 0.489 & -0.0286 & -0.1449 & -0.7916 \tabularnewline
(p-val) & (0.0433 ) & (0.8807 ) & (0.4766 ) & (2e-04 ) \tabularnewline
Estimates ( 2 ) & 0.4878 & 0 & -0.1507 & -0.7986 \tabularnewline
(p-val) & (0.0411 ) & (NA ) & (0.4507 ) & (1e-04 ) \tabularnewline
Estimates ( 3 ) & 0.6272 & 0 & 0 & -1 \tabularnewline
(p-val) & (3e-04 ) & (NA ) & (NA ) & (0 ) \tabularnewline
Estimates ( 4 ) & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 5 ) & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 6 ) & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 7 ) & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301137&T=1

[TABLE]
[ROW][C]ARIMA Parameter Estimation and Backward Selection[/C][/ROW]
[ROW][C]Iteration[/C][C]ar1[/C][C]ar2[/C][C]ar3[/C][C]ma1[/C][/ROW]
[ROW][C]Estimates ( 1 )[/C][C]0.489[/C][C]-0.0286[/C][C]-0.1449[/C][C]-0.7916[/C][/ROW]
[ROW][C](p-val)[/C][C](0.0433 )[/C][C](0.8807 )[/C][C](0.4766 )[/C][C](2e-04 )[/C][/ROW]
[ROW][C]Estimates ( 2 )[/C][C]0.4878[/C][C]0[/C][C]-0.1507[/C][C]-0.7986[/C][/ROW]
[ROW][C](p-val)[/C][C](0.0411 )[/C][C](NA )[/C][C](0.4507 )[/C][C](1e-04 )[/C][/ROW]
[ROW][C]Estimates ( 3 )[/C][C]0.6272[/C][C]0[/C][C]0[/C][C]-1[/C][/ROW]
[ROW][C](p-val)[/C][C](3e-04 )[/C][C](NA )[/C][C](NA )[/C][C](0 )[/C][/ROW]
[ROW][C]Estimates ( 4 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 5 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 6 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 7 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301137&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301137&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2ar3ma1
Estimates ( 1 )0.489-0.0286-0.1449-0.7916
(p-val)(0.0433 )(0.8807 )(0.4766 )(2e-04 )
Estimates ( 2 )0.48780-0.1507-0.7986
(p-val)(0.0411 )(NA )(0.4507 )(1e-04 )
Estimates ( 3 )0.627200-1
(p-val)(3e-04 )(NA )(NA )(0 )
Estimates ( 4 )NANANANA
(p-val)(NA )(NA )(NA )(NA )
Estimates ( 5 )NANANANA
(p-val)(NA )(NA )(NA )(NA )
Estimates ( 6 )NANANANA
(p-val)(NA )(NA )(NA )(NA )
Estimates ( 7 )NANANANA
(p-val)(NA )(NA )(NA )(NA )







Estimated ARIMA Residuals
Value
-5.35912386230164
91.3915629062655
86.4335781251373
1.42644599426172
-39.4871069144224
49.0894273075297
-63.4113524568723
-6.05758932186139
55.3547706821866
-30.1477705921447
15.5029090212155
29.6807192685256
88.7993404772555
-9.52184133201852
27.0077322950012
38.3952602369846
-3.77464873553253
-22.4651579393613
4.58062825284759
-2.62796914975106
-1.43959030600598
18.2302858527882
-25.51258303415
27.4270455844788
-50.5542527017571
12.0204539918847
-9.41280571759926
6.9418974055601
23.1442369233408
-5.31137339443152
26.2437416174829
-22.8945050371408
17.4683389602137
-12.1129216942113
9.99783045297864
-3.90682237726585
-19.0438152243453
-26.2232022279171
6.09683493363784
10.1482682583023
-25.3209669420849
-38.7240461633511
-41.543136008191
-10.8223809225357

\begin{tabular}{lllllllll}
\hline
Estimated ARIMA Residuals \tabularnewline
Value \tabularnewline
-5.35912386230164 \tabularnewline
91.3915629062655 \tabularnewline
86.4335781251373 \tabularnewline
1.42644599426172 \tabularnewline
-39.4871069144224 \tabularnewline
49.0894273075297 \tabularnewline
-63.4113524568723 \tabularnewline
-6.05758932186139 \tabularnewline
55.3547706821866 \tabularnewline
-30.1477705921447 \tabularnewline
15.5029090212155 \tabularnewline
29.6807192685256 \tabularnewline
88.7993404772555 \tabularnewline
-9.52184133201852 \tabularnewline
27.0077322950012 \tabularnewline
38.3952602369846 \tabularnewline
-3.77464873553253 \tabularnewline
-22.4651579393613 \tabularnewline
4.58062825284759 \tabularnewline
-2.62796914975106 \tabularnewline
-1.43959030600598 \tabularnewline
18.2302858527882 \tabularnewline
-25.51258303415 \tabularnewline
27.4270455844788 \tabularnewline
-50.5542527017571 \tabularnewline
12.0204539918847 \tabularnewline
-9.41280571759926 \tabularnewline
6.9418974055601 \tabularnewline
23.1442369233408 \tabularnewline
-5.31137339443152 \tabularnewline
26.2437416174829 \tabularnewline
-22.8945050371408 \tabularnewline
17.4683389602137 \tabularnewline
-12.1129216942113 \tabularnewline
9.99783045297864 \tabularnewline
-3.90682237726585 \tabularnewline
-19.0438152243453 \tabularnewline
-26.2232022279171 \tabularnewline
6.09683493363784 \tabularnewline
10.1482682583023 \tabularnewline
-25.3209669420849 \tabularnewline
-38.7240461633511 \tabularnewline
-41.543136008191 \tabularnewline
-10.8223809225357 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301137&T=2

[TABLE]
[ROW][C]Estimated ARIMA Residuals[/C][/ROW]
[ROW][C]Value[/C][/ROW]
[ROW][C]-5.35912386230164[/C][/ROW]
[ROW][C]91.3915629062655[/C][/ROW]
[ROW][C]86.4335781251373[/C][/ROW]
[ROW][C]1.42644599426172[/C][/ROW]
[ROW][C]-39.4871069144224[/C][/ROW]
[ROW][C]49.0894273075297[/C][/ROW]
[ROW][C]-63.4113524568723[/C][/ROW]
[ROW][C]-6.05758932186139[/C][/ROW]
[ROW][C]55.3547706821866[/C][/ROW]
[ROW][C]-30.1477705921447[/C][/ROW]
[ROW][C]15.5029090212155[/C][/ROW]
[ROW][C]29.6807192685256[/C][/ROW]
[ROW][C]88.7993404772555[/C][/ROW]
[ROW][C]-9.52184133201852[/C][/ROW]
[ROW][C]27.0077322950012[/C][/ROW]
[ROW][C]38.3952602369846[/C][/ROW]
[ROW][C]-3.77464873553253[/C][/ROW]
[ROW][C]-22.4651579393613[/C][/ROW]
[ROW][C]4.58062825284759[/C][/ROW]
[ROW][C]-2.62796914975106[/C][/ROW]
[ROW][C]-1.43959030600598[/C][/ROW]
[ROW][C]18.2302858527882[/C][/ROW]
[ROW][C]-25.51258303415[/C][/ROW]
[ROW][C]27.4270455844788[/C][/ROW]
[ROW][C]-50.5542527017571[/C][/ROW]
[ROW][C]12.0204539918847[/C][/ROW]
[ROW][C]-9.41280571759926[/C][/ROW]
[ROW][C]6.9418974055601[/C][/ROW]
[ROW][C]23.1442369233408[/C][/ROW]
[ROW][C]-5.31137339443152[/C][/ROW]
[ROW][C]26.2437416174829[/C][/ROW]
[ROW][C]-22.8945050371408[/C][/ROW]
[ROW][C]17.4683389602137[/C][/ROW]
[ROW][C]-12.1129216942113[/C][/ROW]
[ROW][C]9.99783045297864[/C][/ROW]
[ROW][C]-3.90682237726585[/C][/ROW]
[ROW][C]-19.0438152243453[/C][/ROW]
[ROW][C]-26.2232022279171[/C][/ROW]
[ROW][C]6.09683493363784[/C][/ROW]
[ROW][C]10.1482682583023[/C][/ROW]
[ROW][C]-25.3209669420849[/C][/ROW]
[ROW][C]-38.7240461633511[/C][/ROW]
[ROW][C]-41.543136008191[/C][/ROW]
[ROW][C]-10.8223809225357[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301137&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301137&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimated ARIMA Residuals
Value
-5.35912386230164
91.3915629062655
86.4335781251373
1.42644599426172
-39.4871069144224
49.0894273075297
-63.4113524568723
-6.05758932186139
55.3547706821866
-30.1477705921447
15.5029090212155
29.6807192685256
88.7993404772555
-9.52184133201852
27.0077322950012
38.3952602369846
-3.77464873553253
-22.4651579393613
4.58062825284759
-2.62796914975106
-1.43959030600598
18.2302858527882
-25.51258303415
27.4270455844788
-50.5542527017571
12.0204539918847
-9.41280571759926
6.9418974055601
23.1442369233408
-5.31137339443152
26.2437416174829
-22.8945050371408
17.4683389602137
-12.1129216942113
9.99783045297864
-3.90682237726585
-19.0438152243453
-26.2232022279171
6.09683493363784
10.1482682583023
-25.3209669420849
-38.7240461633511
-41.543136008191
-10.8223809225357



Parameters (Session):
par1 = 1 ; par2 = 1 ; par3 = 0 ; par4 = 12 ;
Parameters (R input):
par1 = FALSE ; par2 = 1 ; par3 = 2 ; par4 = 0 ; par5 = 12 ; par6 = 3 ; par7 = 1 ; par8 = 0 ; par9 = 0 ;
R code (references can be found in the software module):
library(lattice)
if (par1 == 'TRUE') par1 <- TRUE
if (par1 == 'FALSE') par1 <- FALSE
par2 <- as.numeric(par2) #Box-Cox lambda transformation parameter
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #degree (p) of the non-seasonal AR(p) polynomial
par7 <- as.numeric(par7) #degree (q) of the non-seasonal MA(q) polynomial
par8 <- as.numeric(par8) #degree (P) of the seasonal AR(P) polynomial
par9 <- as.numeric(par9) #degree (Q) of the seasonal MA(Q) polynomial
armaGR <- function(arima.out, names, n){
try1 <- arima.out$coef
try2 <- sqrt(diag(arima.out$var.coef))
try.data.frame <- data.frame(matrix(NA,ncol=4,nrow=length(names)))
dimnames(try.data.frame) <- list(names,c('coef','std','tstat','pv'))
try.data.frame[,1] <- try1
for(i in 1:length(try2)) try.data.frame[which(rownames(try.data.frame)==names(try2)[i]),2] <- try2[i]
try.data.frame[,3] <- try.data.frame[,1] / try.data.frame[,2]
try.data.frame[,4] <- round((1-pt(abs(try.data.frame[,3]),df=n-(length(try2)+1)))*2,5)
vector <- rep(NA,length(names))
vector[is.na(try.data.frame[,4])] <- 0
maxi <- which.max(try.data.frame[,4])
continue <- max(try.data.frame[,4],na.rm=TRUE) > .05
vector[maxi] <- 0
list(summary=try.data.frame,next.vector=vector,continue=continue)
}
arimaSelect <- function(series, order=c(13,0,0), seasonal=list(order=c(2,0,0),period=12), include.mean=F){
nrc <- order[1]+order[3]+seasonal$order[1]+seasonal$order[3]
coeff <- matrix(NA, nrow=nrc*2, ncol=nrc)
pval <- matrix(NA, nrow=nrc*2, ncol=nrc)
mylist <- rep(list(NULL), nrc)
names <- NULL
if(order[1] > 0) names <- paste('ar',1:order[1],sep='')
if(order[3] > 0) names <- c( names , paste('ma',1:order[3],sep='') )
if(seasonal$order[1] > 0) names <- c(names, paste('sar',1:seasonal$order[1],sep=''))
if(seasonal$order[3] > 0) names <- c(names, paste('sma',1:seasonal$order[3],sep=''))
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML')
mylist[[1]] <- arima.out
last.arma <- armaGR(arima.out, names, length(series))
mystop <- FALSE
i <- 1
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- 2
aic <- arima.out$aic
while(!mystop){
mylist[[i]] <- arima.out
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML', fixed=last.arma$next.vector)
aic <- c(aic, arima.out$aic)
last.arma <- armaGR(arima.out, names, length(series))
mystop <- !last.arma$continue
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- i+1
}
list(coeff, pval, mylist, aic=aic)
}
arimaSelectplot <- function(arimaSelect.out,noms,choix){
noms <- names(arimaSelect.out[[3]][[1]]$coef)
coeff <- arimaSelect.out[[1]]
k <- min(which(is.na(coeff[,1])))-1
coeff <- coeff[1:k,]
pval <- arimaSelect.out[[2]][1:k,]
aic <- arimaSelect.out$aic[1:k]
coeff[coeff==0] <- NA
n <- ncol(coeff)
if(missing(choix)) choix <- k
layout(matrix(c(1,1,1,2,
3,3,3,2,
3,3,3,4,
5,6,7,7),nr=4),
widths=c(10,35,45,15),
heights=c(30,30,15,15))
couleurs <- rainbow(75)[1:50]#(50)
ticks <- pretty(coeff)
par(mar=c(1,1,3,1))
plot(aic,k:1-.5,type='o',pch=21,bg='blue',cex=2,axes=F,lty=2,xpd=NA)
points(aic[choix],k-choix+.5,pch=21,cex=4,bg=2,xpd=NA)
title('aic',line=2)
par(mar=c(3,0,0,0))
plot(0,axes=F,xlab='',ylab='',xlim=range(ticks),ylim=c(.1,1))
rect(xleft = min(ticks) + (0:49)/50*(max(ticks)-min(ticks)),
xright = min(ticks) + (1:50)/50*(max(ticks)-min(ticks)),
ytop = rep(1,50),
ybottom= rep(0,50),col=couleurs,border=NA)
axis(1,ticks)
rect(xleft=min(ticks),xright=max(ticks),ytop=1,ybottom=0)
text(mean(coeff,na.rm=T),.5,'coefficients',cex=2,font=2)
par(mar=c(1,1,3,1))
image(1:n,1:k,t(coeff[k:1,]),axes=F,col=couleurs,zlim=range(ticks))
for(i in 1:n) for(j in 1:k) if(!is.na(coeff[j,i])) {
if(pval[j,i]<.01) symb = 'green'
else if( (pval[j,i]<.05) & (pval[j,i]>=.01)) symb = 'orange'
else if( (pval[j,i]<.1) & (pval[j,i]>=.05)) symb = 'red'
else symb = 'black'
polygon(c(i+.5 ,i+.2 ,i+.5 ,i+.5),
c(k-j+0.5,k-j+0.5,k-j+0.8,k-j+0.5),
col=symb)
if(j==choix) {
rect(xleft=i-.5,
xright=i+.5,
ybottom=k-j+1.5,
ytop=k-j+.5,
lwd=4)
text(i,
k-j+1,
round(coeff[j,i],2),
cex=1.2,
font=2)
}
else{
rect(xleft=i-.5,xright=i+.5,ybottom=k-j+1.5,ytop=k-j+.5)
text(i,k-j+1,round(coeff[j,i],2),cex=1.2,font=1)
}
}
axis(3,1:n,noms)
par(mar=c(0.5,0,0,0.5))
plot(0,axes=F,xlab='',ylab='',type='n',xlim=c(0,8),ylim=c(-.2,.8))
cols <- c('green','orange','red','black')
niv <- c('0','0.01','0.05','0.1')
for(i in 0:3){
polygon(c(1+2*i ,1+2*i ,1+2*i-.5 ,1+2*i),
c(.4 ,.7 , .4 , .4),
col=cols[i+1])
text(2*i,0.5,niv[i+1],cex=1.5)
}
text(8,.5,1,cex=1.5)
text(4,0,'p-value',cex=2)
box()
residus <- arimaSelect.out[[3]][[choix]]$res
par(mar=c(1,2,4,1))
acf(residus,main='')
title('acf',line=.5)
par(mar=c(1,2,4,1))
pacf(residus,main='')
title('pacf',line=.5)
par(mar=c(2,2,4,1))
qqnorm(residus,main='')
title('qq-norm',line=.5)
qqline(residus)
residus
}
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
(selection <- arimaSelect(x, order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5)))
bitmap(file='test1.png')
resid <- arimaSelectplot(selection)
dev.off()
resid
bitmap(file='test2.png')
acf(resid,length(resid)/2, main='Residual Autocorrelation Function')
dev.off()
bitmap(file='test3.png')
pacf(resid,length(resid)/2, main='Residual Partial Autocorrelation Function')
dev.off()
bitmap(file='test4.png')
cpgram(resid, main='Residual Cumulative Periodogram')
dev.off()
bitmap(file='test5.png')
hist(resid, main='Residual Histogram', xlab='values of Residuals')
dev.off()
bitmap(file='test6.png')
densityplot(~resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test7.png')
qqnorm(resid, main='Residual Normal Q-Q Plot')
qqline(resid)
dev.off()
ncols <- length(selection[[1]][1,])
nrows <- length(selection[[2]][,1])-1
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ARIMA Parameter Estimation and Backward Selection', ncols+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Iteration', header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,names(selection[[3]][[1]]$coef)[i],header=TRUE)
}
a<-table.row.end(a)
for (j in 1:nrows) {
a<-table.row.start(a)
mydum <- 'Estimates ('
mydum <- paste(mydum,j)
mydum <- paste(mydum,')')
a<-table.element(a,mydum, header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,round(selection[[1]][j,i],4))
}
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'(p-val)', header=TRUE)
for (i in 1:ncols) {
mydum <- '('
mydum <- paste(mydum,round(selection[[2]][j,i],4),sep='')
mydum <- paste(mydum,')')
a<-table.element(a,mydum)
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimated ARIMA Residuals', 1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Value', 1,TRUE)
a<-table.row.end(a)
for (i in (par4*par5+par3):length(resid)) {
a<-table.row.start(a)
a<-table.element(a,resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')