Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_autocorrelation.wasp
Title produced by software(Partial) Autocorrelation Function
Date of computationSun, 18 Dec 2016 16:16:42 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/18/t1482074230xs7hist79art7i3.htm/, Retrieved Fri, 01 Nov 2024 03:28:22 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=301132, Retrieved Fri, 01 Nov 2024 03:28:22 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact70
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [(Partial) Autocorrelation Function] [] [2016-12-18 15:16:42] [94ac3c9a028ddd47e8862e80eac9f626] [Current]
Feedback Forum

Post a new message
Dataseries X:
3830.8
3732.6
3733.5
3808.5
3860.5
3844.4
3864.5
3803.1
3756.1
3771.1
3754.4
3759.6
3783.5
3886.5
3944.4
4012.1
4089.5
4144
4166.4
4194.2
4221.8
4254.8
4309
4333.5
4390.5
4387.7
4412.6
4427.1
4460
4515.3
4559.3
4625.5
4655.3
4704.8
4734.5
4779.7
4817.6
4839
4839
4856.7
4890.8
4902.7
4882.6
4833.8
4796.7




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301132&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=301132&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301132&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Autocorrelation Function
Time lag kACF(k)T-STATP-value
1-0.160564-1.05290.149137
2-0.01848-0.12120.452055
3-0.072435-0.4750.3186
4-0.058157-0.38140.352406
5-0.14146-0.92760.179393
6-0.079622-0.52210.302135
70.2436751.59790.058696
8-0.249891-1.63860.054292
90.1453670.95320.172899
100.0532760.34940.364265
110.2108171.38240.086991
12-0.202951-1.33080.095128
130.1677771.10020.138686
14-0.118187-0.7750.221289
15-0.041844-0.27440.39255
16-0.019113-0.12530.450422

\begin{tabular}{lllllllll}
\hline
Autocorrelation Function \tabularnewline
Time lag k & ACF(k) & T-STAT & P-value \tabularnewline
1 & -0.160564 & -1.0529 & 0.149137 \tabularnewline
2 & -0.01848 & -0.1212 & 0.452055 \tabularnewline
3 & -0.072435 & -0.475 & 0.3186 \tabularnewline
4 & -0.058157 & -0.3814 & 0.352406 \tabularnewline
5 & -0.14146 & -0.9276 & 0.179393 \tabularnewline
6 & -0.079622 & -0.5221 & 0.302135 \tabularnewline
7 & 0.243675 & 1.5979 & 0.058696 \tabularnewline
8 & -0.249891 & -1.6386 & 0.054292 \tabularnewline
9 & 0.145367 & 0.9532 & 0.172899 \tabularnewline
10 & 0.053276 & 0.3494 & 0.364265 \tabularnewline
11 & 0.210817 & 1.3824 & 0.086991 \tabularnewline
12 & -0.202951 & -1.3308 & 0.095128 \tabularnewline
13 & 0.167777 & 1.1002 & 0.138686 \tabularnewline
14 & -0.118187 & -0.775 & 0.221289 \tabularnewline
15 & -0.041844 & -0.2744 & 0.39255 \tabularnewline
16 & -0.019113 & -0.1253 & 0.450422 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301132&T=1

[TABLE]
[ROW][C]Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]ACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]-0.160564[/C][C]-1.0529[/C][C]0.149137[/C][/ROW]
[ROW][C]2[/C][C]-0.01848[/C][C]-0.1212[/C][C]0.452055[/C][/ROW]
[ROW][C]3[/C][C]-0.072435[/C][C]-0.475[/C][C]0.3186[/C][/ROW]
[ROW][C]4[/C][C]-0.058157[/C][C]-0.3814[/C][C]0.352406[/C][/ROW]
[ROW][C]5[/C][C]-0.14146[/C][C]-0.9276[/C][C]0.179393[/C][/ROW]
[ROW][C]6[/C][C]-0.079622[/C][C]-0.5221[/C][C]0.302135[/C][/ROW]
[ROW][C]7[/C][C]0.243675[/C][C]1.5979[/C][C]0.058696[/C][/ROW]
[ROW][C]8[/C][C]-0.249891[/C][C]-1.6386[/C][C]0.054292[/C][/ROW]
[ROW][C]9[/C][C]0.145367[/C][C]0.9532[/C][C]0.172899[/C][/ROW]
[ROW][C]10[/C][C]0.053276[/C][C]0.3494[/C][C]0.364265[/C][/ROW]
[ROW][C]11[/C][C]0.210817[/C][C]1.3824[/C][C]0.086991[/C][/ROW]
[ROW][C]12[/C][C]-0.202951[/C][C]-1.3308[/C][C]0.095128[/C][/ROW]
[ROW][C]13[/C][C]0.167777[/C][C]1.1002[/C][C]0.138686[/C][/ROW]
[ROW][C]14[/C][C]-0.118187[/C][C]-0.775[/C][C]0.221289[/C][/ROW]
[ROW][C]15[/C][C]-0.041844[/C][C]-0.2744[/C][C]0.39255[/C][/ROW]
[ROW][C]16[/C][C]-0.019113[/C][C]-0.1253[/C][C]0.450422[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301132&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301132&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Autocorrelation Function
Time lag kACF(k)T-STATP-value
1-0.160564-1.05290.149137
2-0.01848-0.12120.452055
3-0.072435-0.4750.3186
4-0.058157-0.38140.352406
5-0.14146-0.92760.179393
6-0.079622-0.52210.302135
70.2436751.59790.058696
8-0.249891-1.63860.054292
90.1453670.95320.172899
100.0532760.34940.364265
110.2108171.38240.086991
12-0.202951-1.33080.095128
130.1677771.10020.138686
14-0.118187-0.7750.221289
15-0.041844-0.27440.39255
16-0.019113-0.12530.450422







Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
1-0.160564-1.05290.149137
2-0.045432-0.29790.3836
3-0.085199-0.55870.289636
4-0.088463-0.58010.28244
5-0.180299-1.18230.121791
6-0.163388-1.07140.144982
70.1816081.19090.120116
8-0.247769-1.62470.055764
90.047680.31270.378025
100.060330.39560.347174
110.2335491.53150.066487
12-0.123663-0.81090.210941
130.1983451.30060.100155
14-0.135022-0.88540.190434
150.1707651.11980.134512
16-0.126613-0.83030.20549

\begin{tabular}{lllllllll}
\hline
Partial Autocorrelation Function \tabularnewline
Time lag k & PACF(k) & T-STAT & P-value \tabularnewline
1 & -0.160564 & -1.0529 & 0.149137 \tabularnewline
2 & -0.045432 & -0.2979 & 0.3836 \tabularnewline
3 & -0.085199 & -0.5587 & 0.289636 \tabularnewline
4 & -0.088463 & -0.5801 & 0.28244 \tabularnewline
5 & -0.180299 & -1.1823 & 0.121791 \tabularnewline
6 & -0.163388 & -1.0714 & 0.144982 \tabularnewline
7 & 0.181608 & 1.1909 & 0.120116 \tabularnewline
8 & -0.247769 & -1.6247 & 0.055764 \tabularnewline
9 & 0.04768 & 0.3127 & 0.378025 \tabularnewline
10 & 0.06033 & 0.3956 & 0.347174 \tabularnewline
11 & 0.233549 & 1.5315 & 0.066487 \tabularnewline
12 & -0.123663 & -0.8109 & 0.210941 \tabularnewline
13 & 0.198345 & 1.3006 & 0.100155 \tabularnewline
14 & -0.135022 & -0.8854 & 0.190434 \tabularnewline
15 & 0.170765 & 1.1198 & 0.134512 \tabularnewline
16 & -0.126613 & -0.8303 & 0.20549 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301132&T=2

[TABLE]
[ROW][C]Partial Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]PACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]-0.160564[/C][C]-1.0529[/C][C]0.149137[/C][/ROW]
[ROW][C]2[/C][C]-0.045432[/C][C]-0.2979[/C][C]0.3836[/C][/ROW]
[ROW][C]3[/C][C]-0.085199[/C][C]-0.5587[/C][C]0.289636[/C][/ROW]
[ROW][C]4[/C][C]-0.088463[/C][C]-0.5801[/C][C]0.28244[/C][/ROW]
[ROW][C]5[/C][C]-0.180299[/C][C]-1.1823[/C][C]0.121791[/C][/ROW]
[ROW][C]6[/C][C]-0.163388[/C][C]-1.0714[/C][C]0.144982[/C][/ROW]
[ROW][C]7[/C][C]0.181608[/C][C]1.1909[/C][C]0.120116[/C][/ROW]
[ROW][C]8[/C][C]-0.247769[/C][C]-1.6247[/C][C]0.055764[/C][/ROW]
[ROW][C]9[/C][C]0.04768[/C][C]0.3127[/C][C]0.378025[/C][/ROW]
[ROW][C]10[/C][C]0.06033[/C][C]0.3956[/C][C]0.347174[/C][/ROW]
[ROW][C]11[/C][C]0.233549[/C][C]1.5315[/C][C]0.066487[/C][/ROW]
[ROW][C]12[/C][C]-0.123663[/C][C]-0.8109[/C][C]0.210941[/C][/ROW]
[ROW][C]13[/C][C]0.198345[/C][C]1.3006[/C][C]0.100155[/C][/ROW]
[ROW][C]14[/C][C]-0.135022[/C][C]-0.8854[/C][C]0.190434[/C][/ROW]
[ROW][C]15[/C][C]0.170765[/C][C]1.1198[/C][C]0.134512[/C][/ROW]
[ROW][C]16[/C][C]-0.126613[/C][C]-0.8303[/C][C]0.20549[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301132&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301132&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
1-0.160564-1.05290.149137
2-0.045432-0.29790.3836
3-0.085199-0.55870.289636
4-0.088463-0.58010.28244
5-0.180299-1.18230.121791
6-0.163388-1.07140.144982
70.1816081.19090.120116
8-0.247769-1.62470.055764
90.047680.31270.378025
100.060330.39560.347174
110.2335491.53150.066487
12-0.123663-0.81090.210941
130.1983451.30060.100155
14-0.135022-0.88540.190434
150.1707651.11980.134512
16-0.126613-0.83030.20549



Parameters (Session):
par1 = 1 ; par2 = 1 ; par3 = 0 ; par4 = 12 ;
Parameters (R input):
par1 = Default ; par2 = 1 ; par3 = 2 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ; par8 = ;
R code (references can be found in the software module):
if (par1 == 'Default') {
par1 = 10*log10(length(x))
} else {
par1 <- as.numeric(par1)
}
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
par5 <- as.numeric(par5)
if (par6 == 'White Noise') par6 <- 'white' else par6 <- 'ma'
par7 <- as.numeric(par7)
if (par8 != '') par8 <- as.numeric(par8)
x <- na.omit(x)
ox <- x
if (par8 == '') {
if (par2 == 0) {
x <- log(x)
} else {
x <- (x ^ par2 - 1) / par2
}
} else {
x <- log(x,base=par8)
}
if (par3 > 0) x <- diff(x,lag=1,difference=par3)
if (par4 > 0) x <- diff(x,lag=par5,difference=par4)
bitmap(file='picts.png')
op <- par(mfrow=c(2,1))
plot(ox,type='l',main='Original Time Series',xlab='time',ylab='value')
if (par8=='') {
mytitle <- paste('Working Time Series (lambda=',par2,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(lambda=',par2,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
} else {
mytitle <- paste('Working Time Series (base=',par8,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(base=',par8,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
}
plot(x,type='l', main=mytitle,xlab='time',ylab='value')
par(op)
dev.off()
bitmap(file='pic1.png')
racf <- acf(x, par1, main='Autocorrelation', xlab='time lag', ylab='ACF', ci.type=par6, ci=par7, sub=mysub)
dev.off()
bitmap(file='pic2.png')
rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF',sub=mysub)
dev.off()
(myacf <- c(racf$acf))
(mypacf <- c(rpacf$acf))
lengthx <- length(x)
sqrtn <- sqrt(lengthx)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'ACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 2:(par1+1)) {
a<-table.row.start(a)
a<-table.element(a,i-1,header=TRUE)
a<-table.element(a,round(myacf[i],6))
mytstat <- myacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Partial Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'PACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:par1) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,round(mypacf[i],6))
mytstat <- mypacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')