Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_autocorrelation.wasp
Title produced by software(Partial) Autocorrelation Function
Date of computationSun, 18 Dec 2016 15:37:13 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/18/t1482071946n6x33u50kuk0g0k.htm/, Retrieved Fri, 01 Nov 2024 03:46:33 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=301111, Retrieved Fri, 01 Nov 2024 03:46:33 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact88
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [(Partial) Autocorrelation Function] [Partial Autocorre...] [2016-12-18 14:37:13] [3b055ff671ad33431c4331443bac114d] [Current]
Feedback Forum

Post a new message
Dataseries X:
9137.8
9009.4
8926.6
9145
9186.2
9152.2
9093.6
9199.2
9310.6
9282
9248.4
9341.6
9478.8
9438
9374.6
9488.8
9631.8
9588.4
9514.6
9623.2
9744.6
9685.8
9598
9703.4
9817.8
9762.6
9669.6
9789.2
9917.4
9864.4
9779.2
9898.8
10048.8
9983.4
9913.4
10031.6
10184.6
10125
10065.4
10188.6
10350.4
10320.6
10232.6
10357.2
10520.2
10473.8
10407
10536
10700.2
10664.2
10606
10716.6
10882.8
10849.4
10794
10907.8




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301111&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=301111&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301111&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Autocorrelation Function
Time lag kACF(k)T-STATP-value
1-0.265608-1.89680.031761
2-0.20082-1.43410.078818
30.1307050.93340.177501
40.0790730.56470.287378
5-0.056563-0.40390.343972
6-0.017634-0.12590.450141
70.2044511.46010.075201
8-0.146892-1.0490.149558
9-0.042908-0.30640.380263
10-0.01074-0.07670.469582
110.0151790.10840.457051
12-0.044227-0.31580.376706

\begin{tabular}{lllllllll}
\hline
Autocorrelation Function \tabularnewline
Time lag k & ACF(k) & T-STAT & P-value \tabularnewline
1 & -0.265608 & -1.8968 & 0.031761 \tabularnewline
2 & -0.20082 & -1.4341 & 0.078818 \tabularnewline
3 & 0.130705 & 0.9334 & 0.177501 \tabularnewline
4 & 0.079073 & 0.5647 & 0.287378 \tabularnewline
5 & -0.056563 & -0.4039 & 0.343972 \tabularnewline
6 & -0.017634 & -0.1259 & 0.450141 \tabularnewline
7 & 0.204451 & 1.4601 & 0.075201 \tabularnewline
8 & -0.146892 & -1.049 & 0.149558 \tabularnewline
9 & -0.042908 & -0.3064 & 0.380263 \tabularnewline
10 & -0.01074 & -0.0767 & 0.469582 \tabularnewline
11 & 0.015179 & 0.1084 & 0.457051 \tabularnewline
12 & -0.044227 & -0.3158 & 0.376706 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301111&T=1

[TABLE]
[ROW][C]Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]ACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]-0.265608[/C][C]-1.8968[/C][C]0.031761[/C][/ROW]
[ROW][C]2[/C][C]-0.20082[/C][C]-1.4341[/C][C]0.078818[/C][/ROW]
[ROW][C]3[/C][C]0.130705[/C][C]0.9334[/C][C]0.177501[/C][/ROW]
[ROW][C]4[/C][C]0.079073[/C][C]0.5647[/C][C]0.287378[/C][/ROW]
[ROW][C]5[/C][C]-0.056563[/C][C]-0.4039[/C][C]0.343972[/C][/ROW]
[ROW][C]6[/C][C]-0.017634[/C][C]-0.1259[/C][C]0.450141[/C][/ROW]
[ROW][C]7[/C][C]0.204451[/C][C]1.4601[/C][C]0.075201[/C][/ROW]
[ROW][C]8[/C][C]-0.146892[/C][C]-1.049[/C][C]0.149558[/C][/ROW]
[ROW][C]9[/C][C]-0.042908[/C][C]-0.3064[/C][C]0.380263[/C][/ROW]
[ROW][C]10[/C][C]-0.01074[/C][C]-0.0767[/C][C]0.469582[/C][/ROW]
[ROW][C]11[/C][C]0.015179[/C][C]0.1084[/C][C]0.457051[/C][/ROW]
[ROW][C]12[/C][C]-0.044227[/C][C]-0.3158[/C][C]0.376706[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301111&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301111&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Autocorrelation Function
Time lag kACF(k)T-STATP-value
1-0.265608-1.89680.031761
2-0.20082-1.43410.078818
30.1307050.93340.177501
40.0790730.56470.287378
5-0.056563-0.40390.343972
6-0.017634-0.12590.450141
70.2044511.46010.075201
8-0.146892-1.0490.149558
9-0.042908-0.30640.380263
10-0.01074-0.07670.469582
110.0151790.10840.457051
12-0.044227-0.31580.376706







Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
1-0.265608-1.89680.031761
2-0.291965-2.0850.021045
3-0.018531-0.13230.447618
40.070360.50250.30875
50.0319690.22830.410163
60.0088170.0630.475019
70.2128261.51990.067358
8-0.031824-0.22730.410562
9-0.019969-0.14260.443581
10-0.129706-0.92630.179329
11-0.07913-0.56510.28724
12-0.089672-0.64040.262394

\begin{tabular}{lllllllll}
\hline
Partial Autocorrelation Function \tabularnewline
Time lag k & PACF(k) & T-STAT & P-value \tabularnewline
1 & -0.265608 & -1.8968 & 0.031761 \tabularnewline
2 & -0.291965 & -2.085 & 0.021045 \tabularnewline
3 & -0.018531 & -0.1323 & 0.447618 \tabularnewline
4 & 0.07036 & 0.5025 & 0.30875 \tabularnewline
5 & 0.031969 & 0.2283 & 0.410163 \tabularnewline
6 & 0.008817 & 0.063 & 0.475019 \tabularnewline
7 & 0.212826 & 1.5199 & 0.067358 \tabularnewline
8 & -0.031824 & -0.2273 & 0.410562 \tabularnewline
9 & -0.019969 & -0.1426 & 0.443581 \tabularnewline
10 & -0.129706 & -0.9263 & 0.179329 \tabularnewline
11 & -0.07913 & -0.5651 & 0.28724 \tabularnewline
12 & -0.089672 & -0.6404 & 0.262394 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301111&T=2

[TABLE]
[ROW][C]Partial Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]PACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]-0.265608[/C][C]-1.8968[/C][C]0.031761[/C][/ROW]
[ROW][C]2[/C][C]-0.291965[/C][C]-2.085[/C][C]0.021045[/C][/ROW]
[ROW][C]3[/C][C]-0.018531[/C][C]-0.1323[/C][C]0.447618[/C][/ROW]
[ROW][C]4[/C][C]0.07036[/C][C]0.5025[/C][C]0.30875[/C][/ROW]
[ROW][C]5[/C][C]0.031969[/C][C]0.2283[/C][C]0.410163[/C][/ROW]
[ROW][C]6[/C][C]0.008817[/C][C]0.063[/C][C]0.475019[/C][/ROW]
[ROW][C]7[/C][C]0.212826[/C][C]1.5199[/C][C]0.067358[/C][/ROW]
[ROW][C]8[/C][C]-0.031824[/C][C]-0.2273[/C][C]0.410562[/C][/ROW]
[ROW][C]9[/C][C]-0.019969[/C][C]-0.1426[/C][C]0.443581[/C][/ROW]
[ROW][C]10[/C][C]-0.129706[/C][C]-0.9263[/C][C]0.179329[/C][/ROW]
[ROW][C]11[/C][C]-0.07913[/C][C]-0.5651[/C][C]0.28724[/C][/ROW]
[ROW][C]12[/C][C]-0.089672[/C][C]-0.6404[/C][C]0.262394[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301111&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301111&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
1-0.265608-1.89680.031761
2-0.291965-2.0850.021045
3-0.018531-0.13230.447618
40.070360.50250.30875
50.0319690.22830.410163
60.0088170.0630.475019
70.2128261.51990.067358
8-0.031824-0.22730.410562
9-0.019969-0.14260.443581
10-0.129706-0.92630.179329
11-0.07913-0.56510.28724
12-0.089672-0.64040.262394



Parameters (Session):
par1 = 12 ; par2 = 1 ; par3 = 1 ; par4 = 1 ; par5 = 4 ; par6 = White Noise ; par7 = 0.95 ;
Parameters (R input):
par1 = 12 ; par2 = 1 ; par3 = 1 ; par4 = 1 ; par5 = 4 ; par6 = White Noise ; par7 = 0.95 ; par8 = ;
R code (references can be found in the software module):
if (par1 == 'Default') {
par1 = 10*log10(length(x))
} else {
par1 <- as.numeric(par1)
}
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
par5 <- as.numeric(par5)
if (par6 == 'White Noise') par6 <- 'white' else par6 <- 'ma'
par7 <- as.numeric(par7)
if (par8 != '') par8 <- as.numeric(par8)
x <- na.omit(x)
ox <- x
if (par8 == '') {
if (par2 == 0) {
x <- log(x)
} else {
x <- (x ^ par2 - 1) / par2
}
} else {
x <- log(x,base=par8)
}
if (par3 > 0) x <- diff(x,lag=1,difference=par3)
if (par4 > 0) x <- diff(x,lag=par5,difference=par4)
bitmap(file='picts.png')
op <- par(mfrow=c(2,1))
plot(ox,type='l',main='Original Time Series',xlab='time',ylab='value')
if (par8=='') {
mytitle <- paste('Working Time Series (lambda=',par2,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(lambda=',par2,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
} else {
mytitle <- paste('Working Time Series (base=',par8,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(base=',par8,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
}
plot(x,type='l', main=mytitle,xlab='time',ylab='value')
par(op)
dev.off()
bitmap(file='pic1.png')
racf <- acf(x, par1, main='Autocorrelation', xlab='time lag', ylab='ACF', ci.type=par6, ci=par7, sub=mysub)
dev.off()
bitmap(file='pic2.png')
rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF',sub=mysub)
dev.off()
(myacf <- c(racf$acf))
(mypacf <- c(rpacf$acf))
lengthx <- length(x)
sqrtn <- sqrt(lengthx)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'ACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 2:(par1+1)) {
a<-table.row.start(a)
a<-table.element(a,i-1,header=TRUE)
a<-table.element(a,round(myacf[i],6))
mytstat <- myacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Partial Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'PACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:par1) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,round(mypacf[i],6))
mytstat <- mypacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')