Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationSun, 18 Dec 2016 15:18:19 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/18/t1482070786n3etb6uvshm0n3n.htm/, Retrieved Fri, 01 Nov 2024 03:27:43 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=301104, Retrieved Fri, 01 Nov 2024 03:27:43 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact146
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [multiple regressi...] [2016-12-18 14:18:19] [6f830dc7e8de22be3233942ffbe3aaba] [Current]
Feedback Forum

Post a new message
Dataseries X:
14	4	3	3
19	5	4	4
17	4	5	5
20	5	3	5
15	5	4	5
19	5	4	5
20	4	4	4
18	4	3	4
15	4	4	4
14	5	4	5
16	5	4	4
19	5	4	4
18	4	4	4
17	4	4	4
19	4	4	5
17	4	4	5
19	4	3	5
20	5	4	4
19	4	2	4
16	5	4	5
16	3	3	4
18	2	4	4
16	5	4	5
17	5	4	5
20	4	4	5
19	4	4	4
7	3	4	5
16	4	4	4
16	3	4	3
18	5	4	5
17	2	3	3
19	3	4	4
16	2	4	4
13	5	5	4
16	4	4	4
12	5	4	5
17	5	4	4
17	4	5	4
17	5	4	4
16	4	4	4
16	4	2	4
14	5	4	5
16	3	4	4
13	2	4	4
16	5	4	4
14	4	4	4
19	5	3	5
18	3	4	4
14	2	4	4
18	5	4	5
15	1	3	3
17	5	4	4
19	4	4	5
18	5	4	5
15	5	4	4
15	5	4	2
20	4	5	5
19	4	5	5
18	4	4	4
15	4	5	4
20	5	4	5
17	5	4	4
19	4	4	4
20	2	4	4
18	4	4	4
17	3	3	3
18	4	4	4
17	5	4	4
20	5	4	4
16	3	4	4
14	4	4	4
15	3	4	4
20	4	4	4
17	4	4	4
17	5	4	4
18	2	3	3
20	4	5	4
16	2	3	3
18	4	4	5
15	4	4	4
18	5	5	5
20	4	5	5
14	3	4	4
15	3	4	3
17	4	5	5
18	2	4	4
20	5	5	5
17	4	3	4
16	4	4	4
11	5	4	4
15	4	4	4
18	2	4	3
16	5	4	5
18	5	4	5
15	4	4	4
17	5	5	5
19	3	4	4
16	4	4	4
14	3	4	4




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time7 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time7 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301104&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]7 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=301104&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301104&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time7 seconds
R ServerBig Analytics Cloud Computing Center







Multiple Linear Regression - Estimated Regression Equation
ITH[t] = + 14.5609 + 0.0981115TDVC1[t] -0.105922TDVC2[t] + 0.553455TDVC3[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
ITH[t] =  +  14.5609 +  0.0981115TDVC1[t] -0.105922TDVC2[t] +  0.553455TDVC3[t]  + e[t] \tabularnewline
 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301104&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]ITH[t] =  +  14.5609 +  0.0981115TDVC1[t] -0.105922TDVC2[t] +  0.553455TDVC3[t]  + e[t][/C][/ROW]
[ROW][C][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301104&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301104&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
ITH[t] = + 14.5609 + 0.0981115TDVC1[t] -0.105922TDVC2[t] + 0.553455TDVC3[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+14.56 1.91+7.6220e+00 1.867e-11 9.334e-12
TDVC1+0.09811 0.2634+3.7250e-01 0.7103 0.3552
TDVC2-0.1059 0.426-2.4870e-01 0.8042 0.4021
TDVC3+0.5535 0.4228+1.3090e+00 0.1937 0.09685

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & +14.56 &  1.91 & +7.6220e+00 &  1.867e-11 &  9.334e-12 \tabularnewline
TDVC1 & +0.09811 &  0.2634 & +3.7250e-01 &  0.7103 &  0.3552 \tabularnewline
TDVC2 & -0.1059 &  0.426 & -2.4870e-01 &  0.8042 &  0.4021 \tabularnewline
TDVC3 & +0.5535 &  0.4228 & +1.3090e+00 &  0.1937 &  0.09685 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301104&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]+14.56[/C][C] 1.91[/C][C]+7.6220e+00[/C][C] 1.867e-11[/C][C] 9.334e-12[/C][/ROW]
[ROW][C]TDVC1[/C][C]+0.09811[/C][C] 0.2634[/C][C]+3.7250e-01[/C][C] 0.7103[/C][C] 0.3552[/C][/ROW]
[ROW][C]TDVC2[/C][C]-0.1059[/C][C] 0.426[/C][C]-2.4870e-01[/C][C] 0.8042[/C][C] 0.4021[/C][/ROW]
[ROW][C]TDVC3[/C][C]+0.5535[/C][C] 0.4228[/C][C]+1.3090e+00[/C][C] 0.1937[/C][C] 0.09685[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301104&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301104&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+14.56 1.91+7.6220e+00 1.867e-11 9.334e-12
TDVC1+0.09811 0.2634+3.7250e-01 0.7103 0.3552
TDVC2-0.1059 0.426-2.4870e-01 0.8042 0.4021
TDVC3+0.5535 0.4228+1.3090e+00 0.1937 0.09685







Multiple Linear Regression - Regression Statistics
Multiple R 0.1741
R-squared 0.03031
Adjusted R-squared-0.0003087
F-TEST (value) 0.9899
F-TEST (DF numerator)3
F-TEST (DF denominator)95
p-value 0.401
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 2.259
Sum Squared Residuals 484.9

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R &  0.1741 \tabularnewline
R-squared &  0.03031 \tabularnewline
Adjusted R-squared & -0.0003087 \tabularnewline
F-TEST (value) &  0.9899 \tabularnewline
F-TEST (DF numerator) & 3 \tabularnewline
F-TEST (DF denominator) & 95 \tabularnewline
p-value &  0.401 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation &  2.259 \tabularnewline
Sum Squared Residuals &  484.9 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301104&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C] 0.1741[/C][/ROW]
[ROW][C]R-squared[/C][C] 0.03031[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]-0.0003087[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C] 0.9899[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]3[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]95[/C][/ROW]
[ROW][C]p-value[/C][C] 0.401[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C] 2.259[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C] 484.9[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301104&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301104&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R 0.1741
R-squared 0.03031
Adjusted R-squared-0.0003087
F-TEST (value) 0.9899
F-TEST (DF numerator)3
F-TEST (DF denominator)95
p-value 0.401
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 2.259
Sum Squared Residuals 484.9







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 14 16.3-2.296
2 19 16.84 2.158
3 17 17.19-0.191
4 20 17.5 2.499
5 15 17.4-2.395
6 19 17.4 1.605
7 20 16.74 3.257
8 18 16.85 1.151
9 15 16.74-1.743
10 14 17.4-3.395
11 16 16.84-0.8416
12 19 16.84 2.158
13 18 16.74 1.257
14 17 16.74 0.2565
15 19 17.3 1.703
16 17 17.3-0.2969
17 19 17.4 1.597
18 20 16.84 3.158
19 19 16.96 2.045
20 16 17.4-1.395
21 16 16.75-0.7513
22 18 16.55 1.453
23 16 17.4-1.395
24 17 17.4-0.3951
25 20 17.3 2.703
26 19 16.74 2.257
27 7 17.2-10.2
28 16 16.74-0.7435
29 16 16.09-0.09192
30 18 17.4 0.6049
31 17 16.1 0.9003
32 19 16.65 2.355
33 16 16.55-0.5473
34 13 16.74-3.736
35 16 16.74-0.7435
36 12 17.4-5.395
37 17 16.84 0.1584
38 17 16.64 0.3624
39 17 16.84 0.1584
40 16 16.74-0.7435
41 16 16.96-0.9553
42 14 17.4-3.395
43 16 16.65-0.6454
44 13 16.55-3.547
45 16 16.84-0.8416
46 14 16.74-2.743
47 19 17.5 1.499
48 18 16.65 1.355
49 14 16.55-2.547
50 18 17.4 0.6049
51 15 16-1.002
52 17 16.84 0.1584
53 19 17.3 1.703
54 18 17.4 0.6049
55 15 16.84-1.842
56 15 15.73-0.7347
57 20 17.19 2.809
58 19 17.19 1.809
59 18 16.74 1.257
60 15 16.64-1.638
61 20 17.4 2.605
62 17 16.84 0.1584
63 19 16.74 2.257
64 20 16.55 3.453
65 18 16.74 1.257
66 17 16.2 0.8022
67 18 16.74 1.257
68 17 16.84 0.1584
69 20 16.84 3.158
70 16 16.65-0.6454
71 14 16.74-2.743
72 15 16.65-1.645
73 20 16.74 3.257
74 17 16.74 0.2565
75 17 16.84 0.1584
76 18 16.1 1.9
77 20 16.64 3.362
78 16 16.1-0.09973
79 18 17.3 0.7031
80 15 16.74-1.743
81 18 17.29 0.7109
82 20 17.19 2.809
83 14 16.65-2.645
84 15 16.09-1.092
85 17 17.19-0.191
86 18 16.55 1.453
87 20 17.29 2.711
88 17 16.85 0.1506
89 16 16.74-0.7435
90 11 16.84-5.842
91 15 16.74-1.743
92 18 15.99 2.006
93 16 17.4-1.395
94 18 17.4 0.6049
95 15 16.74-1.743
96 17 17.29-0.2891
97 19 16.65 2.355
98 16 16.74-0.7435
99 14 16.65-2.645

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 &  14 &  16.3 & -2.296 \tabularnewline
2 &  19 &  16.84 &  2.158 \tabularnewline
3 &  17 &  17.19 & -0.191 \tabularnewline
4 &  20 &  17.5 &  2.499 \tabularnewline
5 &  15 &  17.4 & -2.395 \tabularnewline
6 &  19 &  17.4 &  1.605 \tabularnewline
7 &  20 &  16.74 &  3.257 \tabularnewline
8 &  18 &  16.85 &  1.151 \tabularnewline
9 &  15 &  16.74 & -1.743 \tabularnewline
10 &  14 &  17.4 & -3.395 \tabularnewline
11 &  16 &  16.84 & -0.8416 \tabularnewline
12 &  19 &  16.84 &  2.158 \tabularnewline
13 &  18 &  16.74 &  1.257 \tabularnewline
14 &  17 &  16.74 &  0.2565 \tabularnewline
15 &  19 &  17.3 &  1.703 \tabularnewline
16 &  17 &  17.3 & -0.2969 \tabularnewline
17 &  19 &  17.4 &  1.597 \tabularnewline
18 &  20 &  16.84 &  3.158 \tabularnewline
19 &  19 &  16.96 &  2.045 \tabularnewline
20 &  16 &  17.4 & -1.395 \tabularnewline
21 &  16 &  16.75 & -0.7513 \tabularnewline
22 &  18 &  16.55 &  1.453 \tabularnewline
23 &  16 &  17.4 & -1.395 \tabularnewline
24 &  17 &  17.4 & -0.3951 \tabularnewline
25 &  20 &  17.3 &  2.703 \tabularnewline
26 &  19 &  16.74 &  2.257 \tabularnewline
27 &  7 &  17.2 & -10.2 \tabularnewline
28 &  16 &  16.74 & -0.7435 \tabularnewline
29 &  16 &  16.09 & -0.09192 \tabularnewline
30 &  18 &  17.4 &  0.6049 \tabularnewline
31 &  17 &  16.1 &  0.9003 \tabularnewline
32 &  19 &  16.65 &  2.355 \tabularnewline
33 &  16 &  16.55 & -0.5473 \tabularnewline
34 &  13 &  16.74 & -3.736 \tabularnewline
35 &  16 &  16.74 & -0.7435 \tabularnewline
36 &  12 &  17.4 & -5.395 \tabularnewline
37 &  17 &  16.84 &  0.1584 \tabularnewline
38 &  17 &  16.64 &  0.3624 \tabularnewline
39 &  17 &  16.84 &  0.1584 \tabularnewline
40 &  16 &  16.74 & -0.7435 \tabularnewline
41 &  16 &  16.96 & -0.9553 \tabularnewline
42 &  14 &  17.4 & -3.395 \tabularnewline
43 &  16 &  16.65 & -0.6454 \tabularnewline
44 &  13 &  16.55 & -3.547 \tabularnewline
45 &  16 &  16.84 & -0.8416 \tabularnewline
46 &  14 &  16.74 & -2.743 \tabularnewline
47 &  19 &  17.5 &  1.499 \tabularnewline
48 &  18 &  16.65 &  1.355 \tabularnewline
49 &  14 &  16.55 & -2.547 \tabularnewline
50 &  18 &  17.4 &  0.6049 \tabularnewline
51 &  15 &  16 & -1.002 \tabularnewline
52 &  17 &  16.84 &  0.1584 \tabularnewline
53 &  19 &  17.3 &  1.703 \tabularnewline
54 &  18 &  17.4 &  0.6049 \tabularnewline
55 &  15 &  16.84 & -1.842 \tabularnewline
56 &  15 &  15.73 & -0.7347 \tabularnewline
57 &  20 &  17.19 &  2.809 \tabularnewline
58 &  19 &  17.19 &  1.809 \tabularnewline
59 &  18 &  16.74 &  1.257 \tabularnewline
60 &  15 &  16.64 & -1.638 \tabularnewline
61 &  20 &  17.4 &  2.605 \tabularnewline
62 &  17 &  16.84 &  0.1584 \tabularnewline
63 &  19 &  16.74 &  2.257 \tabularnewline
64 &  20 &  16.55 &  3.453 \tabularnewline
65 &  18 &  16.74 &  1.257 \tabularnewline
66 &  17 &  16.2 &  0.8022 \tabularnewline
67 &  18 &  16.74 &  1.257 \tabularnewline
68 &  17 &  16.84 &  0.1584 \tabularnewline
69 &  20 &  16.84 &  3.158 \tabularnewline
70 &  16 &  16.65 & -0.6454 \tabularnewline
71 &  14 &  16.74 & -2.743 \tabularnewline
72 &  15 &  16.65 & -1.645 \tabularnewline
73 &  20 &  16.74 &  3.257 \tabularnewline
74 &  17 &  16.74 &  0.2565 \tabularnewline
75 &  17 &  16.84 &  0.1584 \tabularnewline
76 &  18 &  16.1 &  1.9 \tabularnewline
77 &  20 &  16.64 &  3.362 \tabularnewline
78 &  16 &  16.1 & -0.09973 \tabularnewline
79 &  18 &  17.3 &  0.7031 \tabularnewline
80 &  15 &  16.74 & -1.743 \tabularnewline
81 &  18 &  17.29 &  0.7109 \tabularnewline
82 &  20 &  17.19 &  2.809 \tabularnewline
83 &  14 &  16.65 & -2.645 \tabularnewline
84 &  15 &  16.09 & -1.092 \tabularnewline
85 &  17 &  17.19 & -0.191 \tabularnewline
86 &  18 &  16.55 &  1.453 \tabularnewline
87 &  20 &  17.29 &  2.711 \tabularnewline
88 &  17 &  16.85 &  0.1506 \tabularnewline
89 &  16 &  16.74 & -0.7435 \tabularnewline
90 &  11 &  16.84 & -5.842 \tabularnewline
91 &  15 &  16.74 & -1.743 \tabularnewline
92 &  18 &  15.99 &  2.006 \tabularnewline
93 &  16 &  17.4 & -1.395 \tabularnewline
94 &  18 &  17.4 &  0.6049 \tabularnewline
95 &  15 &  16.74 & -1.743 \tabularnewline
96 &  17 &  17.29 & -0.2891 \tabularnewline
97 &  19 &  16.65 &  2.355 \tabularnewline
98 &  16 &  16.74 & -0.7435 \tabularnewline
99 &  14 &  16.65 & -2.645 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301104&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C] 14[/C][C] 16.3[/C][C]-2.296[/C][/ROW]
[ROW][C]2[/C][C] 19[/C][C] 16.84[/C][C] 2.158[/C][/ROW]
[ROW][C]3[/C][C] 17[/C][C] 17.19[/C][C]-0.191[/C][/ROW]
[ROW][C]4[/C][C] 20[/C][C] 17.5[/C][C] 2.499[/C][/ROW]
[ROW][C]5[/C][C] 15[/C][C] 17.4[/C][C]-2.395[/C][/ROW]
[ROW][C]6[/C][C] 19[/C][C] 17.4[/C][C] 1.605[/C][/ROW]
[ROW][C]7[/C][C] 20[/C][C] 16.74[/C][C] 3.257[/C][/ROW]
[ROW][C]8[/C][C] 18[/C][C] 16.85[/C][C] 1.151[/C][/ROW]
[ROW][C]9[/C][C] 15[/C][C] 16.74[/C][C]-1.743[/C][/ROW]
[ROW][C]10[/C][C] 14[/C][C] 17.4[/C][C]-3.395[/C][/ROW]
[ROW][C]11[/C][C] 16[/C][C] 16.84[/C][C]-0.8416[/C][/ROW]
[ROW][C]12[/C][C] 19[/C][C] 16.84[/C][C] 2.158[/C][/ROW]
[ROW][C]13[/C][C] 18[/C][C] 16.74[/C][C] 1.257[/C][/ROW]
[ROW][C]14[/C][C] 17[/C][C] 16.74[/C][C] 0.2565[/C][/ROW]
[ROW][C]15[/C][C] 19[/C][C] 17.3[/C][C] 1.703[/C][/ROW]
[ROW][C]16[/C][C] 17[/C][C] 17.3[/C][C]-0.2969[/C][/ROW]
[ROW][C]17[/C][C] 19[/C][C] 17.4[/C][C] 1.597[/C][/ROW]
[ROW][C]18[/C][C] 20[/C][C] 16.84[/C][C] 3.158[/C][/ROW]
[ROW][C]19[/C][C] 19[/C][C] 16.96[/C][C] 2.045[/C][/ROW]
[ROW][C]20[/C][C] 16[/C][C] 17.4[/C][C]-1.395[/C][/ROW]
[ROW][C]21[/C][C] 16[/C][C] 16.75[/C][C]-0.7513[/C][/ROW]
[ROW][C]22[/C][C] 18[/C][C] 16.55[/C][C] 1.453[/C][/ROW]
[ROW][C]23[/C][C] 16[/C][C] 17.4[/C][C]-1.395[/C][/ROW]
[ROW][C]24[/C][C] 17[/C][C] 17.4[/C][C]-0.3951[/C][/ROW]
[ROW][C]25[/C][C] 20[/C][C] 17.3[/C][C] 2.703[/C][/ROW]
[ROW][C]26[/C][C] 19[/C][C] 16.74[/C][C] 2.257[/C][/ROW]
[ROW][C]27[/C][C] 7[/C][C] 17.2[/C][C]-10.2[/C][/ROW]
[ROW][C]28[/C][C] 16[/C][C] 16.74[/C][C]-0.7435[/C][/ROW]
[ROW][C]29[/C][C] 16[/C][C] 16.09[/C][C]-0.09192[/C][/ROW]
[ROW][C]30[/C][C] 18[/C][C] 17.4[/C][C] 0.6049[/C][/ROW]
[ROW][C]31[/C][C] 17[/C][C] 16.1[/C][C] 0.9003[/C][/ROW]
[ROW][C]32[/C][C] 19[/C][C] 16.65[/C][C] 2.355[/C][/ROW]
[ROW][C]33[/C][C] 16[/C][C] 16.55[/C][C]-0.5473[/C][/ROW]
[ROW][C]34[/C][C] 13[/C][C] 16.74[/C][C]-3.736[/C][/ROW]
[ROW][C]35[/C][C] 16[/C][C] 16.74[/C][C]-0.7435[/C][/ROW]
[ROW][C]36[/C][C] 12[/C][C] 17.4[/C][C]-5.395[/C][/ROW]
[ROW][C]37[/C][C] 17[/C][C] 16.84[/C][C] 0.1584[/C][/ROW]
[ROW][C]38[/C][C] 17[/C][C] 16.64[/C][C] 0.3624[/C][/ROW]
[ROW][C]39[/C][C] 17[/C][C] 16.84[/C][C] 0.1584[/C][/ROW]
[ROW][C]40[/C][C] 16[/C][C] 16.74[/C][C]-0.7435[/C][/ROW]
[ROW][C]41[/C][C] 16[/C][C] 16.96[/C][C]-0.9553[/C][/ROW]
[ROW][C]42[/C][C] 14[/C][C] 17.4[/C][C]-3.395[/C][/ROW]
[ROW][C]43[/C][C] 16[/C][C] 16.65[/C][C]-0.6454[/C][/ROW]
[ROW][C]44[/C][C] 13[/C][C] 16.55[/C][C]-3.547[/C][/ROW]
[ROW][C]45[/C][C] 16[/C][C] 16.84[/C][C]-0.8416[/C][/ROW]
[ROW][C]46[/C][C] 14[/C][C] 16.74[/C][C]-2.743[/C][/ROW]
[ROW][C]47[/C][C] 19[/C][C] 17.5[/C][C] 1.499[/C][/ROW]
[ROW][C]48[/C][C] 18[/C][C] 16.65[/C][C] 1.355[/C][/ROW]
[ROW][C]49[/C][C] 14[/C][C] 16.55[/C][C]-2.547[/C][/ROW]
[ROW][C]50[/C][C] 18[/C][C] 17.4[/C][C] 0.6049[/C][/ROW]
[ROW][C]51[/C][C] 15[/C][C] 16[/C][C]-1.002[/C][/ROW]
[ROW][C]52[/C][C] 17[/C][C] 16.84[/C][C] 0.1584[/C][/ROW]
[ROW][C]53[/C][C] 19[/C][C] 17.3[/C][C] 1.703[/C][/ROW]
[ROW][C]54[/C][C] 18[/C][C] 17.4[/C][C] 0.6049[/C][/ROW]
[ROW][C]55[/C][C] 15[/C][C] 16.84[/C][C]-1.842[/C][/ROW]
[ROW][C]56[/C][C] 15[/C][C] 15.73[/C][C]-0.7347[/C][/ROW]
[ROW][C]57[/C][C] 20[/C][C] 17.19[/C][C] 2.809[/C][/ROW]
[ROW][C]58[/C][C] 19[/C][C] 17.19[/C][C] 1.809[/C][/ROW]
[ROW][C]59[/C][C] 18[/C][C] 16.74[/C][C] 1.257[/C][/ROW]
[ROW][C]60[/C][C] 15[/C][C] 16.64[/C][C]-1.638[/C][/ROW]
[ROW][C]61[/C][C] 20[/C][C] 17.4[/C][C] 2.605[/C][/ROW]
[ROW][C]62[/C][C] 17[/C][C] 16.84[/C][C] 0.1584[/C][/ROW]
[ROW][C]63[/C][C] 19[/C][C] 16.74[/C][C] 2.257[/C][/ROW]
[ROW][C]64[/C][C] 20[/C][C] 16.55[/C][C] 3.453[/C][/ROW]
[ROW][C]65[/C][C] 18[/C][C] 16.74[/C][C] 1.257[/C][/ROW]
[ROW][C]66[/C][C] 17[/C][C] 16.2[/C][C] 0.8022[/C][/ROW]
[ROW][C]67[/C][C] 18[/C][C] 16.74[/C][C] 1.257[/C][/ROW]
[ROW][C]68[/C][C] 17[/C][C] 16.84[/C][C] 0.1584[/C][/ROW]
[ROW][C]69[/C][C] 20[/C][C] 16.84[/C][C] 3.158[/C][/ROW]
[ROW][C]70[/C][C] 16[/C][C] 16.65[/C][C]-0.6454[/C][/ROW]
[ROW][C]71[/C][C] 14[/C][C] 16.74[/C][C]-2.743[/C][/ROW]
[ROW][C]72[/C][C] 15[/C][C] 16.65[/C][C]-1.645[/C][/ROW]
[ROW][C]73[/C][C] 20[/C][C] 16.74[/C][C] 3.257[/C][/ROW]
[ROW][C]74[/C][C] 17[/C][C] 16.74[/C][C] 0.2565[/C][/ROW]
[ROW][C]75[/C][C] 17[/C][C] 16.84[/C][C] 0.1584[/C][/ROW]
[ROW][C]76[/C][C] 18[/C][C] 16.1[/C][C] 1.9[/C][/ROW]
[ROW][C]77[/C][C] 20[/C][C] 16.64[/C][C] 3.362[/C][/ROW]
[ROW][C]78[/C][C] 16[/C][C] 16.1[/C][C]-0.09973[/C][/ROW]
[ROW][C]79[/C][C] 18[/C][C] 17.3[/C][C] 0.7031[/C][/ROW]
[ROW][C]80[/C][C] 15[/C][C] 16.74[/C][C]-1.743[/C][/ROW]
[ROW][C]81[/C][C] 18[/C][C] 17.29[/C][C] 0.7109[/C][/ROW]
[ROW][C]82[/C][C] 20[/C][C] 17.19[/C][C] 2.809[/C][/ROW]
[ROW][C]83[/C][C] 14[/C][C] 16.65[/C][C]-2.645[/C][/ROW]
[ROW][C]84[/C][C] 15[/C][C] 16.09[/C][C]-1.092[/C][/ROW]
[ROW][C]85[/C][C] 17[/C][C] 17.19[/C][C]-0.191[/C][/ROW]
[ROW][C]86[/C][C] 18[/C][C] 16.55[/C][C] 1.453[/C][/ROW]
[ROW][C]87[/C][C] 20[/C][C] 17.29[/C][C] 2.711[/C][/ROW]
[ROW][C]88[/C][C] 17[/C][C] 16.85[/C][C] 0.1506[/C][/ROW]
[ROW][C]89[/C][C] 16[/C][C] 16.74[/C][C]-0.7435[/C][/ROW]
[ROW][C]90[/C][C] 11[/C][C] 16.84[/C][C]-5.842[/C][/ROW]
[ROW][C]91[/C][C] 15[/C][C] 16.74[/C][C]-1.743[/C][/ROW]
[ROW][C]92[/C][C] 18[/C][C] 15.99[/C][C] 2.006[/C][/ROW]
[ROW][C]93[/C][C] 16[/C][C] 17.4[/C][C]-1.395[/C][/ROW]
[ROW][C]94[/C][C] 18[/C][C] 17.4[/C][C] 0.6049[/C][/ROW]
[ROW][C]95[/C][C] 15[/C][C] 16.74[/C][C]-1.743[/C][/ROW]
[ROW][C]96[/C][C] 17[/C][C] 17.29[/C][C]-0.2891[/C][/ROW]
[ROW][C]97[/C][C] 19[/C][C] 16.65[/C][C] 2.355[/C][/ROW]
[ROW][C]98[/C][C] 16[/C][C] 16.74[/C][C]-0.7435[/C][/ROW]
[ROW][C]99[/C][C] 14[/C][C] 16.65[/C][C]-2.645[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301104&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301104&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 14 16.3-2.296
2 19 16.84 2.158
3 17 17.19-0.191
4 20 17.5 2.499
5 15 17.4-2.395
6 19 17.4 1.605
7 20 16.74 3.257
8 18 16.85 1.151
9 15 16.74-1.743
10 14 17.4-3.395
11 16 16.84-0.8416
12 19 16.84 2.158
13 18 16.74 1.257
14 17 16.74 0.2565
15 19 17.3 1.703
16 17 17.3-0.2969
17 19 17.4 1.597
18 20 16.84 3.158
19 19 16.96 2.045
20 16 17.4-1.395
21 16 16.75-0.7513
22 18 16.55 1.453
23 16 17.4-1.395
24 17 17.4-0.3951
25 20 17.3 2.703
26 19 16.74 2.257
27 7 17.2-10.2
28 16 16.74-0.7435
29 16 16.09-0.09192
30 18 17.4 0.6049
31 17 16.1 0.9003
32 19 16.65 2.355
33 16 16.55-0.5473
34 13 16.74-3.736
35 16 16.74-0.7435
36 12 17.4-5.395
37 17 16.84 0.1584
38 17 16.64 0.3624
39 17 16.84 0.1584
40 16 16.74-0.7435
41 16 16.96-0.9553
42 14 17.4-3.395
43 16 16.65-0.6454
44 13 16.55-3.547
45 16 16.84-0.8416
46 14 16.74-2.743
47 19 17.5 1.499
48 18 16.65 1.355
49 14 16.55-2.547
50 18 17.4 0.6049
51 15 16-1.002
52 17 16.84 0.1584
53 19 17.3 1.703
54 18 17.4 0.6049
55 15 16.84-1.842
56 15 15.73-0.7347
57 20 17.19 2.809
58 19 17.19 1.809
59 18 16.74 1.257
60 15 16.64-1.638
61 20 17.4 2.605
62 17 16.84 0.1584
63 19 16.74 2.257
64 20 16.55 3.453
65 18 16.74 1.257
66 17 16.2 0.8022
67 18 16.74 1.257
68 17 16.84 0.1584
69 20 16.84 3.158
70 16 16.65-0.6454
71 14 16.74-2.743
72 15 16.65-1.645
73 20 16.74 3.257
74 17 16.74 0.2565
75 17 16.84 0.1584
76 18 16.1 1.9
77 20 16.64 3.362
78 16 16.1-0.09973
79 18 17.3 0.7031
80 15 16.74-1.743
81 18 17.29 0.7109
82 20 17.19 2.809
83 14 16.65-2.645
84 15 16.09-1.092
85 17 17.19-0.191
86 18 16.55 1.453
87 20 17.29 2.711
88 17 16.85 0.1506
89 16 16.74-0.7435
90 11 16.84-5.842
91 15 16.74-1.743
92 18 15.99 2.006
93 16 17.4-1.395
94 18 17.4 0.6049
95 15 16.74-1.743
96 17 17.29-0.2891
97 19 16.65 2.355
98 16 16.74-0.7435
99 14 16.65-2.645







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
7 0.8827 0.2346 0.1173
8 0.7969 0.4063 0.2031
9 0.7491 0.5018 0.2509
10 0.8531 0.2938 0.1469
11 0.781 0.438 0.219
12 0.7665 0.467 0.2335
13 0.7023 0.5954 0.2977
14 0.6127 0.7747 0.3873
15 0.5507 0.8986 0.4493
16 0.469 0.938 0.531
17 0.3951 0.7903 0.6049
18 0.4488 0.8976 0.5512
19 0.3913 0.7825 0.6087
20 0.359 0.718 0.641
21 0.313 0.626 0.687
22 0.2687 0.5375 0.7312
23 0.2362 0.4723 0.7638
24 0.1838 0.3676 0.8162
25 0.1998 0.3997 0.8002
26 0.1856 0.3712 0.8144
27 0.9804 0.03914 0.01957
28 0.9728 0.05449 0.02725
29 0.9613 0.07741 0.03871
30 0.9468 0.1065 0.05324
31 0.9307 0.1385 0.06926
32 0.9353 0.1293 0.06467
33 0.9149 0.1703 0.08513
34 0.9494 0.1013 0.05064
35 0.9332 0.1336 0.06681
36 0.9845 0.031 0.0155
37 0.9776 0.04477 0.02238
38 0.9696 0.06072 0.03036
39 0.9579 0.0842 0.0421
40 0.9443 0.1115 0.05574
41 0.9352 0.1296 0.06481
42 0.9548 0.09032 0.04516
43 0.9402 0.1197 0.05983
44 0.963 0.07396 0.03698
45 0.9517 0.09658 0.04829
46 0.9595 0.08101 0.0405
47 0.9516 0.0969 0.04845
48 0.9423 0.1154 0.0577
49 0.9533 0.09332 0.04666
50 0.9391 0.1218 0.06093
51 0.9264 0.1472 0.07358
52 0.9041 0.1918 0.0959
53 0.8955 0.209 0.1045
54 0.8688 0.2624 0.1312
55 0.8558 0.2885 0.1442
56 0.8315 0.337 0.1685
57 0.8485 0.303 0.1515
58 0.8311 0.3379 0.1689
59 0.8034 0.3932 0.1966
60 0.7921 0.4159 0.2079
61 0.8139 0.3721 0.1861
62 0.7719 0.4562 0.2281
63 0.7752 0.4496 0.2248
64 0.8102 0.3795 0.1898
65 0.7802 0.4396 0.2198
66 0.749 0.502 0.251
67 0.7159 0.5683 0.2841
68 0.6644 0.6711 0.3356
69 0.7905 0.4191 0.2095
70 0.7494 0.5012 0.2506
71 0.7587 0.4827 0.2413
72 0.7547 0.4906 0.2453
73 0.8471 0.3059 0.1529
74 0.8067 0.3867 0.1933
75 0.803 0.3939 0.197
76 0.8199 0.3601 0.1801
77 0.8902 0.2196 0.1098
78 0.8537 0.2926 0.1463
79 0.8029 0.3942 0.1971
80 0.7502 0.4995 0.2498
81 0.6858 0.6285 0.3142
82 0.6573 0.6854 0.3427
83 0.7336 0.5327 0.2664
84 0.6575 0.6849 0.3425
85 0.6341 0.7317 0.3659
86 0.6153 0.7695 0.3847
87 0.7248 0.5504 0.2752
88 0.6769 0.6462 0.3231
89 0.5809 0.8382 0.4191
90 0.6031 0.7938 0.3969
91 0.4819 0.9638 0.5181
92 0.423 0.8461 0.577

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
7 &  0.8827 &  0.2346 &  0.1173 \tabularnewline
8 &  0.7969 &  0.4063 &  0.2031 \tabularnewline
9 &  0.7491 &  0.5018 &  0.2509 \tabularnewline
10 &  0.8531 &  0.2938 &  0.1469 \tabularnewline
11 &  0.781 &  0.438 &  0.219 \tabularnewline
12 &  0.7665 &  0.467 &  0.2335 \tabularnewline
13 &  0.7023 &  0.5954 &  0.2977 \tabularnewline
14 &  0.6127 &  0.7747 &  0.3873 \tabularnewline
15 &  0.5507 &  0.8986 &  0.4493 \tabularnewline
16 &  0.469 &  0.938 &  0.531 \tabularnewline
17 &  0.3951 &  0.7903 &  0.6049 \tabularnewline
18 &  0.4488 &  0.8976 &  0.5512 \tabularnewline
19 &  0.3913 &  0.7825 &  0.6087 \tabularnewline
20 &  0.359 &  0.718 &  0.641 \tabularnewline
21 &  0.313 &  0.626 &  0.687 \tabularnewline
22 &  0.2687 &  0.5375 &  0.7312 \tabularnewline
23 &  0.2362 &  0.4723 &  0.7638 \tabularnewline
24 &  0.1838 &  0.3676 &  0.8162 \tabularnewline
25 &  0.1998 &  0.3997 &  0.8002 \tabularnewline
26 &  0.1856 &  0.3712 &  0.8144 \tabularnewline
27 &  0.9804 &  0.03914 &  0.01957 \tabularnewline
28 &  0.9728 &  0.05449 &  0.02725 \tabularnewline
29 &  0.9613 &  0.07741 &  0.03871 \tabularnewline
30 &  0.9468 &  0.1065 &  0.05324 \tabularnewline
31 &  0.9307 &  0.1385 &  0.06926 \tabularnewline
32 &  0.9353 &  0.1293 &  0.06467 \tabularnewline
33 &  0.9149 &  0.1703 &  0.08513 \tabularnewline
34 &  0.9494 &  0.1013 &  0.05064 \tabularnewline
35 &  0.9332 &  0.1336 &  0.06681 \tabularnewline
36 &  0.9845 &  0.031 &  0.0155 \tabularnewline
37 &  0.9776 &  0.04477 &  0.02238 \tabularnewline
38 &  0.9696 &  0.06072 &  0.03036 \tabularnewline
39 &  0.9579 &  0.0842 &  0.0421 \tabularnewline
40 &  0.9443 &  0.1115 &  0.05574 \tabularnewline
41 &  0.9352 &  0.1296 &  0.06481 \tabularnewline
42 &  0.9548 &  0.09032 &  0.04516 \tabularnewline
43 &  0.9402 &  0.1197 &  0.05983 \tabularnewline
44 &  0.963 &  0.07396 &  0.03698 \tabularnewline
45 &  0.9517 &  0.09658 &  0.04829 \tabularnewline
46 &  0.9595 &  0.08101 &  0.0405 \tabularnewline
47 &  0.9516 &  0.0969 &  0.04845 \tabularnewline
48 &  0.9423 &  0.1154 &  0.0577 \tabularnewline
49 &  0.9533 &  0.09332 &  0.04666 \tabularnewline
50 &  0.9391 &  0.1218 &  0.06093 \tabularnewline
51 &  0.9264 &  0.1472 &  0.07358 \tabularnewline
52 &  0.9041 &  0.1918 &  0.0959 \tabularnewline
53 &  0.8955 &  0.209 &  0.1045 \tabularnewline
54 &  0.8688 &  0.2624 &  0.1312 \tabularnewline
55 &  0.8558 &  0.2885 &  0.1442 \tabularnewline
56 &  0.8315 &  0.337 &  0.1685 \tabularnewline
57 &  0.8485 &  0.303 &  0.1515 \tabularnewline
58 &  0.8311 &  0.3379 &  0.1689 \tabularnewline
59 &  0.8034 &  0.3932 &  0.1966 \tabularnewline
60 &  0.7921 &  0.4159 &  0.2079 \tabularnewline
61 &  0.8139 &  0.3721 &  0.1861 \tabularnewline
62 &  0.7719 &  0.4562 &  0.2281 \tabularnewline
63 &  0.7752 &  0.4496 &  0.2248 \tabularnewline
64 &  0.8102 &  0.3795 &  0.1898 \tabularnewline
65 &  0.7802 &  0.4396 &  0.2198 \tabularnewline
66 &  0.749 &  0.502 &  0.251 \tabularnewline
67 &  0.7159 &  0.5683 &  0.2841 \tabularnewline
68 &  0.6644 &  0.6711 &  0.3356 \tabularnewline
69 &  0.7905 &  0.4191 &  0.2095 \tabularnewline
70 &  0.7494 &  0.5012 &  0.2506 \tabularnewline
71 &  0.7587 &  0.4827 &  0.2413 \tabularnewline
72 &  0.7547 &  0.4906 &  0.2453 \tabularnewline
73 &  0.8471 &  0.3059 &  0.1529 \tabularnewline
74 &  0.8067 &  0.3867 &  0.1933 \tabularnewline
75 &  0.803 &  0.3939 &  0.197 \tabularnewline
76 &  0.8199 &  0.3601 &  0.1801 \tabularnewline
77 &  0.8902 &  0.2196 &  0.1098 \tabularnewline
78 &  0.8537 &  0.2926 &  0.1463 \tabularnewline
79 &  0.8029 &  0.3942 &  0.1971 \tabularnewline
80 &  0.7502 &  0.4995 &  0.2498 \tabularnewline
81 &  0.6858 &  0.6285 &  0.3142 \tabularnewline
82 &  0.6573 &  0.6854 &  0.3427 \tabularnewline
83 &  0.7336 &  0.5327 &  0.2664 \tabularnewline
84 &  0.6575 &  0.6849 &  0.3425 \tabularnewline
85 &  0.6341 &  0.7317 &  0.3659 \tabularnewline
86 &  0.6153 &  0.7695 &  0.3847 \tabularnewline
87 &  0.7248 &  0.5504 &  0.2752 \tabularnewline
88 &  0.6769 &  0.6462 &  0.3231 \tabularnewline
89 &  0.5809 &  0.8382 &  0.4191 \tabularnewline
90 &  0.6031 &  0.7938 &  0.3969 \tabularnewline
91 &  0.4819 &  0.9638 &  0.5181 \tabularnewline
92 &  0.423 &  0.8461 &  0.577 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301104&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]7[/C][C] 0.8827[/C][C] 0.2346[/C][C] 0.1173[/C][/ROW]
[ROW][C]8[/C][C] 0.7969[/C][C] 0.4063[/C][C] 0.2031[/C][/ROW]
[ROW][C]9[/C][C] 0.7491[/C][C] 0.5018[/C][C] 0.2509[/C][/ROW]
[ROW][C]10[/C][C] 0.8531[/C][C] 0.2938[/C][C] 0.1469[/C][/ROW]
[ROW][C]11[/C][C] 0.781[/C][C] 0.438[/C][C] 0.219[/C][/ROW]
[ROW][C]12[/C][C] 0.7665[/C][C] 0.467[/C][C] 0.2335[/C][/ROW]
[ROW][C]13[/C][C] 0.7023[/C][C] 0.5954[/C][C] 0.2977[/C][/ROW]
[ROW][C]14[/C][C] 0.6127[/C][C] 0.7747[/C][C] 0.3873[/C][/ROW]
[ROW][C]15[/C][C] 0.5507[/C][C] 0.8986[/C][C] 0.4493[/C][/ROW]
[ROW][C]16[/C][C] 0.469[/C][C] 0.938[/C][C] 0.531[/C][/ROW]
[ROW][C]17[/C][C] 0.3951[/C][C] 0.7903[/C][C] 0.6049[/C][/ROW]
[ROW][C]18[/C][C] 0.4488[/C][C] 0.8976[/C][C] 0.5512[/C][/ROW]
[ROW][C]19[/C][C] 0.3913[/C][C] 0.7825[/C][C] 0.6087[/C][/ROW]
[ROW][C]20[/C][C] 0.359[/C][C] 0.718[/C][C] 0.641[/C][/ROW]
[ROW][C]21[/C][C] 0.313[/C][C] 0.626[/C][C] 0.687[/C][/ROW]
[ROW][C]22[/C][C] 0.2687[/C][C] 0.5375[/C][C] 0.7312[/C][/ROW]
[ROW][C]23[/C][C] 0.2362[/C][C] 0.4723[/C][C] 0.7638[/C][/ROW]
[ROW][C]24[/C][C] 0.1838[/C][C] 0.3676[/C][C] 0.8162[/C][/ROW]
[ROW][C]25[/C][C] 0.1998[/C][C] 0.3997[/C][C] 0.8002[/C][/ROW]
[ROW][C]26[/C][C] 0.1856[/C][C] 0.3712[/C][C] 0.8144[/C][/ROW]
[ROW][C]27[/C][C] 0.9804[/C][C] 0.03914[/C][C] 0.01957[/C][/ROW]
[ROW][C]28[/C][C] 0.9728[/C][C] 0.05449[/C][C] 0.02725[/C][/ROW]
[ROW][C]29[/C][C] 0.9613[/C][C] 0.07741[/C][C] 0.03871[/C][/ROW]
[ROW][C]30[/C][C] 0.9468[/C][C] 0.1065[/C][C] 0.05324[/C][/ROW]
[ROW][C]31[/C][C] 0.9307[/C][C] 0.1385[/C][C] 0.06926[/C][/ROW]
[ROW][C]32[/C][C] 0.9353[/C][C] 0.1293[/C][C] 0.06467[/C][/ROW]
[ROW][C]33[/C][C] 0.9149[/C][C] 0.1703[/C][C] 0.08513[/C][/ROW]
[ROW][C]34[/C][C] 0.9494[/C][C] 0.1013[/C][C] 0.05064[/C][/ROW]
[ROW][C]35[/C][C] 0.9332[/C][C] 0.1336[/C][C] 0.06681[/C][/ROW]
[ROW][C]36[/C][C] 0.9845[/C][C] 0.031[/C][C] 0.0155[/C][/ROW]
[ROW][C]37[/C][C] 0.9776[/C][C] 0.04477[/C][C] 0.02238[/C][/ROW]
[ROW][C]38[/C][C] 0.9696[/C][C] 0.06072[/C][C] 0.03036[/C][/ROW]
[ROW][C]39[/C][C] 0.9579[/C][C] 0.0842[/C][C] 0.0421[/C][/ROW]
[ROW][C]40[/C][C] 0.9443[/C][C] 0.1115[/C][C] 0.05574[/C][/ROW]
[ROW][C]41[/C][C] 0.9352[/C][C] 0.1296[/C][C] 0.06481[/C][/ROW]
[ROW][C]42[/C][C] 0.9548[/C][C] 0.09032[/C][C] 0.04516[/C][/ROW]
[ROW][C]43[/C][C] 0.9402[/C][C] 0.1197[/C][C] 0.05983[/C][/ROW]
[ROW][C]44[/C][C] 0.963[/C][C] 0.07396[/C][C] 0.03698[/C][/ROW]
[ROW][C]45[/C][C] 0.9517[/C][C] 0.09658[/C][C] 0.04829[/C][/ROW]
[ROW][C]46[/C][C] 0.9595[/C][C] 0.08101[/C][C] 0.0405[/C][/ROW]
[ROW][C]47[/C][C] 0.9516[/C][C] 0.0969[/C][C] 0.04845[/C][/ROW]
[ROW][C]48[/C][C] 0.9423[/C][C] 0.1154[/C][C] 0.0577[/C][/ROW]
[ROW][C]49[/C][C] 0.9533[/C][C] 0.09332[/C][C] 0.04666[/C][/ROW]
[ROW][C]50[/C][C] 0.9391[/C][C] 0.1218[/C][C] 0.06093[/C][/ROW]
[ROW][C]51[/C][C] 0.9264[/C][C] 0.1472[/C][C] 0.07358[/C][/ROW]
[ROW][C]52[/C][C] 0.9041[/C][C] 0.1918[/C][C] 0.0959[/C][/ROW]
[ROW][C]53[/C][C] 0.8955[/C][C] 0.209[/C][C] 0.1045[/C][/ROW]
[ROW][C]54[/C][C] 0.8688[/C][C] 0.2624[/C][C] 0.1312[/C][/ROW]
[ROW][C]55[/C][C] 0.8558[/C][C] 0.2885[/C][C] 0.1442[/C][/ROW]
[ROW][C]56[/C][C] 0.8315[/C][C] 0.337[/C][C] 0.1685[/C][/ROW]
[ROW][C]57[/C][C] 0.8485[/C][C] 0.303[/C][C] 0.1515[/C][/ROW]
[ROW][C]58[/C][C] 0.8311[/C][C] 0.3379[/C][C] 0.1689[/C][/ROW]
[ROW][C]59[/C][C] 0.8034[/C][C] 0.3932[/C][C] 0.1966[/C][/ROW]
[ROW][C]60[/C][C] 0.7921[/C][C] 0.4159[/C][C] 0.2079[/C][/ROW]
[ROW][C]61[/C][C] 0.8139[/C][C] 0.3721[/C][C] 0.1861[/C][/ROW]
[ROW][C]62[/C][C] 0.7719[/C][C] 0.4562[/C][C] 0.2281[/C][/ROW]
[ROW][C]63[/C][C] 0.7752[/C][C] 0.4496[/C][C] 0.2248[/C][/ROW]
[ROW][C]64[/C][C] 0.8102[/C][C] 0.3795[/C][C] 0.1898[/C][/ROW]
[ROW][C]65[/C][C] 0.7802[/C][C] 0.4396[/C][C] 0.2198[/C][/ROW]
[ROW][C]66[/C][C] 0.749[/C][C] 0.502[/C][C] 0.251[/C][/ROW]
[ROW][C]67[/C][C] 0.7159[/C][C] 0.5683[/C][C] 0.2841[/C][/ROW]
[ROW][C]68[/C][C] 0.6644[/C][C] 0.6711[/C][C] 0.3356[/C][/ROW]
[ROW][C]69[/C][C] 0.7905[/C][C] 0.4191[/C][C] 0.2095[/C][/ROW]
[ROW][C]70[/C][C] 0.7494[/C][C] 0.5012[/C][C] 0.2506[/C][/ROW]
[ROW][C]71[/C][C] 0.7587[/C][C] 0.4827[/C][C] 0.2413[/C][/ROW]
[ROW][C]72[/C][C] 0.7547[/C][C] 0.4906[/C][C] 0.2453[/C][/ROW]
[ROW][C]73[/C][C] 0.8471[/C][C] 0.3059[/C][C] 0.1529[/C][/ROW]
[ROW][C]74[/C][C] 0.8067[/C][C] 0.3867[/C][C] 0.1933[/C][/ROW]
[ROW][C]75[/C][C] 0.803[/C][C] 0.3939[/C][C] 0.197[/C][/ROW]
[ROW][C]76[/C][C] 0.8199[/C][C] 0.3601[/C][C] 0.1801[/C][/ROW]
[ROW][C]77[/C][C] 0.8902[/C][C] 0.2196[/C][C] 0.1098[/C][/ROW]
[ROW][C]78[/C][C] 0.8537[/C][C] 0.2926[/C][C] 0.1463[/C][/ROW]
[ROW][C]79[/C][C] 0.8029[/C][C] 0.3942[/C][C] 0.1971[/C][/ROW]
[ROW][C]80[/C][C] 0.7502[/C][C] 0.4995[/C][C] 0.2498[/C][/ROW]
[ROW][C]81[/C][C] 0.6858[/C][C] 0.6285[/C][C] 0.3142[/C][/ROW]
[ROW][C]82[/C][C] 0.6573[/C][C] 0.6854[/C][C] 0.3427[/C][/ROW]
[ROW][C]83[/C][C] 0.7336[/C][C] 0.5327[/C][C] 0.2664[/C][/ROW]
[ROW][C]84[/C][C] 0.6575[/C][C] 0.6849[/C][C] 0.3425[/C][/ROW]
[ROW][C]85[/C][C] 0.6341[/C][C] 0.7317[/C][C] 0.3659[/C][/ROW]
[ROW][C]86[/C][C] 0.6153[/C][C] 0.7695[/C][C] 0.3847[/C][/ROW]
[ROW][C]87[/C][C] 0.7248[/C][C] 0.5504[/C][C] 0.2752[/C][/ROW]
[ROW][C]88[/C][C] 0.6769[/C][C] 0.6462[/C][C] 0.3231[/C][/ROW]
[ROW][C]89[/C][C] 0.5809[/C][C] 0.8382[/C][C] 0.4191[/C][/ROW]
[ROW][C]90[/C][C] 0.6031[/C][C] 0.7938[/C][C] 0.3969[/C][/ROW]
[ROW][C]91[/C][C] 0.4819[/C][C] 0.9638[/C][C] 0.5181[/C][/ROW]
[ROW][C]92[/C][C] 0.423[/C][C] 0.8461[/C][C] 0.577[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301104&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301104&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
7 0.8827 0.2346 0.1173
8 0.7969 0.4063 0.2031
9 0.7491 0.5018 0.2509
10 0.8531 0.2938 0.1469
11 0.781 0.438 0.219
12 0.7665 0.467 0.2335
13 0.7023 0.5954 0.2977
14 0.6127 0.7747 0.3873
15 0.5507 0.8986 0.4493
16 0.469 0.938 0.531
17 0.3951 0.7903 0.6049
18 0.4488 0.8976 0.5512
19 0.3913 0.7825 0.6087
20 0.359 0.718 0.641
21 0.313 0.626 0.687
22 0.2687 0.5375 0.7312
23 0.2362 0.4723 0.7638
24 0.1838 0.3676 0.8162
25 0.1998 0.3997 0.8002
26 0.1856 0.3712 0.8144
27 0.9804 0.03914 0.01957
28 0.9728 0.05449 0.02725
29 0.9613 0.07741 0.03871
30 0.9468 0.1065 0.05324
31 0.9307 0.1385 0.06926
32 0.9353 0.1293 0.06467
33 0.9149 0.1703 0.08513
34 0.9494 0.1013 0.05064
35 0.9332 0.1336 0.06681
36 0.9845 0.031 0.0155
37 0.9776 0.04477 0.02238
38 0.9696 0.06072 0.03036
39 0.9579 0.0842 0.0421
40 0.9443 0.1115 0.05574
41 0.9352 0.1296 0.06481
42 0.9548 0.09032 0.04516
43 0.9402 0.1197 0.05983
44 0.963 0.07396 0.03698
45 0.9517 0.09658 0.04829
46 0.9595 0.08101 0.0405
47 0.9516 0.0969 0.04845
48 0.9423 0.1154 0.0577
49 0.9533 0.09332 0.04666
50 0.9391 0.1218 0.06093
51 0.9264 0.1472 0.07358
52 0.9041 0.1918 0.0959
53 0.8955 0.209 0.1045
54 0.8688 0.2624 0.1312
55 0.8558 0.2885 0.1442
56 0.8315 0.337 0.1685
57 0.8485 0.303 0.1515
58 0.8311 0.3379 0.1689
59 0.8034 0.3932 0.1966
60 0.7921 0.4159 0.2079
61 0.8139 0.3721 0.1861
62 0.7719 0.4562 0.2281
63 0.7752 0.4496 0.2248
64 0.8102 0.3795 0.1898
65 0.7802 0.4396 0.2198
66 0.749 0.502 0.251
67 0.7159 0.5683 0.2841
68 0.6644 0.6711 0.3356
69 0.7905 0.4191 0.2095
70 0.7494 0.5012 0.2506
71 0.7587 0.4827 0.2413
72 0.7547 0.4906 0.2453
73 0.8471 0.3059 0.1529
74 0.8067 0.3867 0.1933
75 0.803 0.3939 0.197
76 0.8199 0.3601 0.1801
77 0.8902 0.2196 0.1098
78 0.8537 0.2926 0.1463
79 0.8029 0.3942 0.1971
80 0.7502 0.4995 0.2498
81 0.6858 0.6285 0.3142
82 0.6573 0.6854 0.3427
83 0.7336 0.5327 0.2664
84 0.6575 0.6849 0.3425
85 0.6341 0.7317 0.3659
86 0.6153 0.7695 0.3847
87 0.7248 0.5504 0.2752
88 0.6769 0.6462 0.3231
89 0.5809 0.8382 0.4191
90 0.6031 0.7938 0.3969
91 0.4819 0.9638 0.5181
92 0.423 0.8461 0.577







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level0 0OK
5% type I error level30.0348837OK
10% type I error level130.151163NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 0 &  0 & OK \tabularnewline
5% type I error level & 3 & 0.0348837 & OK \tabularnewline
10% type I error level & 13 & 0.151163 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301104&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]0[/C][C] 0[/C][C]OK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]3[/C][C]0.0348837[/C][C]OK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]13[/C][C]0.151163[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301104&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301104&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level0 0OK
5% type I error level30.0348837OK
10% type I error level130.151163NOK







Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.0017284, df1 = 2, df2 = 93, p-value = 0.9983
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0.55234, df1 = 6, df2 = 89, p-value = 0.7669
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.30234, df1 = 2, df2 = 93, p-value = 0.7398

\begin{tabular}{lllllllll}
\hline
Ramsey RESET F-Test for powers (2 and 3) of fitted values \tabularnewline
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.0017284, df1 = 2, df2 = 93, p-value = 0.9983
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of regressors \tabularnewline
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0.55234, df1 = 6, df2 = 89, p-value = 0.7669
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of principal components \tabularnewline
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.30234, df1 = 2, df2 = 93, p-value = 0.7398
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=301104&T=7

[TABLE]
[ROW][C]Ramsey RESET F-Test for powers (2 and 3) of fitted values[/C][/ROW]
[ROW][C]
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.0017284, df1 = 2, df2 = 93, p-value = 0.9983
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of regressors[/C][/ROW] [ROW][C]
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0.55234, df1 = 6, df2 = 89, p-value = 0.7669
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of principal components[/C][/ROW] [ROW][C]
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.30234, df1 = 2, df2 = 93, p-value = 0.7398
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=301104&T=7

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301104&T=7

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.0017284, df1 = 2, df2 = 93, p-value = 0.9983
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0.55234, df1 = 6, df2 = 89, p-value = 0.7669
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.30234, df1 = 2, df2 = 93, p-value = 0.7398







Variance Inflation Factors (Multicollinearity)
> vif
   TDVC1    TDVC2    TDVC3 
1.318003 1.131848 1.399720 

\begin{tabular}{lllllllll}
\hline
Variance Inflation Factors (Multicollinearity) \tabularnewline
> vif
   TDVC1    TDVC2    TDVC3 
1.318003 1.131848 1.399720 
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=301104&T=8

[TABLE]
[ROW][C]Variance Inflation Factors (Multicollinearity)[/C][/ROW]
[ROW][C]
> vif
   TDVC1    TDVC2    TDVC3 
1.318003 1.131848 1.399720 
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=301104&T=8

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301104&T=8

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variance Inflation Factors (Multicollinearity)
> vif
   TDVC1    TDVC2    TDVC3 
1.318003 1.131848 1.399720 



Parameters (Session):
par1 = TRUE ;
Parameters (R input):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = ; par5 = ;
R code (references can be found in the software module):
par5 <- ''
par4 <- ''
par3 <- 'No Linear Trend'
par2 <- 'Do not include Seasonal Dummies'
par1 <- '1'
library(lattice)
library(lmtest)
library(car)
library(MASS)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
mywarning <- ''
par1 <- as.numeric(par1)
if(is.na(par1)) {
par1 <- 1
mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.'
}
if (par4=='') par4 <- 0
par4 <- as.numeric(par4)
if (par5=='') par5 <- 0
par5 <- as.numeric(par5)
x <- na.omit(t(y))
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'Seasonal Differences (s=12)'){
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'First and Seasonal Differences (s=12)'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if(par4 > 0) {
x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep='')))
for (i in 1:(n-par4)) {
for (j in 1:par4) {
x2[i,j] <- x[i+par4-j,par1]
}
}
x <- cbind(x[(par4+1):n,], x2)
n <- n - par4
}
if(par5 > 0) {
x2 <- array(0, dim=c(n-par5*12,par5), dimnames=list(1:(n-par5*12), paste(colnames(x)[par1],'(t-',1:par5,'s)',sep='')))
for (i in 1:(n-par5*12)) {
for (j in 1:par5) {
x2[i,j] <- x[i+par5*12-j*12,par1]
}
}
x <- cbind(x[(par5*12+1):n,], x2)
n <- n - par5*12
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
(k <- length(x[n,]))
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
print(x)
(k <- length(x[n,]))
head(x)
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
sresid <- studres(mylm)
hist(sresid, freq=FALSE, main='Distribution of Studentized Residuals')
xfit<-seq(min(sresid),max(sresid),length=40)
yfit<-dnorm(xfit)
lines(xfit, yfit)
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqPlot(mylm, main='QQ Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
print(z)
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, mywarning)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Multiple Linear Regression - Ordinary Least Squares', 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
myr <- as.numeric(mysum$resid)
myr
if(n < 200) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' '))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of fitted values',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_fitted <- resettest(mylm,power=2:3,type='fitted')
a<-table.element(a,paste('
',RC.texteval('reset_test_fitted'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of regressors',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_regressors <- resettest(mylm,power=2:3,type='regressor')
a<-table.element(a,paste('
',RC.texteval('reset_test_regressors'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of principal components',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_principal_components <- resettest(mylm,power=2:3,type='princomp')
a<-table.element(a,paste('
',RC.texteval('reset_test_principal_components'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable8.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variance Inflation Factors (Multicollinearity)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
vif <- vif(mylm)
a<-table.element(a,paste('
',RC.texteval('vif'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable9.tab')