Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationSun, 18 Dec 2016 13:17:30 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/18/t1482063512hh2fy6xwqic0xc7.htm/, Retrieved Fri, 01 Nov 2024 03:26:24 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=301028, Retrieved Fri, 01 Nov 2024 03:26:24 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact113
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [Multiple regression ] [2016-12-18 12:17:30] [84a79156fb687334cf7dc390d7b82d5a] [Current]
Feedback Forum

Post a new message
Dataseries X:
4	2	4	3	5	4	14
5	3	3	4	5	4	19
4	4	5	4	5	4	17
3	4	3	3	4	4	17
4	4	5	4	5	4	15
3	4	4	4	5	5	20
3	4	4	3	3	4	15
3	4	5	4	4	4	19
4	5	4	4	5	5	15
4	5	5	4	5	5	15
4	4	2	4	5	4	19
4	4	4	3	4	5	20
3	3	5	4	4	5	18
4	4	5	4	2	5	15
3	4	5	4	4	5	14
3	4	5	4	4	5	20
5	5	4	3	4	4	16
4	4	4	4	5	4	16
3	4	5	3	4	5	16
4	4	4	4	5	5	10
4	4	5	4	4	5	19
4	4	5	4	4	4	19
4	4	5	4	4	5	16
3	4	4	4	4	4	15
3	4	4	3	5	5	18
4	4	4	4	4	4	17
2	4	5	4	5	5	19
5	4	4	4	4	4	17
4	5	5	4	5	5	19
5	4	5	4	4	5	20
4	3	5	4	5	5	5
2	3	5	4	5	4	19
4	5	2	4	4	4	16
3	4	5	4	4	4	15
4	3	5	3	4	5	16
4	3	3	4	4	4	18
4	4	5	4	4	4	16
5	4	4	4	4	4	15
4	5	5	4	5	5	17
5	5	5	3	5	5	20
5	4	5	3	4	4	19
4	4	4	3	4	5	7
4	4	4	4	4	4	13
3	5	5	3	3	4	16
4	4	4	4	5	4	16
4	5	5	4	4	4	18
5	5	2	4	5	4	18
5	5	5	4	4	4	16
4	3	5	4	5	5	17
4	3	4	3	4	5	19
4	4	5	4	4	4	16
3	4	4	3	3	4	19
3	4	4	4	4	3	13
4	4	4	3	5	4	16
4	4	4	4	5	4	13
5	5	3	4	5	5	12
2	4	4	4	5	5	17
4	4	4	4	5	5	17
3	4	4	4	2	4	17
4	4	5	4	5	5	16
4	2	4	4	4	4	16
4	4	4	3	5	3	14
4	4	4	3	5	4	16
5	4	5	3	3	5	13
3	4	4	3	5	5	16
3	4	4	3	4	5	14
4	5	5	5	5	4	20
4	4	3	4	4	4	12
4	4	4	4	4	4	13
4	4	4	5	5	4	18
3	4	3	4	4	4	14
4	4	4	4	5	4	19
3	4	5	3	5	5	18
3	3	5	4	4	5	14
4	3	5	4	4	4	18
4	4	5	4	4	5	19
3	3	3	4	4	4	15
4	4	4	4	5	4	14
4	4	3	4	5	5	17
4	4	4	4	5	5	19
5	4	4	4	4	4	13
5	4	3	5	4	5	19
4	4	5	4	5	5	18
3	4	5	4	4	5	20
3	3	4	4	4	4	15
4	2	3	3	4	4	15
4	4	5	4	4	3	15
4	4	5	4	4	5	20
4	4	4	4	5	4	15
4	5	4	4	5	3	19
3	4	4	3	5	5	18
4	4	5	4	4	5	18
5	4	3	4	4	5	15
5	4	5	5	4	5	20
4	5	4	4	5	5	17
3	4	5	4	4	5	12
5	3	4	4	5	5	18
4	4	5	4	4	5	19
5	4	4	4	4	5	20
5	4	4	5	5	5	17
4	4	5	3	5	5	15
4	4	3	3	4	3	16
4	4	5	4	4	4	18
4	4	5	4	4	4	18
3	4	5	4	5	3	14
4	4	4	4	4	4	15
4	4	4	3	4	5	12
3	3	4	3	5	5	17
4	4	4	3	4	4	14
3	4	5	4	4	4	18
4	4	5	4	3	4	17
5	4	5	1	5	5	17
5	4	5	4	5	5	20
4	4	4	4	4	3	16
4	4	5	3	4	4	14
3	4	4	3	4	5	15
4	4	4	4	4	4	18
4	4	4	4	5	4	20
4	5	3	4	4	4	17
3	4	4	4	4	4	17
4	4	4	3	4	4	17
4	4	4	4	4	5	17
3	4	3	3	4	4	15
4	4	4	3	4	3	17
3	2	4	2	4	4	18
4	4	4	3	5	4	17
5	4	4	3	5	4	20
2	4	4	3	3	5	15
3	3	4	4	4	4	16
4	4	4	3	4	4	15
5	5	4	4	5	4	18
4	5	5	4	4	4	15
5	5	5	5	5	4	18
4	5	5	4	5	5	20
4	4	4	3	4	5	19
3	4	5	4	5	4	14
4	4	5	4	4	4	16
4	4	2	4	4	4	15
4	4	3	4	5	5	17
4	4	4	4	5	5	18
5	4	5	3	5	4	20
4	3	5	4	4	4	17
4	4	5	4	4	4	18
3	3	2	3	4	4	15
4	5	5	4	4	3	16
4	4	4	3	4	4	11
4	4	4	4	4	5	15
3	4	5	3	5	5	18
4	4	5	4	4	5	17
5	4	5	4	5	4	16
4	4	5	4	3	4	12
2	3	5	4	4	4	19
4	4	4	4	4	5	18
4	3	4	3	5	5	15
4	4	4	4	4	3	17
4	5	5	5	4	4	19
5	4	3	4	4	4	18
5	4	4	3	4	4	19
3	3	1	4	5	5	16
4	4	4	4	4	5	16
4	4	4	4	5	4	16
2	3	4	5	5	4	14




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time8 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301028&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]8 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=301028&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301028&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R ServerBig Analytics Cloud Computing Center







Multiple Linear Regression - Estimated Regression Equation
ITHSUM[t] = + 8.90266 + 0.240424SK1[t] + 0.238159SK2[t] + 0.352888SK3[t] + 0.355702SK4[t] + 0.368213SK5[t] + 0.295319SK6[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
ITHSUM[t] =  +  8.90266 +  0.240424SK1[t] +  0.238159SK2[t] +  0.352888SK3[t] +  0.355702SK4[t] +  0.368213SK5[t] +  0.295319SK6[t]  + e[t] \tabularnewline
 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301028&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]ITHSUM[t] =  +  8.90266 +  0.240424SK1[t] +  0.238159SK2[t] +  0.352888SK3[t] +  0.355702SK4[t] +  0.368213SK5[t] +  0.295319SK6[t]  + e[t][/C][/ROW]
[ROW][C][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301028&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301028&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
ITHSUM[t] = + 8.90266 + 0.240424SK1[t] + 0.238159SK2[t] + 0.352888SK3[t] + 0.355702SK4[t] + 0.368213SK5[t] + 0.295319SK6[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+8.903 2.621+3.3970e+00 0.0008669 0.0004334
SK1+0.2404 0.2778+8.6530e-01 0.3882 0.1941
SK2+0.2382 0.3397+7.0110e-01 0.4843 0.2421
SK3+0.3529 0.2473+1.4270e+00 0.1557 0.07783
SK4+0.3557 0.3386+1.0510e+00 0.2951 0.1475
SK5+0.3682 0.3192+1.1540e+00 0.2504 0.1252
SK6+0.2953 0.3312+8.9180e-01 0.3739 0.187

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & +8.903 &  2.621 & +3.3970e+00 &  0.0008669 &  0.0004334 \tabularnewline
SK1 & +0.2404 &  0.2778 & +8.6530e-01 &  0.3882 &  0.1941 \tabularnewline
SK2 & +0.2382 &  0.3397 & +7.0110e-01 &  0.4843 &  0.2421 \tabularnewline
SK3 & +0.3529 &  0.2473 & +1.4270e+00 &  0.1557 &  0.07783 \tabularnewline
SK4 & +0.3557 &  0.3386 & +1.0510e+00 &  0.2951 &  0.1475 \tabularnewline
SK5 & +0.3682 &  0.3192 & +1.1540e+00 &  0.2504 &  0.1252 \tabularnewline
SK6 & +0.2953 &  0.3312 & +8.9180e-01 &  0.3739 &  0.187 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301028&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]+8.903[/C][C] 2.621[/C][C]+3.3970e+00[/C][C] 0.0008669[/C][C] 0.0004334[/C][/ROW]
[ROW][C]SK1[/C][C]+0.2404[/C][C] 0.2778[/C][C]+8.6530e-01[/C][C] 0.3882[/C][C] 0.1941[/C][/ROW]
[ROW][C]SK2[/C][C]+0.2382[/C][C] 0.3397[/C][C]+7.0110e-01[/C][C] 0.4843[/C][C] 0.2421[/C][/ROW]
[ROW][C]SK3[/C][C]+0.3529[/C][C] 0.2473[/C][C]+1.4270e+00[/C][C] 0.1557[/C][C] 0.07783[/C][/ROW]
[ROW][C]SK4[/C][C]+0.3557[/C][C] 0.3386[/C][C]+1.0510e+00[/C][C] 0.2951[/C][C] 0.1475[/C][/ROW]
[ROW][C]SK5[/C][C]+0.3682[/C][C] 0.3192[/C][C]+1.1540e+00[/C][C] 0.2504[/C][C] 0.1252[/C][/ROW]
[ROW][C]SK6[/C][C]+0.2953[/C][C] 0.3312[/C][C]+8.9180e-01[/C][C] 0.3739[/C][C] 0.187[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301028&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301028&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+8.903 2.621+3.3970e+00 0.0008669 0.0004334
SK1+0.2404 0.2778+8.6530e-01 0.3882 0.1941
SK2+0.2382 0.3397+7.0110e-01 0.4843 0.2421
SK3+0.3529 0.2473+1.4270e+00 0.1557 0.07783
SK4+0.3557 0.3386+1.0510e+00 0.2951 0.1475
SK5+0.3682 0.3192+1.1540e+00 0.2504 0.1252
SK6+0.2953 0.3312+8.9180e-01 0.3739 0.187







Multiple Linear Regression - Regression Statistics
Multiple R 0.2329
R-squared 0.05427
Adjusted R-squared 0.01766
F-TEST (value) 1.482
F-TEST (DF numerator)6
F-TEST (DF denominator)155
p-value 0.1876
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 2.448
Sum Squared Residuals 929.1

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R &  0.2329 \tabularnewline
R-squared &  0.05427 \tabularnewline
Adjusted R-squared &  0.01766 \tabularnewline
F-TEST (value) &  1.482 \tabularnewline
F-TEST (DF numerator) & 6 \tabularnewline
F-TEST (DF denominator) & 155 \tabularnewline
p-value &  0.1876 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation &  2.448 \tabularnewline
Sum Squared Residuals &  929.1 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301028&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C] 0.2329[/C][/ROW]
[ROW][C]R-squared[/C][C] 0.05427[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C] 0.01766[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C] 1.482[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]6[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]155[/C][/ROW]
[ROW][C]p-value[/C][C] 0.1876[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C] 2.448[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C] 929.1[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301028&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301028&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R 0.2329
R-squared 0.05427
Adjusted R-squared 0.01766
F-TEST (value) 1.482
F-TEST (DF numerator)6
F-TEST (DF denominator)155
p-value 0.1876
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 2.448
Sum Squared Residuals 929.1







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 14 15.84-1.842
2 19 16.32 2.677
3 17 17.03-0.02657
4 17 15.36 1.644
5 15 17.03-2.027
6 20 16.73 3.271
7 15 15.34-0.3411
8 19 16.42 2.582
9 15 17.21-2.207
10 15 17.56-2.56
11 19 15.97 3.032
12 20 16.25 3.755
13 18 16.48 1.525
14 15 16.22-1.217
15 14 16.71-2.713
16 20 16.71 3.287
17 16 16.43-0.4284
18 16 16.67-0.6737
19 16 16.36-0.3576
20 10 16.97-6.969
21 19 16.95 2.046
22 19 16.66 2.342
23 16 16.95-0.9537
24 15 16.07-1.065
25 18 16.37 1.627
26 17 16.31 0.6945
27 19 16.84 2.159
28 17 16.55 0.4541
29 19 17.56 1.44
30 20 17.19 2.806
31 5 17.08-12.08
32 19 16.31 2.692
33 16 15.84 0.1621
34 15 16.42-1.418
35 16 16.36-0.3598
36 18 15.71 2.286
37 16 16.66-0.6584
38 15 16.55-1.546
39 17 17.56-0.5601
40 20 17.44 2.555
41 19 16.54 2.457
42 7 16.25-9.245
43 13 16.31-3.305
44 16 15.93 0.06782
45 16 16.67-0.6737
46 18 16.9 1.103
47 18 16.45 1.554
48 16 17.14-1.137
49 17 17.08-0.08373
50 19 16.01 2.993
51 16 16.66-0.6584
52 19 15.34 3.659
53 13 15.77-2.77
54 16 16.32-0.318
55 13 16.67-3.674
56 12 17.09-5.095
57 17 16.49 0.5118
58 17 16.97 0.031
59 17 15.33 1.671
60 16 17.32-1.322
61 16 15.83 0.1708
62 14 16.02-2.023
63 16 16.32-0.318
64 13 16.47-3.47
65 16 16.37-0.3729
66 14 16-2.005
67 20 17.62 2.38
68 12 15.95-3.953
69 13 16.31-3.305
70 18 17.03 0.9706
71 14 15.71-1.712
72 19 16.67 2.326
73 18 16.73 1.274
74 14 16.48-2.475
75 18 16.42 1.58
76 19 16.95 2.046
77 15 15.47-0.474
78 14 16.67-2.674
79 17 16.62 0.3839
80 19 16.97 2.031
81 13 16.55-3.546
82 19 16.84 2.156
83 18 17.32 0.6781
84 20 16.71 3.287
85 15 15.83-0.8269
86 15 15.12-0.1206
87 15 16.36-1.363
88 20 16.95 3.046
89 15 16.67-1.674
90 19 16.62 2.383
91 18 16.37 1.627
92 18 16.95 1.046
93 15 16.49-1.488
94 20 17.55 2.45
95 17 17.21-0.2072
96 12 16.71-4.713
97 18 16.97 1.029
98 19 16.95 2.046
99 20 16.84 3.159
100 17 17.57-0.5651
101 15 16.97-1.966
102 16 15.3 0.6984
103 18 16.66 1.342
104 18 16.66 1.342
105 14 16.49-2.491
106 15 16.31-1.305
107 12 16.25-4.245
108 17 16.13 0.8653
109 14 15.95-1.95
110 18 16.42 1.582
111 17 16.29 0.7099
112 17 16.5 0.5048
113 20 17.56 2.438
114 16 16.01-0.01015
115 14 16.3-2.303
116 15 16-1.005
117 18 16.31 1.695
118 20 16.67 3.326
119 17 16.19 0.8093
120 17 16.07 0.9349
121 17 15.95 1.05
122 17 16.6 0.3992
123 15 15.36-0.3565
124 17 15.65 1.346
125 18 14.88 3.123
126 17 16.32 0.682
127 20 16.56 3.442
128 15 15.4-0.396
129 16 15.83 0.1731
130 15 15.95-0.9498
131 18 17.15 0.8477
132 15 16.9-1.897
133 18 17.86 0.1391
134 20 17.56 2.44
135 19 16.25 2.755
136 14 16.79-2.786
137 16 16.66-0.6584
138 15 15.6-0.5997
139 17 16.62 0.3839
140 18 16.97 1.031
141 20 16.91 3.089
142 17 16.42 0.5798
143 18 16.66 1.342
144 15 14.77 0.2346
145 16 16.6-0.6012
146 11 15.95-4.95
147 15 16.6-1.601
148 18 16.73 1.274
149 17 16.95 0.04632
150 16 17.27-1.267
151 12 16.29-4.29
152 19 15.94 3.061
153 18 16.6 1.399
154 15 16.38-1.375
155 17 16.01 0.9898
156 19 17.25 1.748
157 18 16.19 1.807
158 19 16.19 2.81
159 16 15.43 0.5682
160 16 16.6-0.6008
161 16 16.67-0.6737
162 14 16.31-2.31

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 &  14 &  15.84 & -1.842 \tabularnewline
2 &  19 &  16.32 &  2.677 \tabularnewline
3 &  17 &  17.03 & -0.02657 \tabularnewline
4 &  17 &  15.36 &  1.644 \tabularnewline
5 &  15 &  17.03 & -2.027 \tabularnewline
6 &  20 &  16.73 &  3.271 \tabularnewline
7 &  15 &  15.34 & -0.3411 \tabularnewline
8 &  19 &  16.42 &  2.582 \tabularnewline
9 &  15 &  17.21 & -2.207 \tabularnewline
10 &  15 &  17.56 & -2.56 \tabularnewline
11 &  19 &  15.97 &  3.032 \tabularnewline
12 &  20 &  16.25 &  3.755 \tabularnewline
13 &  18 &  16.48 &  1.525 \tabularnewline
14 &  15 &  16.22 & -1.217 \tabularnewline
15 &  14 &  16.71 & -2.713 \tabularnewline
16 &  20 &  16.71 &  3.287 \tabularnewline
17 &  16 &  16.43 & -0.4284 \tabularnewline
18 &  16 &  16.67 & -0.6737 \tabularnewline
19 &  16 &  16.36 & -0.3576 \tabularnewline
20 &  10 &  16.97 & -6.969 \tabularnewline
21 &  19 &  16.95 &  2.046 \tabularnewline
22 &  19 &  16.66 &  2.342 \tabularnewline
23 &  16 &  16.95 & -0.9537 \tabularnewline
24 &  15 &  16.07 & -1.065 \tabularnewline
25 &  18 &  16.37 &  1.627 \tabularnewline
26 &  17 &  16.31 &  0.6945 \tabularnewline
27 &  19 &  16.84 &  2.159 \tabularnewline
28 &  17 &  16.55 &  0.4541 \tabularnewline
29 &  19 &  17.56 &  1.44 \tabularnewline
30 &  20 &  17.19 &  2.806 \tabularnewline
31 &  5 &  17.08 & -12.08 \tabularnewline
32 &  19 &  16.31 &  2.692 \tabularnewline
33 &  16 &  15.84 &  0.1621 \tabularnewline
34 &  15 &  16.42 & -1.418 \tabularnewline
35 &  16 &  16.36 & -0.3598 \tabularnewline
36 &  18 &  15.71 &  2.286 \tabularnewline
37 &  16 &  16.66 & -0.6584 \tabularnewline
38 &  15 &  16.55 & -1.546 \tabularnewline
39 &  17 &  17.56 & -0.5601 \tabularnewline
40 &  20 &  17.44 &  2.555 \tabularnewline
41 &  19 &  16.54 &  2.457 \tabularnewline
42 &  7 &  16.25 & -9.245 \tabularnewline
43 &  13 &  16.31 & -3.305 \tabularnewline
44 &  16 &  15.93 &  0.06782 \tabularnewline
45 &  16 &  16.67 & -0.6737 \tabularnewline
46 &  18 &  16.9 &  1.103 \tabularnewline
47 &  18 &  16.45 &  1.554 \tabularnewline
48 &  16 &  17.14 & -1.137 \tabularnewline
49 &  17 &  17.08 & -0.08373 \tabularnewline
50 &  19 &  16.01 &  2.993 \tabularnewline
51 &  16 &  16.66 & -0.6584 \tabularnewline
52 &  19 &  15.34 &  3.659 \tabularnewline
53 &  13 &  15.77 & -2.77 \tabularnewline
54 &  16 &  16.32 & -0.318 \tabularnewline
55 &  13 &  16.67 & -3.674 \tabularnewline
56 &  12 &  17.09 & -5.095 \tabularnewline
57 &  17 &  16.49 &  0.5118 \tabularnewline
58 &  17 &  16.97 &  0.031 \tabularnewline
59 &  17 &  15.33 &  1.671 \tabularnewline
60 &  16 &  17.32 & -1.322 \tabularnewline
61 &  16 &  15.83 &  0.1708 \tabularnewline
62 &  14 &  16.02 & -2.023 \tabularnewline
63 &  16 &  16.32 & -0.318 \tabularnewline
64 &  13 &  16.47 & -3.47 \tabularnewline
65 &  16 &  16.37 & -0.3729 \tabularnewline
66 &  14 &  16 & -2.005 \tabularnewline
67 &  20 &  17.62 &  2.38 \tabularnewline
68 &  12 &  15.95 & -3.953 \tabularnewline
69 &  13 &  16.31 & -3.305 \tabularnewline
70 &  18 &  17.03 &  0.9706 \tabularnewline
71 &  14 &  15.71 & -1.712 \tabularnewline
72 &  19 &  16.67 &  2.326 \tabularnewline
73 &  18 &  16.73 &  1.274 \tabularnewline
74 &  14 &  16.48 & -2.475 \tabularnewline
75 &  18 &  16.42 &  1.58 \tabularnewline
76 &  19 &  16.95 &  2.046 \tabularnewline
77 &  15 &  15.47 & -0.474 \tabularnewline
78 &  14 &  16.67 & -2.674 \tabularnewline
79 &  17 &  16.62 &  0.3839 \tabularnewline
80 &  19 &  16.97 &  2.031 \tabularnewline
81 &  13 &  16.55 & -3.546 \tabularnewline
82 &  19 &  16.84 &  2.156 \tabularnewline
83 &  18 &  17.32 &  0.6781 \tabularnewline
84 &  20 &  16.71 &  3.287 \tabularnewline
85 &  15 &  15.83 & -0.8269 \tabularnewline
86 &  15 &  15.12 & -0.1206 \tabularnewline
87 &  15 &  16.36 & -1.363 \tabularnewline
88 &  20 &  16.95 &  3.046 \tabularnewline
89 &  15 &  16.67 & -1.674 \tabularnewline
90 &  19 &  16.62 &  2.383 \tabularnewline
91 &  18 &  16.37 &  1.627 \tabularnewline
92 &  18 &  16.95 &  1.046 \tabularnewline
93 &  15 &  16.49 & -1.488 \tabularnewline
94 &  20 &  17.55 &  2.45 \tabularnewline
95 &  17 &  17.21 & -0.2072 \tabularnewline
96 &  12 &  16.71 & -4.713 \tabularnewline
97 &  18 &  16.97 &  1.029 \tabularnewline
98 &  19 &  16.95 &  2.046 \tabularnewline
99 &  20 &  16.84 &  3.159 \tabularnewline
100 &  17 &  17.57 & -0.5651 \tabularnewline
101 &  15 &  16.97 & -1.966 \tabularnewline
102 &  16 &  15.3 &  0.6984 \tabularnewline
103 &  18 &  16.66 &  1.342 \tabularnewline
104 &  18 &  16.66 &  1.342 \tabularnewline
105 &  14 &  16.49 & -2.491 \tabularnewline
106 &  15 &  16.31 & -1.305 \tabularnewline
107 &  12 &  16.25 & -4.245 \tabularnewline
108 &  17 &  16.13 &  0.8653 \tabularnewline
109 &  14 &  15.95 & -1.95 \tabularnewline
110 &  18 &  16.42 &  1.582 \tabularnewline
111 &  17 &  16.29 &  0.7099 \tabularnewline
112 &  17 &  16.5 &  0.5048 \tabularnewline
113 &  20 &  17.56 &  2.438 \tabularnewline
114 &  16 &  16.01 & -0.01015 \tabularnewline
115 &  14 &  16.3 & -2.303 \tabularnewline
116 &  15 &  16 & -1.005 \tabularnewline
117 &  18 &  16.31 &  1.695 \tabularnewline
118 &  20 &  16.67 &  3.326 \tabularnewline
119 &  17 &  16.19 &  0.8093 \tabularnewline
120 &  17 &  16.07 &  0.9349 \tabularnewline
121 &  17 &  15.95 &  1.05 \tabularnewline
122 &  17 &  16.6 &  0.3992 \tabularnewline
123 &  15 &  15.36 & -0.3565 \tabularnewline
124 &  17 &  15.65 &  1.346 \tabularnewline
125 &  18 &  14.88 &  3.123 \tabularnewline
126 &  17 &  16.32 &  0.682 \tabularnewline
127 &  20 &  16.56 &  3.442 \tabularnewline
128 &  15 &  15.4 & -0.396 \tabularnewline
129 &  16 &  15.83 &  0.1731 \tabularnewline
130 &  15 &  15.95 & -0.9498 \tabularnewline
131 &  18 &  17.15 &  0.8477 \tabularnewline
132 &  15 &  16.9 & -1.897 \tabularnewline
133 &  18 &  17.86 &  0.1391 \tabularnewline
134 &  20 &  17.56 &  2.44 \tabularnewline
135 &  19 &  16.25 &  2.755 \tabularnewline
136 &  14 &  16.79 & -2.786 \tabularnewline
137 &  16 &  16.66 & -0.6584 \tabularnewline
138 &  15 &  15.6 & -0.5997 \tabularnewline
139 &  17 &  16.62 &  0.3839 \tabularnewline
140 &  18 &  16.97 &  1.031 \tabularnewline
141 &  20 &  16.91 &  3.089 \tabularnewline
142 &  17 &  16.42 &  0.5798 \tabularnewline
143 &  18 &  16.66 &  1.342 \tabularnewline
144 &  15 &  14.77 &  0.2346 \tabularnewline
145 &  16 &  16.6 & -0.6012 \tabularnewline
146 &  11 &  15.95 & -4.95 \tabularnewline
147 &  15 &  16.6 & -1.601 \tabularnewline
148 &  18 &  16.73 &  1.274 \tabularnewline
149 &  17 &  16.95 &  0.04632 \tabularnewline
150 &  16 &  17.27 & -1.267 \tabularnewline
151 &  12 &  16.29 & -4.29 \tabularnewline
152 &  19 &  15.94 &  3.061 \tabularnewline
153 &  18 &  16.6 &  1.399 \tabularnewline
154 &  15 &  16.38 & -1.375 \tabularnewline
155 &  17 &  16.01 &  0.9898 \tabularnewline
156 &  19 &  17.25 &  1.748 \tabularnewline
157 &  18 &  16.19 &  1.807 \tabularnewline
158 &  19 &  16.19 &  2.81 \tabularnewline
159 &  16 &  15.43 &  0.5682 \tabularnewline
160 &  16 &  16.6 & -0.6008 \tabularnewline
161 &  16 &  16.67 & -0.6737 \tabularnewline
162 &  14 &  16.31 & -2.31 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301028&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C] 14[/C][C] 15.84[/C][C]-1.842[/C][/ROW]
[ROW][C]2[/C][C] 19[/C][C] 16.32[/C][C] 2.677[/C][/ROW]
[ROW][C]3[/C][C] 17[/C][C] 17.03[/C][C]-0.02657[/C][/ROW]
[ROW][C]4[/C][C] 17[/C][C] 15.36[/C][C] 1.644[/C][/ROW]
[ROW][C]5[/C][C] 15[/C][C] 17.03[/C][C]-2.027[/C][/ROW]
[ROW][C]6[/C][C] 20[/C][C] 16.73[/C][C] 3.271[/C][/ROW]
[ROW][C]7[/C][C] 15[/C][C] 15.34[/C][C]-0.3411[/C][/ROW]
[ROW][C]8[/C][C] 19[/C][C] 16.42[/C][C] 2.582[/C][/ROW]
[ROW][C]9[/C][C] 15[/C][C] 17.21[/C][C]-2.207[/C][/ROW]
[ROW][C]10[/C][C] 15[/C][C] 17.56[/C][C]-2.56[/C][/ROW]
[ROW][C]11[/C][C] 19[/C][C] 15.97[/C][C] 3.032[/C][/ROW]
[ROW][C]12[/C][C] 20[/C][C] 16.25[/C][C] 3.755[/C][/ROW]
[ROW][C]13[/C][C] 18[/C][C] 16.48[/C][C] 1.525[/C][/ROW]
[ROW][C]14[/C][C] 15[/C][C] 16.22[/C][C]-1.217[/C][/ROW]
[ROW][C]15[/C][C] 14[/C][C] 16.71[/C][C]-2.713[/C][/ROW]
[ROW][C]16[/C][C] 20[/C][C] 16.71[/C][C] 3.287[/C][/ROW]
[ROW][C]17[/C][C] 16[/C][C] 16.43[/C][C]-0.4284[/C][/ROW]
[ROW][C]18[/C][C] 16[/C][C] 16.67[/C][C]-0.6737[/C][/ROW]
[ROW][C]19[/C][C] 16[/C][C] 16.36[/C][C]-0.3576[/C][/ROW]
[ROW][C]20[/C][C] 10[/C][C] 16.97[/C][C]-6.969[/C][/ROW]
[ROW][C]21[/C][C] 19[/C][C] 16.95[/C][C] 2.046[/C][/ROW]
[ROW][C]22[/C][C] 19[/C][C] 16.66[/C][C] 2.342[/C][/ROW]
[ROW][C]23[/C][C] 16[/C][C] 16.95[/C][C]-0.9537[/C][/ROW]
[ROW][C]24[/C][C] 15[/C][C] 16.07[/C][C]-1.065[/C][/ROW]
[ROW][C]25[/C][C] 18[/C][C] 16.37[/C][C] 1.627[/C][/ROW]
[ROW][C]26[/C][C] 17[/C][C] 16.31[/C][C] 0.6945[/C][/ROW]
[ROW][C]27[/C][C] 19[/C][C] 16.84[/C][C] 2.159[/C][/ROW]
[ROW][C]28[/C][C] 17[/C][C] 16.55[/C][C] 0.4541[/C][/ROW]
[ROW][C]29[/C][C] 19[/C][C] 17.56[/C][C] 1.44[/C][/ROW]
[ROW][C]30[/C][C] 20[/C][C] 17.19[/C][C] 2.806[/C][/ROW]
[ROW][C]31[/C][C] 5[/C][C] 17.08[/C][C]-12.08[/C][/ROW]
[ROW][C]32[/C][C] 19[/C][C] 16.31[/C][C] 2.692[/C][/ROW]
[ROW][C]33[/C][C] 16[/C][C] 15.84[/C][C] 0.1621[/C][/ROW]
[ROW][C]34[/C][C] 15[/C][C] 16.42[/C][C]-1.418[/C][/ROW]
[ROW][C]35[/C][C] 16[/C][C] 16.36[/C][C]-0.3598[/C][/ROW]
[ROW][C]36[/C][C] 18[/C][C] 15.71[/C][C] 2.286[/C][/ROW]
[ROW][C]37[/C][C] 16[/C][C] 16.66[/C][C]-0.6584[/C][/ROW]
[ROW][C]38[/C][C] 15[/C][C] 16.55[/C][C]-1.546[/C][/ROW]
[ROW][C]39[/C][C] 17[/C][C] 17.56[/C][C]-0.5601[/C][/ROW]
[ROW][C]40[/C][C] 20[/C][C] 17.44[/C][C] 2.555[/C][/ROW]
[ROW][C]41[/C][C] 19[/C][C] 16.54[/C][C] 2.457[/C][/ROW]
[ROW][C]42[/C][C] 7[/C][C] 16.25[/C][C]-9.245[/C][/ROW]
[ROW][C]43[/C][C] 13[/C][C] 16.31[/C][C]-3.305[/C][/ROW]
[ROW][C]44[/C][C] 16[/C][C] 15.93[/C][C] 0.06782[/C][/ROW]
[ROW][C]45[/C][C] 16[/C][C] 16.67[/C][C]-0.6737[/C][/ROW]
[ROW][C]46[/C][C] 18[/C][C] 16.9[/C][C] 1.103[/C][/ROW]
[ROW][C]47[/C][C] 18[/C][C] 16.45[/C][C] 1.554[/C][/ROW]
[ROW][C]48[/C][C] 16[/C][C] 17.14[/C][C]-1.137[/C][/ROW]
[ROW][C]49[/C][C] 17[/C][C] 17.08[/C][C]-0.08373[/C][/ROW]
[ROW][C]50[/C][C] 19[/C][C] 16.01[/C][C] 2.993[/C][/ROW]
[ROW][C]51[/C][C] 16[/C][C] 16.66[/C][C]-0.6584[/C][/ROW]
[ROW][C]52[/C][C] 19[/C][C] 15.34[/C][C] 3.659[/C][/ROW]
[ROW][C]53[/C][C] 13[/C][C] 15.77[/C][C]-2.77[/C][/ROW]
[ROW][C]54[/C][C] 16[/C][C] 16.32[/C][C]-0.318[/C][/ROW]
[ROW][C]55[/C][C] 13[/C][C] 16.67[/C][C]-3.674[/C][/ROW]
[ROW][C]56[/C][C] 12[/C][C] 17.09[/C][C]-5.095[/C][/ROW]
[ROW][C]57[/C][C] 17[/C][C] 16.49[/C][C] 0.5118[/C][/ROW]
[ROW][C]58[/C][C] 17[/C][C] 16.97[/C][C] 0.031[/C][/ROW]
[ROW][C]59[/C][C] 17[/C][C] 15.33[/C][C] 1.671[/C][/ROW]
[ROW][C]60[/C][C] 16[/C][C] 17.32[/C][C]-1.322[/C][/ROW]
[ROW][C]61[/C][C] 16[/C][C] 15.83[/C][C] 0.1708[/C][/ROW]
[ROW][C]62[/C][C] 14[/C][C] 16.02[/C][C]-2.023[/C][/ROW]
[ROW][C]63[/C][C] 16[/C][C] 16.32[/C][C]-0.318[/C][/ROW]
[ROW][C]64[/C][C] 13[/C][C] 16.47[/C][C]-3.47[/C][/ROW]
[ROW][C]65[/C][C] 16[/C][C] 16.37[/C][C]-0.3729[/C][/ROW]
[ROW][C]66[/C][C] 14[/C][C] 16[/C][C]-2.005[/C][/ROW]
[ROW][C]67[/C][C] 20[/C][C] 17.62[/C][C] 2.38[/C][/ROW]
[ROW][C]68[/C][C] 12[/C][C] 15.95[/C][C]-3.953[/C][/ROW]
[ROW][C]69[/C][C] 13[/C][C] 16.31[/C][C]-3.305[/C][/ROW]
[ROW][C]70[/C][C] 18[/C][C] 17.03[/C][C] 0.9706[/C][/ROW]
[ROW][C]71[/C][C] 14[/C][C] 15.71[/C][C]-1.712[/C][/ROW]
[ROW][C]72[/C][C] 19[/C][C] 16.67[/C][C] 2.326[/C][/ROW]
[ROW][C]73[/C][C] 18[/C][C] 16.73[/C][C] 1.274[/C][/ROW]
[ROW][C]74[/C][C] 14[/C][C] 16.48[/C][C]-2.475[/C][/ROW]
[ROW][C]75[/C][C] 18[/C][C] 16.42[/C][C] 1.58[/C][/ROW]
[ROW][C]76[/C][C] 19[/C][C] 16.95[/C][C] 2.046[/C][/ROW]
[ROW][C]77[/C][C] 15[/C][C] 15.47[/C][C]-0.474[/C][/ROW]
[ROW][C]78[/C][C] 14[/C][C] 16.67[/C][C]-2.674[/C][/ROW]
[ROW][C]79[/C][C] 17[/C][C] 16.62[/C][C] 0.3839[/C][/ROW]
[ROW][C]80[/C][C] 19[/C][C] 16.97[/C][C] 2.031[/C][/ROW]
[ROW][C]81[/C][C] 13[/C][C] 16.55[/C][C]-3.546[/C][/ROW]
[ROW][C]82[/C][C] 19[/C][C] 16.84[/C][C] 2.156[/C][/ROW]
[ROW][C]83[/C][C] 18[/C][C] 17.32[/C][C] 0.6781[/C][/ROW]
[ROW][C]84[/C][C] 20[/C][C] 16.71[/C][C] 3.287[/C][/ROW]
[ROW][C]85[/C][C] 15[/C][C] 15.83[/C][C]-0.8269[/C][/ROW]
[ROW][C]86[/C][C] 15[/C][C] 15.12[/C][C]-0.1206[/C][/ROW]
[ROW][C]87[/C][C] 15[/C][C] 16.36[/C][C]-1.363[/C][/ROW]
[ROW][C]88[/C][C] 20[/C][C] 16.95[/C][C] 3.046[/C][/ROW]
[ROW][C]89[/C][C] 15[/C][C] 16.67[/C][C]-1.674[/C][/ROW]
[ROW][C]90[/C][C] 19[/C][C] 16.62[/C][C] 2.383[/C][/ROW]
[ROW][C]91[/C][C] 18[/C][C] 16.37[/C][C] 1.627[/C][/ROW]
[ROW][C]92[/C][C] 18[/C][C] 16.95[/C][C] 1.046[/C][/ROW]
[ROW][C]93[/C][C] 15[/C][C] 16.49[/C][C]-1.488[/C][/ROW]
[ROW][C]94[/C][C] 20[/C][C] 17.55[/C][C] 2.45[/C][/ROW]
[ROW][C]95[/C][C] 17[/C][C] 17.21[/C][C]-0.2072[/C][/ROW]
[ROW][C]96[/C][C] 12[/C][C] 16.71[/C][C]-4.713[/C][/ROW]
[ROW][C]97[/C][C] 18[/C][C] 16.97[/C][C] 1.029[/C][/ROW]
[ROW][C]98[/C][C] 19[/C][C] 16.95[/C][C] 2.046[/C][/ROW]
[ROW][C]99[/C][C] 20[/C][C] 16.84[/C][C] 3.159[/C][/ROW]
[ROW][C]100[/C][C] 17[/C][C] 17.57[/C][C]-0.5651[/C][/ROW]
[ROW][C]101[/C][C] 15[/C][C] 16.97[/C][C]-1.966[/C][/ROW]
[ROW][C]102[/C][C] 16[/C][C] 15.3[/C][C] 0.6984[/C][/ROW]
[ROW][C]103[/C][C] 18[/C][C] 16.66[/C][C] 1.342[/C][/ROW]
[ROW][C]104[/C][C] 18[/C][C] 16.66[/C][C] 1.342[/C][/ROW]
[ROW][C]105[/C][C] 14[/C][C] 16.49[/C][C]-2.491[/C][/ROW]
[ROW][C]106[/C][C] 15[/C][C] 16.31[/C][C]-1.305[/C][/ROW]
[ROW][C]107[/C][C] 12[/C][C] 16.25[/C][C]-4.245[/C][/ROW]
[ROW][C]108[/C][C] 17[/C][C] 16.13[/C][C] 0.8653[/C][/ROW]
[ROW][C]109[/C][C] 14[/C][C] 15.95[/C][C]-1.95[/C][/ROW]
[ROW][C]110[/C][C] 18[/C][C] 16.42[/C][C] 1.582[/C][/ROW]
[ROW][C]111[/C][C] 17[/C][C] 16.29[/C][C] 0.7099[/C][/ROW]
[ROW][C]112[/C][C] 17[/C][C] 16.5[/C][C] 0.5048[/C][/ROW]
[ROW][C]113[/C][C] 20[/C][C] 17.56[/C][C] 2.438[/C][/ROW]
[ROW][C]114[/C][C] 16[/C][C] 16.01[/C][C]-0.01015[/C][/ROW]
[ROW][C]115[/C][C] 14[/C][C] 16.3[/C][C]-2.303[/C][/ROW]
[ROW][C]116[/C][C] 15[/C][C] 16[/C][C]-1.005[/C][/ROW]
[ROW][C]117[/C][C] 18[/C][C] 16.31[/C][C] 1.695[/C][/ROW]
[ROW][C]118[/C][C] 20[/C][C] 16.67[/C][C] 3.326[/C][/ROW]
[ROW][C]119[/C][C] 17[/C][C] 16.19[/C][C] 0.8093[/C][/ROW]
[ROW][C]120[/C][C] 17[/C][C] 16.07[/C][C] 0.9349[/C][/ROW]
[ROW][C]121[/C][C] 17[/C][C] 15.95[/C][C] 1.05[/C][/ROW]
[ROW][C]122[/C][C] 17[/C][C] 16.6[/C][C] 0.3992[/C][/ROW]
[ROW][C]123[/C][C] 15[/C][C] 15.36[/C][C]-0.3565[/C][/ROW]
[ROW][C]124[/C][C] 17[/C][C] 15.65[/C][C] 1.346[/C][/ROW]
[ROW][C]125[/C][C] 18[/C][C] 14.88[/C][C] 3.123[/C][/ROW]
[ROW][C]126[/C][C] 17[/C][C] 16.32[/C][C] 0.682[/C][/ROW]
[ROW][C]127[/C][C] 20[/C][C] 16.56[/C][C] 3.442[/C][/ROW]
[ROW][C]128[/C][C] 15[/C][C] 15.4[/C][C]-0.396[/C][/ROW]
[ROW][C]129[/C][C] 16[/C][C] 15.83[/C][C] 0.1731[/C][/ROW]
[ROW][C]130[/C][C] 15[/C][C] 15.95[/C][C]-0.9498[/C][/ROW]
[ROW][C]131[/C][C] 18[/C][C] 17.15[/C][C] 0.8477[/C][/ROW]
[ROW][C]132[/C][C] 15[/C][C] 16.9[/C][C]-1.897[/C][/ROW]
[ROW][C]133[/C][C] 18[/C][C] 17.86[/C][C] 0.1391[/C][/ROW]
[ROW][C]134[/C][C] 20[/C][C] 17.56[/C][C] 2.44[/C][/ROW]
[ROW][C]135[/C][C] 19[/C][C] 16.25[/C][C] 2.755[/C][/ROW]
[ROW][C]136[/C][C] 14[/C][C] 16.79[/C][C]-2.786[/C][/ROW]
[ROW][C]137[/C][C] 16[/C][C] 16.66[/C][C]-0.6584[/C][/ROW]
[ROW][C]138[/C][C] 15[/C][C] 15.6[/C][C]-0.5997[/C][/ROW]
[ROW][C]139[/C][C] 17[/C][C] 16.62[/C][C] 0.3839[/C][/ROW]
[ROW][C]140[/C][C] 18[/C][C] 16.97[/C][C] 1.031[/C][/ROW]
[ROW][C]141[/C][C] 20[/C][C] 16.91[/C][C] 3.089[/C][/ROW]
[ROW][C]142[/C][C] 17[/C][C] 16.42[/C][C] 0.5798[/C][/ROW]
[ROW][C]143[/C][C] 18[/C][C] 16.66[/C][C] 1.342[/C][/ROW]
[ROW][C]144[/C][C] 15[/C][C] 14.77[/C][C] 0.2346[/C][/ROW]
[ROW][C]145[/C][C] 16[/C][C] 16.6[/C][C]-0.6012[/C][/ROW]
[ROW][C]146[/C][C] 11[/C][C] 15.95[/C][C]-4.95[/C][/ROW]
[ROW][C]147[/C][C] 15[/C][C] 16.6[/C][C]-1.601[/C][/ROW]
[ROW][C]148[/C][C] 18[/C][C] 16.73[/C][C] 1.274[/C][/ROW]
[ROW][C]149[/C][C] 17[/C][C] 16.95[/C][C] 0.04632[/C][/ROW]
[ROW][C]150[/C][C] 16[/C][C] 17.27[/C][C]-1.267[/C][/ROW]
[ROW][C]151[/C][C] 12[/C][C] 16.29[/C][C]-4.29[/C][/ROW]
[ROW][C]152[/C][C] 19[/C][C] 15.94[/C][C] 3.061[/C][/ROW]
[ROW][C]153[/C][C] 18[/C][C] 16.6[/C][C] 1.399[/C][/ROW]
[ROW][C]154[/C][C] 15[/C][C] 16.38[/C][C]-1.375[/C][/ROW]
[ROW][C]155[/C][C] 17[/C][C] 16.01[/C][C] 0.9898[/C][/ROW]
[ROW][C]156[/C][C] 19[/C][C] 17.25[/C][C] 1.748[/C][/ROW]
[ROW][C]157[/C][C] 18[/C][C] 16.19[/C][C] 1.807[/C][/ROW]
[ROW][C]158[/C][C] 19[/C][C] 16.19[/C][C] 2.81[/C][/ROW]
[ROW][C]159[/C][C] 16[/C][C] 15.43[/C][C] 0.5682[/C][/ROW]
[ROW][C]160[/C][C] 16[/C][C] 16.6[/C][C]-0.6008[/C][/ROW]
[ROW][C]161[/C][C] 16[/C][C] 16.67[/C][C]-0.6737[/C][/ROW]
[ROW][C]162[/C][C] 14[/C][C] 16.31[/C][C]-2.31[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301028&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301028&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 14 15.84-1.842
2 19 16.32 2.677
3 17 17.03-0.02657
4 17 15.36 1.644
5 15 17.03-2.027
6 20 16.73 3.271
7 15 15.34-0.3411
8 19 16.42 2.582
9 15 17.21-2.207
10 15 17.56-2.56
11 19 15.97 3.032
12 20 16.25 3.755
13 18 16.48 1.525
14 15 16.22-1.217
15 14 16.71-2.713
16 20 16.71 3.287
17 16 16.43-0.4284
18 16 16.67-0.6737
19 16 16.36-0.3576
20 10 16.97-6.969
21 19 16.95 2.046
22 19 16.66 2.342
23 16 16.95-0.9537
24 15 16.07-1.065
25 18 16.37 1.627
26 17 16.31 0.6945
27 19 16.84 2.159
28 17 16.55 0.4541
29 19 17.56 1.44
30 20 17.19 2.806
31 5 17.08-12.08
32 19 16.31 2.692
33 16 15.84 0.1621
34 15 16.42-1.418
35 16 16.36-0.3598
36 18 15.71 2.286
37 16 16.66-0.6584
38 15 16.55-1.546
39 17 17.56-0.5601
40 20 17.44 2.555
41 19 16.54 2.457
42 7 16.25-9.245
43 13 16.31-3.305
44 16 15.93 0.06782
45 16 16.67-0.6737
46 18 16.9 1.103
47 18 16.45 1.554
48 16 17.14-1.137
49 17 17.08-0.08373
50 19 16.01 2.993
51 16 16.66-0.6584
52 19 15.34 3.659
53 13 15.77-2.77
54 16 16.32-0.318
55 13 16.67-3.674
56 12 17.09-5.095
57 17 16.49 0.5118
58 17 16.97 0.031
59 17 15.33 1.671
60 16 17.32-1.322
61 16 15.83 0.1708
62 14 16.02-2.023
63 16 16.32-0.318
64 13 16.47-3.47
65 16 16.37-0.3729
66 14 16-2.005
67 20 17.62 2.38
68 12 15.95-3.953
69 13 16.31-3.305
70 18 17.03 0.9706
71 14 15.71-1.712
72 19 16.67 2.326
73 18 16.73 1.274
74 14 16.48-2.475
75 18 16.42 1.58
76 19 16.95 2.046
77 15 15.47-0.474
78 14 16.67-2.674
79 17 16.62 0.3839
80 19 16.97 2.031
81 13 16.55-3.546
82 19 16.84 2.156
83 18 17.32 0.6781
84 20 16.71 3.287
85 15 15.83-0.8269
86 15 15.12-0.1206
87 15 16.36-1.363
88 20 16.95 3.046
89 15 16.67-1.674
90 19 16.62 2.383
91 18 16.37 1.627
92 18 16.95 1.046
93 15 16.49-1.488
94 20 17.55 2.45
95 17 17.21-0.2072
96 12 16.71-4.713
97 18 16.97 1.029
98 19 16.95 2.046
99 20 16.84 3.159
100 17 17.57-0.5651
101 15 16.97-1.966
102 16 15.3 0.6984
103 18 16.66 1.342
104 18 16.66 1.342
105 14 16.49-2.491
106 15 16.31-1.305
107 12 16.25-4.245
108 17 16.13 0.8653
109 14 15.95-1.95
110 18 16.42 1.582
111 17 16.29 0.7099
112 17 16.5 0.5048
113 20 17.56 2.438
114 16 16.01-0.01015
115 14 16.3-2.303
116 15 16-1.005
117 18 16.31 1.695
118 20 16.67 3.326
119 17 16.19 0.8093
120 17 16.07 0.9349
121 17 15.95 1.05
122 17 16.6 0.3992
123 15 15.36-0.3565
124 17 15.65 1.346
125 18 14.88 3.123
126 17 16.32 0.682
127 20 16.56 3.442
128 15 15.4-0.396
129 16 15.83 0.1731
130 15 15.95-0.9498
131 18 17.15 0.8477
132 15 16.9-1.897
133 18 17.86 0.1391
134 20 17.56 2.44
135 19 16.25 2.755
136 14 16.79-2.786
137 16 16.66-0.6584
138 15 15.6-0.5997
139 17 16.62 0.3839
140 18 16.97 1.031
141 20 16.91 3.089
142 17 16.42 0.5798
143 18 16.66 1.342
144 15 14.77 0.2346
145 16 16.6-0.6012
146 11 15.95-4.95
147 15 16.6-1.601
148 18 16.73 1.274
149 17 16.95 0.04632
150 16 17.27-1.267
151 12 16.29-4.29
152 19 15.94 3.061
153 18 16.6 1.399
154 15 16.38-1.375
155 17 16.01 0.9898
156 19 17.25 1.748
157 18 16.19 1.807
158 19 16.19 2.81
159 16 15.43 0.5682
160 16 16.6-0.6008
161 16 16.67-0.6737
162 14 16.31-2.31







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
10 0.1263 0.2525 0.8737
11 0.11 0.22 0.89
12 0.5338 0.9325 0.4662
13 0.5374 0.9252 0.4626
14 0.5486 0.9028 0.4514
15 0.6107 0.7785 0.3893
16 0.6388 0.7225 0.3612
17 0.5769 0.8462 0.4231
18 0.4987 0.9975 0.5013
19 0.41 0.8199 0.59
20 0.8666 0.2668 0.1334
21 0.8741 0.2518 0.1259
22 0.8648 0.2704 0.1352
23 0.8221 0.3558 0.1779
24 0.8194 0.3611 0.1806
25 0.7888 0.4224 0.2112
26 0.7361 0.5279 0.2639
27 0.7016 0.5968 0.2984
28 0.6465 0.7069 0.3535
29 0.6392 0.7216 0.3608
30 0.6823 0.6354 0.3177
31 0.9987 0.002535 0.001267
32 0.9986 0.00277 0.001385
33 0.9984 0.003196 0.001598
34 0.9981 0.003786 0.001893
35 0.9972 0.005677 0.002838
36 0.9965 0.007065 0.003532
37 0.9948 0.01034 0.005168
38 0.9931 0.01373 0.006867
39 0.9902 0.01952 0.009761
40 0.9919 0.01616 0.00808
41 0.9912 0.01765 0.008827
42 0.9999 0.0001095 5.476e-05
43 1 7.04e-05 3.52e-05
44 0.9999 0.000105 5.251e-05
45 0.9999 0.0001674 8.368e-05
46 0.9999 0.0002583 0.0001291
47 0.9998 0.0003517 0.0001759
48 0.9997 0.0005109 0.0002554
49 0.9996 0.0007268 0.0003634
50 0.9997 0.0005625 0.0002812
51 0.9996 0.0008513 0.0004256
52 0.9997 0.0006063 0.0003032
53 0.9998 0.0004539 0.000227
54 0.9997 0.0006982 0.0003491
55 0.9998 0.0004322 0.0002161
56 0.9999 0.0001136 5.678e-05
57 0.9999 0.0001808 9.039e-05
58 0.9999 0.0002776 0.0001388
59 0.9998 0.0003045 0.0001522
60 0.9998 0.0003953 0.0001977
61 0.9997 0.0006113 0.0003057
62 0.9997 0.0006561 0.0003281
63 0.9995 0.0009835 0.0004918
64 0.9997 0.0006882 0.0003441
65 0.9995 0.001033 0.0005164
66 0.9994 0.001164 0.0005819
67 0.9994 0.001165 0.0005824
68 0.9997 0.0005831 0.0002915
69 0.9998 0.0003962 0.0001981
70 0.9997 0.000571 0.0002855
71 0.9996 0.0007106 0.0003553
72 0.9996 0.0007441 0.0003721
73 0.9995 0.001015 0.0005074
74 0.9995 0.0009651 0.0004826
75 0.9994 0.001244 0.0006222
76 0.9993 0.00138 0.0006898
77 0.999 0.002033 0.001017
78 0.9991 0.001723 0.0008614
79 0.9988 0.002454 0.001227
80 0.9986 0.002776 0.001388
81 0.9993 0.001498 0.0007489
82 0.9992 0.001659 0.0008293
83 0.9988 0.002386 0.001193
84 0.9992 0.001541 0.0007706
85 0.9989 0.002191 0.001096
86 0.9985 0.003041 0.001521
87 0.9981 0.003817 0.001908
88 0.9985 0.002942 0.001471
89 0.9984 0.003241 0.001621
90 0.9984 0.003226 0.001613
91 0.9982 0.003689 0.001845
92 0.9975 0.005002 0.002501
93 0.9973 0.005307 0.002653
94 0.9971 0.005839 0.002919
95 0.9958 0.008423 0.004211
96 0.9985 0.003015 0.001507
97 0.9979 0.004107 0.002054
98 0.9977 0.004634 0.002317
99 0.998 0.003921 0.001961
100 0.9975 0.005042 0.002521
101 0.9974 0.005136 0.002568
102 0.9964 0.007274 0.003637
103 0.9953 0.009483 0.004741
104 0.9939 0.01222 0.006111
105 0.9946 0.01074 0.005372
106 0.9933 0.01346 0.006731
107 0.9976 0.004842 0.002421
108 0.9965 0.007047 0.003524
109 0.9964 0.007214 0.003607
110 0.9959 0.008277 0.004138
111 0.9944 0.01125 0.005626
112 0.9932 0.01367 0.006834
113 0.9919 0.01616 0.008079
114 0.9883 0.0233 0.01165
115 0.9901 0.01987 0.009936
116 0.9871 0.02588 0.01294
117 0.9847 0.03055 0.01527
118 0.9881 0.0237 0.01185
119 0.9842 0.03166 0.01583
120 0.9802 0.03965 0.01983
121 0.9728 0.05432 0.02716
122 0.9625 0.07506 0.03753
123 0.949 0.1019 0.05096
124 0.9356 0.1287 0.06436
125 0.9383 0.1234 0.06172
126 0.9178 0.1645 0.08224
127 0.925 0.15 0.07502
128 0.9004 0.1992 0.0996
129 0.8725 0.2551 0.1275
130 0.8427 0.3146 0.1573
131 0.8013 0.3975 0.1987
132 0.785 0.43 0.215
133 0.7332 0.5336 0.2668
134 0.7104 0.5792 0.2896
135 0.7197 0.5605 0.2803
136 0.7441 0.5119 0.2559
137 0.686 0.628 0.314
138 0.6194 0.7612 0.3806
139 0.5453 0.9094 0.4547
140 0.4734 0.9468 0.5266
141 0.4878 0.9757 0.5122
142 0.4203 0.8406 0.5797
143 0.3755 0.751 0.6245
144 0.2975 0.595 0.7025
145 0.2324 0.4647 0.7676
146 0.6319 0.7362 0.3681
147 0.5675 0.8649 0.4325
148 0.5188 0.9624 0.4812
149 0.4118 0.8236 0.5882
150 0.3072 0.6144 0.6928
151 0.8661 0.2678 0.1339
152 0.8843 0.2314 0.1157

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
10 &  0.1263 &  0.2525 &  0.8737 \tabularnewline
11 &  0.11 &  0.22 &  0.89 \tabularnewline
12 &  0.5338 &  0.9325 &  0.4662 \tabularnewline
13 &  0.5374 &  0.9252 &  0.4626 \tabularnewline
14 &  0.5486 &  0.9028 &  0.4514 \tabularnewline
15 &  0.6107 &  0.7785 &  0.3893 \tabularnewline
16 &  0.6388 &  0.7225 &  0.3612 \tabularnewline
17 &  0.5769 &  0.8462 &  0.4231 \tabularnewline
18 &  0.4987 &  0.9975 &  0.5013 \tabularnewline
19 &  0.41 &  0.8199 &  0.59 \tabularnewline
20 &  0.8666 &  0.2668 &  0.1334 \tabularnewline
21 &  0.8741 &  0.2518 &  0.1259 \tabularnewline
22 &  0.8648 &  0.2704 &  0.1352 \tabularnewline
23 &  0.8221 &  0.3558 &  0.1779 \tabularnewline
24 &  0.8194 &  0.3611 &  0.1806 \tabularnewline
25 &  0.7888 &  0.4224 &  0.2112 \tabularnewline
26 &  0.7361 &  0.5279 &  0.2639 \tabularnewline
27 &  0.7016 &  0.5968 &  0.2984 \tabularnewline
28 &  0.6465 &  0.7069 &  0.3535 \tabularnewline
29 &  0.6392 &  0.7216 &  0.3608 \tabularnewline
30 &  0.6823 &  0.6354 &  0.3177 \tabularnewline
31 &  0.9987 &  0.002535 &  0.001267 \tabularnewline
32 &  0.9986 &  0.00277 &  0.001385 \tabularnewline
33 &  0.9984 &  0.003196 &  0.001598 \tabularnewline
34 &  0.9981 &  0.003786 &  0.001893 \tabularnewline
35 &  0.9972 &  0.005677 &  0.002838 \tabularnewline
36 &  0.9965 &  0.007065 &  0.003532 \tabularnewline
37 &  0.9948 &  0.01034 &  0.005168 \tabularnewline
38 &  0.9931 &  0.01373 &  0.006867 \tabularnewline
39 &  0.9902 &  0.01952 &  0.009761 \tabularnewline
40 &  0.9919 &  0.01616 &  0.00808 \tabularnewline
41 &  0.9912 &  0.01765 &  0.008827 \tabularnewline
42 &  0.9999 &  0.0001095 &  5.476e-05 \tabularnewline
43 &  1 &  7.04e-05 &  3.52e-05 \tabularnewline
44 &  0.9999 &  0.000105 &  5.251e-05 \tabularnewline
45 &  0.9999 &  0.0001674 &  8.368e-05 \tabularnewline
46 &  0.9999 &  0.0002583 &  0.0001291 \tabularnewline
47 &  0.9998 &  0.0003517 &  0.0001759 \tabularnewline
48 &  0.9997 &  0.0005109 &  0.0002554 \tabularnewline
49 &  0.9996 &  0.0007268 &  0.0003634 \tabularnewline
50 &  0.9997 &  0.0005625 &  0.0002812 \tabularnewline
51 &  0.9996 &  0.0008513 &  0.0004256 \tabularnewline
52 &  0.9997 &  0.0006063 &  0.0003032 \tabularnewline
53 &  0.9998 &  0.0004539 &  0.000227 \tabularnewline
54 &  0.9997 &  0.0006982 &  0.0003491 \tabularnewline
55 &  0.9998 &  0.0004322 &  0.0002161 \tabularnewline
56 &  0.9999 &  0.0001136 &  5.678e-05 \tabularnewline
57 &  0.9999 &  0.0001808 &  9.039e-05 \tabularnewline
58 &  0.9999 &  0.0002776 &  0.0001388 \tabularnewline
59 &  0.9998 &  0.0003045 &  0.0001522 \tabularnewline
60 &  0.9998 &  0.0003953 &  0.0001977 \tabularnewline
61 &  0.9997 &  0.0006113 &  0.0003057 \tabularnewline
62 &  0.9997 &  0.0006561 &  0.0003281 \tabularnewline
63 &  0.9995 &  0.0009835 &  0.0004918 \tabularnewline
64 &  0.9997 &  0.0006882 &  0.0003441 \tabularnewline
65 &  0.9995 &  0.001033 &  0.0005164 \tabularnewline
66 &  0.9994 &  0.001164 &  0.0005819 \tabularnewline
67 &  0.9994 &  0.001165 &  0.0005824 \tabularnewline
68 &  0.9997 &  0.0005831 &  0.0002915 \tabularnewline
69 &  0.9998 &  0.0003962 &  0.0001981 \tabularnewline
70 &  0.9997 &  0.000571 &  0.0002855 \tabularnewline
71 &  0.9996 &  0.0007106 &  0.0003553 \tabularnewline
72 &  0.9996 &  0.0007441 &  0.0003721 \tabularnewline
73 &  0.9995 &  0.001015 &  0.0005074 \tabularnewline
74 &  0.9995 &  0.0009651 &  0.0004826 \tabularnewline
75 &  0.9994 &  0.001244 &  0.0006222 \tabularnewline
76 &  0.9993 &  0.00138 &  0.0006898 \tabularnewline
77 &  0.999 &  0.002033 &  0.001017 \tabularnewline
78 &  0.9991 &  0.001723 &  0.0008614 \tabularnewline
79 &  0.9988 &  0.002454 &  0.001227 \tabularnewline
80 &  0.9986 &  0.002776 &  0.001388 \tabularnewline
81 &  0.9993 &  0.001498 &  0.0007489 \tabularnewline
82 &  0.9992 &  0.001659 &  0.0008293 \tabularnewline
83 &  0.9988 &  0.002386 &  0.001193 \tabularnewline
84 &  0.9992 &  0.001541 &  0.0007706 \tabularnewline
85 &  0.9989 &  0.002191 &  0.001096 \tabularnewline
86 &  0.9985 &  0.003041 &  0.001521 \tabularnewline
87 &  0.9981 &  0.003817 &  0.001908 \tabularnewline
88 &  0.9985 &  0.002942 &  0.001471 \tabularnewline
89 &  0.9984 &  0.003241 &  0.001621 \tabularnewline
90 &  0.9984 &  0.003226 &  0.001613 \tabularnewline
91 &  0.9982 &  0.003689 &  0.001845 \tabularnewline
92 &  0.9975 &  0.005002 &  0.002501 \tabularnewline
93 &  0.9973 &  0.005307 &  0.002653 \tabularnewline
94 &  0.9971 &  0.005839 &  0.002919 \tabularnewline
95 &  0.9958 &  0.008423 &  0.004211 \tabularnewline
96 &  0.9985 &  0.003015 &  0.001507 \tabularnewline
97 &  0.9979 &  0.004107 &  0.002054 \tabularnewline
98 &  0.9977 &  0.004634 &  0.002317 \tabularnewline
99 &  0.998 &  0.003921 &  0.001961 \tabularnewline
100 &  0.9975 &  0.005042 &  0.002521 \tabularnewline
101 &  0.9974 &  0.005136 &  0.002568 \tabularnewline
102 &  0.9964 &  0.007274 &  0.003637 \tabularnewline
103 &  0.9953 &  0.009483 &  0.004741 \tabularnewline
104 &  0.9939 &  0.01222 &  0.006111 \tabularnewline
105 &  0.9946 &  0.01074 &  0.005372 \tabularnewline
106 &  0.9933 &  0.01346 &  0.006731 \tabularnewline
107 &  0.9976 &  0.004842 &  0.002421 \tabularnewline
108 &  0.9965 &  0.007047 &  0.003524 \tabularnewline
109 &  0.9964 &  0.007214 &  0.003607 \tabularnewline
110 &  0.9959 &  0.008277 &  0.004138 \tabularnewline
111 &  0.9944 &  0.01125 &  0.005626 \tabularnewline
112 &  0.9932 &  0.01367 &  0.006834 \tabularnewline
113 &  0.9919 &  0.01616 &  0.008079 \tabularnewline
114 &  0.9883 &  0.0233 &  0.01165 \tabularnewline
115 &  0.9901 &  0.01987 &  0.009936 \tabularnewline
116 &  0.9871 &  0.02588 &  0.01294 \tabularnewline
117 &  0.9847 &  0.03055 &  0.01527 \tabularnewline
118 &  0.9881 &  0.0237 &  0.01185 \tabularnewline
119 &  0.9842 &  0.03166 &  0.01583 \tabularnewline
120 &  0.9802 &  0.03965 &  0.01983 \tabularnewline
121 &  0.9728 &  0.05432 &  0.02716 \tabularnewline
122 &  0.9625 &  0.07506 &  0.03753 \tabularnewline
123 &  0.949 &  0.1019 &  0.05096 \tabularnewline
124 &  0.9356 &  0.1287 &  0.06436 \tabularnewline
125 &  0.9383 &  0.1234 &  0.06172 \tabularnewline
126 &  0.9178 &  0.1645 &  0.08224 \tabularnewline
127 &  0.925 &  0.15 &  0.07502 \tabularnewline
128 &  0.9004 &  0.1992 &  0.0996 \tabularnewline
129 &  0.8725 &  0.2551 &  0.1275 \tabularnewline
130 &  0.8427 &  0.3146 &  0.1573 \tabularnewline
131 &  0.8013 &  0.3975 &  0.1987 \tabularnewline
132 &  0.785 &  0.43 &  0.215 \tabularnewline
133 &  0.7332 &  0.5336 &  0.2668 \tabularnewline
134 &  0.7104 &  0.5792 &  0.2896 \tabularnewline
135 &  0.7197 &  0.5605 &  0.2803 \tabularnewline
136 &  0.7441 &  0.5119 &  0.2559 \tabularnewline
137 &  0.686 &  0.628 &  0.314 \tabularnewline
138 &  0.6194 &  0.7612 &  0.3806 \tabularnewline
139 &  0.5453 &  0.9094 &  0.4547 \tabularnewline
140 &  0.4734 &  0.9468 &  0.5266 \tabularnewline
141 &  0.4878 &  0.9757 &  0.5122 \tabularnewline
142 &  0.4203 &  0.8406 &  0.5797 \tabularnewline
143 &  0.3755 &  0.751 &  0.6245 \tabularnewline
144 &  0.2975 &  0.595 &  0.7025 \tabularnewline
145 &  0.2324 &  0.4647 &  0.7676 \tabularnewline
146 &  0.6319 &  0.7362 &  0.3681 \tabularnewline
147 &  0.5675 &  0.8649 &  0.4325 \tabularnewline
148 &  0.5188 &  0.9624 &  0.4812 \tabularnewline
149 &  0.4118 &  0.8236 &  0.5882 \tabularnewline
150 &  0.3072 &  0.6144 &  0.6928 \tabularnewline
151 &  0.8661 &  0.2678 &  0.1339 \tabularnewline
152 &  0.8843 &  0.2314 &  0.1157 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301028&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]10[/C][C] 0.1263[/C][C] 0.2525[/C][C] 0.8737[/C][/ROW]
[ROW][C]11[/C][C] 0.11[/C][C] 0.22[/C][C] 0.89[/C][/ROW]
[ROW][C]12[/C][C] 0.5338[/C][C] 0.9325[/C][C] 0.4662[/C][/ROW]
[ROW][C]13[/C][C] 0.5374[/C][C] 0.9252[/C][C] 0.4626[/C][/ROW]
[ROW][C]14[/C][C] 0.5486[/C][C] 0.9028[/C][C] 0.4514[/C][/ROW]
[ROW][C]15[/C][C] 0.6107[/C][C] 0.7785[/C][C] 0.3893[/C][/ROW]
[ROW][C]16[/C][C] 0.6388[/C][C] 0.7225[/C][C] 0.3612[/C][/ROW]
[ROW][C]17[/C][C] 0.5769[/C][C] 0.8462[/C][C] 0.4231[/C][/ROW]
[ROW][C]18[/C][C] 0.4987[/C][C] 0.9975[/C][C] 0.5013[/C][/ROW]
[ROW][C]19[/C][C] 0.41[/C][C] 0.8199[/C][C] 0.59[/C][/ROW]
[ROW][C]20[/C][C] 0.8666[/C][C] 0.2668[/C][C] 0.1334[/C][/ROW]
[ROW][C]21[/C][C] 0.8741[/C][C] 0.2518[/C][C] 0.1259[/C][/ROW]
[ROW][C]22[/C][C] 0.8648[/C][C] 0.2704[/C][C] 0.1352[/C][/ROW]
[ROW][C]23[/C][C] 0.8221[/C][C] 0.3558[/C][C] 0.1779[/C][/ROW]
[ROW][C]24[/C][C] 0.8194[/C][C] 0.3611[/C][C] 0.1806[/C][/ROW]
[ROW][C]25[/C][C] 0.7888[/C][C] 0.4224[/C][C] 0.2112[/C][/ROW]
[ROW][C]26[/C][C] 0.7361[/C][C] 0.5279[/C][C] 0.2639[/C][/ROW]
[ROW][C]27[/C][C] 0.7016[/C][C] 0.5968[/C][C] 0.2984[/C][/ROW]
[ROW][C]28[/C][C] 0.6465[/C][C] 0.7069[/C][C] 0.3535[/C][/ROW]
[ROW][C]29[/C][C] 0.6392[/C][C] 0.7216[/C][C] 0.3608[/C][/ROW]
[ROW][C]30[/C][C] 0.6823[/C][C] 0.6354[/C][C] 0.3177[/C][/ROW]
[ROW][C]31[/C][C] 0.9987[/C][C] 0.002535[/C][C] 0.001267[/C][/ROW]
[ROW][C]32[/C][C] 0.9986[/C][C] 0.00277[/C][C] 0.001385[/C][/ROW]
[ROW][C]33[/C][C] 0.9984[/C][C] 0.003196[/C][C] 0.001598[/C][/ROW]
[ROW][C]34[/C][C] 0.9981[/C][C] 0.003786[/C][C] 0.001893[/C][/ROW]
[ROW][C]35[/C][C] 0.9972[/C][C] 0.005677[/C][C] 0.002838[/C][/ROW]
[ROW][C]36[/C][C] 0.9965[/C][C] 0.007065[/C][C] 0.003532[/C][/ROW]
[ROW][C]37[/C][C] 0.9948[/C][C] 0.01034[/C][C] 0.005168[/C][/ROW]
[ROW][C]38[/C][C] 0.9931[/C][C] 0.01373[/C][C] 0.006867[/C][/ROW]
[ROW][C]39[/C][C] 0.9902[/C][C] 0.01952[/C][C] 0.009761[/C][/ROW]
[ROW][C]40[/C][C] 0.9919[/C][C] 0.01616[/C][C] 0.00808[/C][/ROW]
[ROW][C]41[/C][C] 0.9912[/C][C] 0.01765[/C][C] 0.008827[/C][/ROW]
[ROW][C]42[/C][C] 0.9999[/C][C] 0.0001095[/C][C] 5.476e-05[/C][/ROW]
[ROW][C]43[/C][C] 1[/C][C] 7.04e-05[/C][C] 3.52e-05[/C][/ROW]
[ROW][C]44[/C][C] 0.9999[/C][C] 0.000105[/C][C] 5.251e-05[/C][/ROW]
[ROW][C]45[/C][C] 0.9999[/C][C] 0.0001674[/C][C] 8.368e-05[/C][/ROW]
[ROW][C]46[/C][C] 0.9999[/C][C] 0.0002583[/C][C] 0.0001291[/C][/ROW]
[ROW][C]47[/C][C] 0.9998[/C][C] 0.0003517[/C][C] 0.0001759[/C][/ROW]
[ROW][C]48[/C][C] 0.9997[/C][C] 0.0005109[/C][C] 0.0002554[/C][/ROW]
[ROW][C]49[/C][C] 0.9996[/C][C] 0.0007268[/C][C] 0.0003634[/C][/ROW]
[ROW][C]50[/C][C] 0.9997[/C][C] 0.0005625[/C][C] 0.0002812[/C][/ROW]
[ROW][C]51[/C][C] 0.9996[/C][C] 0.0008513[/C][C] 0.0004256[/C][/ROW]
[ROW][C]52[/C][C] 0.9997[/C][C] 0.0006063[/C][C] 0.0003032[/C][/ROW]
[ROW][C]53[/C][C] 0.9998[/C][C] 0.0004539[/C][C] 0.000227[/C][/ROW]
[ROW][C]54[/C][C] 0.9997[/C][C] 0.0006982[/C][C] 0.0003491[/C][/ROW]
[ROW][C]55[/C][C] 0.9998[/C][C] 0.0004322[/C][C] 0.0002161[/C][/ROW]
[ROW][C]56[/C][C] 0.9999[/C][C] 0.0001136[/C][C] 5.678e-05[/C][/ROW]
[ROW][C]57[/C][C] 0.9999[/C][C] 0.0001808[/C][C] 9.039e-05[/C][/ROW]
[ROW][C]58[/C][C] 0.9999[/C][C] 0.0002776[/C][C] 0.0001388[/C][/ROW]
[ROW][C]59[/C][C] 0.9998[/C][C] 0.0003045[/C][C] 0.0001522[/C][/ROW]
[ROW][C]60[/C][C] 0.9998[/C][C] 0.0003953[/C][C] 0.0001977[/C][/ROW]
[ROW][C]61[/C][C] 0.9997[/C][C] 0.0006113[/C][C] 0.0003057[/C][/ROW]
[ROW][C]62[/C][C] 0.9997[/C][C] 0.0006561[/C][C] 0.0003281[/C][/ROW]
[ROW][C]63[/C][C] 0.9995[/C][C] 0.0009835[/C][C] 0.0004918[/C][/ROW]
[ROW][C]64[/C][C] 0.9997[/C][C] 0.0006882[/C][C] 0.0003441[/C][/ROW]
[ROW][C]65[/C][C] 0.9995[/C][C] 0.001033[/C][C] 0.0005164[/C][/ROW]
[ROW][C]66[/C][C] 0.9994[/C][C] 0.001164[/C][C] 0.0005819[/C][/ROW]
[ROW][C]67[/C][C] 0.9994[/C][C] 0.001165[/C][C] 0.0005824[/C][/ROW]
[ROW][C]68[/C][C] 0.9997[/C][C] 0.0005831[/C][C] 0.0002915[/C][/ROW]
[ROW][C]69[/C][C] 0.9998[/C][C] 0.0003962[/C][C] 0.0001981[/C][/ROW]
[ROW][C]70[/C][C] 0.9997[/C][C] 0.000571[/C][C] 0.0002855[/C][/ROW]
[ROW][C]71[/C][C] 0.9996[/C][C] 0.0007106[/C][C] 0.0003553[/C][/ROW]
[ROW][C]72[/C][C] 0.9996[/C][C] 0.0007441[/C][C] 0.0003721[/C][/ROW]
[ROW][C]73[/C][C] 0.9995[/C][C] 0.001015[/C][C] 0.0005074[/C][/ROW]
[ROW][C]74[/C][C] 0.9995[/C][C] 0.0009651[/C][C] 0.0004826[/C][/ROW]
[ROW][C]75[/C][C] 0.9994[/C][C] 0.001244[/C][C] 0.0006222[/C][/ROW]
[ROW][C]76[/C][C] 0.9993[/C][C] 0.00138[/C][C] 0.0006898[/C][/ROW]
[ROW][C]77[/C][C] 0.999[/C][C] 0.002033[/C][C] 0.001017[/C][/ROW]
[ROW][C]78[/C][C] 0.9991[/C][C] 0.001723[/C][C] 0.0008614[/C][/ROW]
[ROW][C]79[/C][C] 0.9988[/C][C] 0.002454[/C][C] 0.001227[/C][/ROW]
[ROW][C]80[/C][C] 0.9986[/C][C] 0.002776[/C][C] 0.001388[/C][/ROW]
[ROW][C]81[/C][C] 0.9993[/C][C] 0.001498[/C][C] 0.0007489[/C][/ROW]
[ROW][C]82[/C][C] 0.9992[/C][C] 0.001659[/C][C] 0.0008293[/C][/ROW]
[ROW][C]83[/C][C] 0.9988[/C][C] 0.002386[/C][C] 0.001193[/C][/ROW]
[ROW][C]84[/C][C] 0.9992[/C][C] 0.001541[/C][C] 0.0007706[/C][/ROW]
[ROW][C]85[/C][C] 0.9989[/C][C] 0.002191[/C][C] 0.001096[/C][/ROW]
[ROW][C]86[/C][C] 0.9985[/C][C] 0.003041[/C][C] 0.001521[/C][/ROW]
[ROW][C]87[/C][C] 0.9981[/C][C] 0.003817[/C][C] 0.001908[/C][/ROW]
[ROW][C]88[/C][C] 0.9985[/C][C] 0.002942[/C][C] 0.001471[/C][/ROW]
[ROW][C]89[/C][C] 0.9984[/C][C] 0.003241[/C][C] 0.001621[/C][/ROW]
[ROW][C]90[/C][C] 0.9984[/C][C] 0.003226[/C][C] 0.001613[/C][/ROW]
[ROW][C]91[/C][C] 0.9982[/C][C] 0.003689[/C][C] 0.001845[/C][/ROW]
[ROW][C]92[/C][C] 0.9975[/C][C] 0.005002[/C][C] 0.002501[/C][/ROW]
[ROW][C]93[/C][C] 0.9973[/C][C] 0.005307[/C][C] 0.002653[/C][/ROW]
[ROW][C]94[/C][C] 0.9971[/C][C] 0.005839[/C][C] 0.002919[/C][/ROW]
[ROW][C]95[/C][C] 0.9958[/C][C] 0.008423[/C][C] 0.004211[/C][/ROW]
[ROW][C]96[/C][C] 0.9985[/C][C] 0.003015[/C][C] 0.001507[/C][/ROW]
[ROW][C]97[/C][C] 0.9979[/C][C] 0.004107[/C][C] 0.002054[/C][/ROW]
[ROW][C]98[/C][C] 0.9977[/C][C] 0.004634[/C][C] 0.002317[/C][/ROW]
[ROW][C]99[/C][C] 0.998[/C][C] 0.003921[/C][C] 0.001961[/C][/ROW]
[ROW][C]100[/C][C] 0.9975[/C][C] 0.005042[/C][C] 0.002521[/C][/ROW]
[ROW][C]101[/C][C] 0.9974[/C][C] 0.005136[/C][C] 0.002568[/C][/ROW]
[ROW][C]102[/C][C] 0.9964[/C][C] 0.007274[/C][C] 0.003637[/C][/ROW]
[ROW][C]103[/C][C] 0.9953[/C][C] 0.009483[/C][C] 0.004741[/C][/ROW]
[ROW][C]104[/C][C] 0.9939[/C][C] 0.01222[/C][C] 0.006111[/C][/ROW]
[ROW][C]105[/C][C] 0.9946[/C][C] 0.01074[/C][C] 0.005372[/C][/ROW]
[ROW][C]106[/C][C] 0.9933[/C][C] 0.01346[/C][C] 0.006731[/C][/ROW]
[ROW][C]107[/C][C] 0.9976[/C][C] 0.004842[/C][C] 0.002421[/C][/ROW]
[ROW][C]108[/C][C] 0.9965[/C][C] 0.007047[/C][C] 0.003524[/C][/ROW]
[ROW][C]109[/C][C] 0.9964[/C][C] 0.007214[/C][C] 0.003607[/C][/ROW]
[ROW][C]110[/C][C] 0.9959[/C][C] 0.008277[/C][C] 0.004138[/C][/ROW]
[ROW][C]111[/C][C] 0.9944[/C][C] 0.01125[/C][C] 0.005626[/C][/ROW]
[ROW][C]112[/C][C] 0.9932[/C][C] 0.01367[/C][C] 0.006834[/C][/ROW]
[ROW][C]113[/C][C] 0.9919[/C][C] 0.01616[/C][C] 0.008079[/C][/ROW]
[ROW][C]114[/C][C] 0.9883[/C][C] 0.0233[/C][C] 0.01165[/C][/ROW]
[ROW][C]115[/C][C] 0.9901[/C][C] 0.01987[/C][C] 0.009936[/C][/ROW]
[ROW][C]116[/C][C] 0.9871[/C][C] 0.02588[/C][C] 0.01294[/C][/ROW]
[ROW][C]117[/C][C] 0.9847[/C][C] 0.03055[/C][C] 0.01527[/C][/ROW]
[ROW][C]118[/C][C] 0.9881[/C][C] 0.0237[/C][C] 0.01185[/C][/ROW]
[ROW][C]119[/C][C] 0.9842[/C][C] 0.03166[/C][C] 0.01583[/C][/ROW]
[ROW][C]120[/C][C] 0.9802[/C][C] 0.03965[/C][C] 0.01983[/C][/ROW]
[ROW][C]121[/C][C] 0.9728[/C][C] 0.05432[/C][C] 0.02716[/C][/ROW]
[ROW][C]122[/C][C] 0.9625[/C][C] 0.07506[/C][C] 0.03753[/C][/ROW]
[ROW][C]123[/C][C] 0.949[/C][C] 0.1019[/C][C] 0.05096[/C][/ROW]
[ROW][C]124[/C][C] 0.9356[/C][C] 0.1287[/C][C] 0.06436[/C][/ROW]
[ROW][C]125[/C][C] 0.9383[/C][C] 0.1234[/C][C] 0.06172[/C][/ROW]
[ROW][C]126[/C][C] 0.9178[/C][C] 0.1645[/C][C] 0.08224[/C][/ROW]
[ROW][C]127[/C][C] 0.925[/C][C] 0.15[/C][C] 0.07502[/C][/ROW]
[ROW][C]128[/C][C] 0.9004[/C][C] 0.1992[/C][C] 0.0996[/C][/ROW]
[ROW][C]129[/C][C] 0.8725[/C][C] 0.2551[/C][C] 0.1275[/C][/ROW]
[ROW][C]130[/C][C] 0.8427[/C][C] 0.3146[/C][C] 0.1573[/C][/ROW]
[ROW][C]131[/C][C] 0.8013[/C][C] 0.3975[/C][C] 0.1987[/C][/ROW]
[ROW][C]132[/C][C] 0.785[/C][C] 0.43[/C][C] 0.215[/C][/ROW]
[ROW][C]133[/C][C] 0.7332[/C][C] 0.5336[/C][C] 0.2668[/C][/ROW]
[ROW][C]134[/C][C] 0.7104[/C][C] 0.5792[/C][C] 0.2896[/C][/ROW]
[ROW][C]135[/C][C] 0.7197[/C][C] 0.5605[/C][C] 0.2803[/C][/ROW]
[ROW][C]136[/C][C] 0.7441[/C][C] 0.5119[/C][C] 0.2559[/C][/ROW]
[ROW][C]137[/C][C] 0.686[/C][C] 0.628[/C][C] 0.314[/C][/ROW]
[ROW][C]138[/C][C] 0.6194[/C][C] 0.7612[/C][C] 0.3806[/C][/ROW]
[ROW][C]139[/C][C] 0.5453[/C][C] 0.9094[/C][C] 0.4547[/C][/ROW]
[ROW][C]140[/C][C] 0.4734[/C][C] 0.9468[/C][C] 0.5266[/C][/ROW]
[ROW][C]141[/C][C] 0.4878[/C][C] 0.9757[/C][C] 0.5122[/C][/ROW]
[ROW][C]142[/C][C] 0.4203[/C][C] 0.8406[/C][C] 0.5797[/C][/ROW]
[ROW][C]143[/C][C] 0.3755[/C][C] 0.751[/C][C] 0.6245[/C][/ROW]
[ROW][C]144[/C][C] 0.2975[/C][C] 0.595[/C][C] 0.7025[/C][/ROW]
[ROW][C]145[/C][C] 0.2324[/C][C] 0.4647[/C][C] 0.7676[/C][/ROW]
[ROW][C]146[/C][C] 0.6319[/C][C] 0.7362[/C][C] 0.3681[/C][/ROW]
[ROW][C]147[/C][C] 0.5675[/C][C] 0.8649[/C][C] 0.4325[/C][/ROW]
[ROW][C]148[/C][C] 0.5188[/C][C] 0.9624[/C][C] 0.4812[/C][/ROW]
[ROW][C]149[/C][C] 0.4118[/C][C] 0.8236[/C][C] 0.5882[/C][/ROW]
[ROW][C]150[/C][C] 0.3072[/C][C] 0.6144[/C][C] 0.6928[/C][/ROW]
[ROW][C]151[/C][C] 0.8661[/C][C] 0.2678[/C][C] 0.1339[/C][/ROW]
[ROW][C]152[/C][C] 0.8843[/C][C] 0.2314[/C][C] 0.1157[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301028&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301028&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
10 0.1263 0.2525 0.8737
11 0.11 0.22 0.89
12 0.5338 0.9325 0.4662
13 0.5374 0.9252 0.4626
14 0.5486 0.9028 0.4514
15 0.6107 0.7785 0.3893
16 0.6388 0.7225 0.3612
17 0.5769 0.8462 0.4231
18 0.4987 0.9975 0.5013
19 0.41 0.8199 0.59
20 0.8666 0.2668 0.1334
21 0.8741 0.2518 0.1259
22 0.8648 0.2704 0.1352
23 0.8221 0.3558 0.1779
24 0.8194 0.3611 0.1806
25 0.7888 0.4224 0.2112
26 0.7361 0.5279 0.2639
27 0.7016 0.5968 0.2984
28 0.6465 0.7069 0.3535
29 0.6392 0.7216 0.3608
30 0.6823 0.6354 0.3177
31 0.9987 0.002535 0.001267
32 0.9986 0.00277 0.001385
33 0.9984 0.003196 0.001598
34 0.9981 0.003786 0.001893
35 0.9972 0.005677 0.002838
36 0.9965 0.007065 0.003532
37 0.9948 0.01034 0.005168
38 0.9931 0.01373 0.006867
39 0.9902 0.01952 0.009761
40 0.9919 0.01616 0.00808
41 0.9912 0.01765 0.008827
42 0.9999 0.0001095 5.476e-05
43 1 7.04e-05 3.52e-05
44 0.9999 0.000105 5.251e-05
45 0.9999 0.0001674 8.368e-05
46 0.9999 0.0002583 0.0001291
47 0.9998 0.0003517 0.0001759
48 0.9997 0.0005109 0.0002554
49 0.9996 0.0007268 0.0003634
50 0.9997 0.0005625 0.0002812
51 0.9996 0.0008513 0.0004256
52 0.9997 0.0006063 0.0003032
53 0.9998 0.0004539 0.000227
54 0.9997 0.0006982 0.0003491
55 0.9998 0.0004322 0.0002161
56 0.9999 0.0001136 5.678e-05
57 0.9999 0.0001808 9.039e-05
58 0.9999 0.0002776 0.0001388
59 0.9998 0.0003045 0.0001522
60 0.9998 0.0003953 0.0001977
61 0.9997 0.0006113 0.0003057
62 0.9997 0.0006561 0.0003281
63 0.9995 0.0009835 0.0004918
64 0.9997 0.0006882 0.0003441
65 0.9995 0.001033 0.0005164
66 0.9994 0.001164 0.0005819
67 0.9994 0.001165 0.0005824
68 0.9997 0.0005831 0.0002915
69 0.9998 0.0003962 0.0001981
70 0.9997 0.000571 0.0002855
71 0.9996 0.0007106 0.0003553
72 0.9996 0.0007441 0.0003721
73 0.9995 0.001015 0.0005074
74 0.9995 0.0009651 0.0004826
75 0.9994 0.001244 0.0006222
76 0.9993 0.00138 0.0006898
77 0.999 0.002033 0.001017
78 0.9991 0.001723 0.0008614
79 0.9988 0.002454 0.001227
80 0.9986 0.002776 0.001388
81 0.9993 0.001498 0.0007489
82 0.9992 0.001659 0.0008293
83 0.9988 0.002386 0.001193
84 0.9992 0.001541 0.0007706
85 0.9989 0.002191 0.001096
86 0.9985 0.003041 0.001521
87 0.9981 0.003817 0.001908
88 0.9985 0.002942 0.001471
89 0.9984 0.003241 0.001621
90 0.9984 0.003226 0.001613
91 0.9982 0.003689 0.001845
92 0.9975 0.005002 0.002501
93 0.9973 0.005307 0.002653
94 0.9971 0.005839 0.002919
95 0.9958 0.008423 0.004211
96 0.9985 0.003015 0.001507
97 0.9979 0.004107 0.002054
98 0.9977 0.004634 0.002317
99 0.998 0.003921 0.001961
100 0.9975 0.005042 0.002521
101 0.9974 0.005136 0.002568
102 0.9964 0.007274 0.003637
103 0.9953 0.009483 0.004741
104 0.9939 0.01222 0.006111
105 0.9946 0.01074 0.005372
106 0.9933 0.01346 0.006731
107 0.9976 0.004842 0.002421
108 0.9965 0.007047 0.003524
109 0.9964 0.007214 0.003607
110 0.9959 0.008277 0.004138
111 0.9944 0.01125 0.005626
112 0.9932 0.01367 0.006834
113 0.9919 0.01616 0.008079
114 0.9883 0.0233 0.01165
115 0.9901 0.01987 0.009936
116 0.9871 0.02588 0.01294
117 0.9847 0.03055 0.01527
118 0.9881 0.0237 0.01185
119 0.9842 0.03166 0.01583
120 0.9802 0.03965 0.01983
121 0.9728 0.05432 0.02716
122 0.9625 0.07506 0.03753
123 0.949 0.1019 0.05096
124 0.9356 0.1287 0.06436
125 0.9383 0.1234 0.06172
126 0.9178 0.1645 0.08224
127 0.925 0.15 0.07502
128 0.9004 0.1992 0.0996
129 0.8725 0.2551 0.1275
130 0.8427 0.3146 0.1573
131 0.8013 0.3975 0.1987
132 0.785 0.43 0.215
133 0.7332 0.5336 0.2668
134 0.7104 0.5792 0.2896
135 0.7197 0.5605 0.2803
136 0.7441 0.5119 0.2559
137 0.686 0.628 0.314
138 0.6194 0.7612 0.3806
139 0.5453 0.9094 0.4547
140 0.4734 0.9468 0.5266
141 0.4878 0.9757 0.5122
142 0.4203 0.8406 0.5797
143 0.3755 0.751 0.6245
144 0.2975 0.595 0.7025
145 0.2324 0.4647 0.7676
146 0.6319 0.7362 0.3681
147 0.5675 0.8649 0.4325
148 0.5188 0.9624 0.4812
149 0.4118 0.8236 0.5882
150 0.3072 0.6144 0.6928
151 0.8661 0.2678 0.1339
152 0.8843 0.2314 0.1157







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level72 0.5035NOK
5% type I error level900.629371NOK
10% type I error level920.643357NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 72 &  0.5035 & NOK \tabularnewline
5% type I error level & 90 & 0.629371 & NOK \tabularnewline
10% type I error level & 92 & 0.643357 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=301028&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]72[/C][C] 0.5035[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]90[/C][C]0.629371[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]92[/C][C]0.643357[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=301028&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301028&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level72 0.5035NOK
5% type I error level900.629371NOK
10% type I error level920.643357NOK







Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 1.1019, df1 = 2, df2 = 153, p-value = 0.3349
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0.69759, df1 = 12, df2 = 143, p-value = 0.7518
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.6847, df1 = 2, df2 = 153, p-value = 0.1889

\begin{tabular}{lllllllll}
\hline
Ramsey RESET F-Test for powers (2 and 3) of fitted values \tabularnewline
> reset_test_fitted
	RESET test
data:  mylm
RESET = 1.1019, df1 = 2, df2 = 153, p-value = 0.3349
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of regressors \tabularnewline
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0.69759, df1 = 12, df2 = 143, p-value = 0.7518
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of principal components \tabularnewline
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.6847, df1 = 2, df2 = 153, p-value = 0.1889
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=301028&T=7

[TABLE]
[ROW][C]Ramsey RESET F-Test for powers (2 and 3) of fitted values[/C][/ROW]
[ROW][C]
> reset_test_fitted
	RESET test
data:  mylm
RESET = 1.1019, df1 = 2, df2 = 153, p-value = 0.3349
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of regressors[/C][/ROW] [ROW][C]
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0.69759, df1 = 12, df2 = 143, p-value = 0.7518
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of principal components[/C][/ROW] [ROW][C]
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.6847, df1 = 2, df2 = 153, p-value = 0.1889
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=301028&T=7

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301028&T=7

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 1.1019, df1 = 2, df2 = 153, p-value = 0.3349
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0.69759, df1 = 12, df2 = 143, p-value = 0.7518
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.6847, df1 = 2, df2 = 153, p-value = 0.1889







Variance Inflation Factors (Multicollinearity)
> vif
     SK1      SK2      SK3      SK4      SK5      SK6 
1.094831 1.129846 1.052059 1.044552 1.047838 1.047137 

\begin{tabular}{lllllllll}
\hline
Variance Inflation Factors (Multicollinearity) \tabularnewline
> vif
     SK1      SK2      SK3      SK4      SK5      SK6 
1.094831 1.129846 1.052059 1.044552 1.047838 1.047137 
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=301028&T=8

[TABLE]
[ROW][C]Variance Inflation Factors (Multicollinearity)[/C][/ROW]
[ROW][C]
> vif
     SK1      SK2      SK3      SK4      SK5      SK6 
1.094831 1.129846 1.052059 1.044552 1.047838 1.047137 
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=301028&T=8

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=301028&T=8

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variance Inflation Factors (Multicollinearity)
> vif
     SK1      SK2      SK3      SK4      SK5      SK6 
1.094831 1.129846 1.052059 1.044552 1.047838 1.047137 



Parameters (Session):
par1 = 7 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ;
Parameters (R input):
par1 = 7 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
library(car)
library(MASS)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
mywarning <- ''
par1 <- as.numeric(par1)
if(is.na(par1)) {
par1 <- 1
mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.'
}
if (par4=='') par4 <- 0
par4 <- as.numeric(par4)
if (par5=='') par5 <- 0
par5 <- as.numeric(par5)
x <- na.omit(t(y))
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'Seasonal Differences (s=12)'){
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'First and Seasonal Differences (s=12)'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if(par4 > 0) {
x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep='')))
for (i in 1:(n-par4)) {
for (j in 1:par4) {
x2[i,j] <- x[i+par4-j,par1]
}
}
x <- cbind(x[(par4+1):n,], x2)
n <- n - par4
}
if(par5 > 0) {
x2 <- array(0, dim=c(n-par5*12,par5), dimnames=list(1:(n-par5*12), paste(colnames(x)[par1],'(t-',1:par5,'s)',sep='')))
for (i in 1:(n-par5*12)) {
for (j in 1:par5) {
x2[i,j] <- x[i+par5*12-j*12,par1]
}
}
x <- cbind(x[(par5*12+1):n,], x2)
n <- n - par5*12
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
(k <- length(x[n,]))
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
print(x)
(k <- length(x[n,]))
head(x)
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
sresid <- studres(mylm)
hist(sresid, freq=FALSE, main='Distribution of Studentized Residuals')
xfit<-seq(min(sresid),max(sresid),length=40)
yfit<-dnorm(xfit)
lines(xfit, yfit)
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqPlot(mylm, main='QQ Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
print(z)
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, mywarning)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Multiple Linear Regression - Ordinary Least Squares', 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
myr <- as.numeric(mysum$resid)
myr
if(n < 200) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' '))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of fitted values',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_fitted <- resettest(mylm,power=2:3,type='fitted')
a<-table.element(a,paste('
',RC.texteval('reset_test_fitted'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of regressors',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_regressors <- resettest(mylm,power=2:3,type='regressor')
a<-table.element(a,paste('
',RC.texteval('reset_test_regressors'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of principal components',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_principal_components <- resettest(mylm,power=2:3,type='princomp')
a<-table.element(a,paste('
',RC.texteval('reset_test_principal_components'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable8.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variance Inflation Factors (Multicollinearity)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
vif <- vif(mylm)
a<-table.element(a,paste('
',RC.texteval('vif'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable9.tab')