Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimabackwardselection.wasp
Title produced by softwareARIMA Backward Selection
Date of computationSun, 18 Dec 2016 10:17:39 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/18/t1482052911gvgz7wwgjf6z2yz.htm/, Retrieved Fri, 01 Nov 2024 03:42:04 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=300985, Retrieved Fri, 01 Nov 2024 03:42:04 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact146
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [ARIMA Backward Selection] [ARIMA backward N ...] [2016-12-18 09:17:39] [86c7fb9c8a0af864c0a27e2f433e80d7] [Current]
Feedback Forum

Post a new message
Dataseries X:
3850
3900
3900
3950
3950
3900
3400
2150
3800
3950
3950
3850
3750
3900
3850
3900
3900
4000
3450
2300
3900
4100
4150
4150
3950
4150
4150
4150
4150
4250
3750
2350
4200
4250
4350
4300
4150
4250
4250
4200
4150
4350
3750
2450
4250
4350
4450
4500
4350
4500
4550
4550
3050
3850
4100
2700
4450
4800
4950
4950
4800
4850
4850
5000
5000
5000
4450
2800
4850
5150
5050
5100
5100
5250
5250
5350
5150
5200
4600
2950
5100
5350
5350
5400
5250
5450
5500
5450
5200
5400
4800
3050
5450
5600
5750
5750
5650
5700
5750
5800
5750
5750
4950
3500
5750
6050
6150
6200
6150
6250
6300
6100
6350
6250
5400
3900
6100
6450
6600
6350
6500
6700
6550
6550
6550
6500




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time9 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time9 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300985&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]9 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=300985&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300985&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time9 seconds
R ServerBig Analytics Cloud Computing Center







ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2ar3ma1sar1sar2sma1
Estimates ( 1 )0.3858-0.18940.1171-0.85630.0304-0.0327-1
(p-val)(0.0068 )(0.0767 )(0.3164 )(0 )(0.7688 )(0.7461 )(0 )
Estimates ( 2 )0.3816-0.18910.1185-0.85430-0.0396-1.0001
(p-val)(0.0066 )(0.0765 )(0.3072 )(0 )(NA )(0.6854 )(0 )
Estimates ( 3 )0.3856-0.18750.1198-0.856100-1.0001
(p-val)(0.0061 )(0.0791 )(0.3029 )(0 )(NA )(NA )(0 )
Estimates ( 4 )0.2957-0.19350-0.777400-1
(p-val)(0.031 )(0.0869 )(NA )(0 )(NA )(NA )(0 )
Estimates ( 5 )0.337400-1.148800-1.0001
(p-val)(0.004 )(NA )(NA )(0 )(NA )(NA )(0 )
Estimates ( 6 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 7 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 8 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 9 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 10 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 11 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 12 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 13 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )

\begin{tabular}{lllllllll}
\hline
ARIMA Parameter Estimation and Backward Selection \tabularnewline
Iteration & ar1 & ar2 & ar3 & ma1 & sar1 & sar2 & sma1 \tabularnewline
Estimates ( 1 ) & 0.3858 & -0.1894 & 0.1171 & -0.8563 & 0.0304 & -0.0327 & -1 \tabularnewline
(p-val) & (0.0068 ) & (0.0767 ) & (0.3164 ) & (0 ) & (0.7688 ) & (0.7461 ) & (0 ) \tabularnewline
Estimates ( 2 ) & 0.3816 & -0.1891 & 0.1185 & -0.8543 & 0 & -0.0396 & -1.0001 \tabularnewline
(p-val) & (0.0066 ) & (0.0765 ) & (0.3072 ) & (0 ) & (NA ) & (0.6854 ) & (0 ) \tabularnewline
Estimates ( 3 ) & 0.3856 & -0.1875 & 0.1198 & -0.8561 & 0 & 0 & -1.0001 \tabularnewline
(p-val) & (0.0061 ) & (0.0791 ) & (0.3029 ) & (0 ) & (NA ) & (NA ) & (0 ) \tabularnewline
Estimates ( 4 ) & 0.2957 & -0.1935 & 0 & -0.7774 & 0 & 0 & -1 \tabularnewline
(p-val) & (0.031 ) & (0.0869 ) & (NA ) & (0 ) & (NA ) & (NA ) & (0 ) \tabularnewline
Estimates ( 5 ) & 0.3374 & 0 & 0 & -1.1488 & 0 & 0 & -1.0001 \tabularnewline
(p-val) & (0.004 ) & (NA ) & (NA ) & (0 ) & (NA ) & (NA ) & (0 ) \tabularnewline
Estimates ( 6 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 7 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 8 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 9 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 10 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 11 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 12 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 13 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300985&T=1

[TABLE]
[ROW][C]ARIMA Parameter Estimation and Backward Selection[/C][/ROW]
[ROW][C]Iteration[/C][C]ar1[/C][C]ar2[/C][C]ar3[/C][C]ma1[/C][C]sar1[/C][C]sar2[/C][C]sma1[/C][/ROW]
[ROW][C]Estimates ( 1 )[/C][C]0.3858[/C][C]-0.1894[/C][C]0.1171[/C][C]-0.8563[/C][C]0.0304[/C][C]-0.0327[/C][C]-1[/C][/ROW]
[ROW][C](p-val)[/C][C](0.0068 )[/C][C](0.0767 )[/C][C](0.3164 )[/C][C](0 )[/C][C](0.7688 )[/C][C](0.7461 )[/C][C](0 )[/C][/ROW]
[ROW][C]Estimates ( 2 )[/C][C]0.3816[/C][C]-0.1891[/C][C]0.1185[/C][C]-0.8543[/C][C]0[/C][C]-0.0396[/C][C]-1.0001[/C][/ROW]
[ROW][C](p-val)[/C][C](0.0066 )[/C][C](0.0765 )[/C][C](0.3072 )[/C][C](0 )[/C][C](NA )[/C][C](0.6854 )[/C][C](0 )[/C][/ROW]
[ROW][C]Estimates ( 3 )[/C][C]0.3856[/C][C]-0.1875[/C][C]0.1198[/C][C]-0.8561[/C][C]0[/C][C]0[/C][C]-1.0001[/C][/ROW]
[ROW][C](p-val)[/C][C](0.0061 )[/C][C](0.0791 )[/C][C](0.3029 )[/C][C](0 )[/C][C](NA )[/C][C](NA )[/C][C](0 )[/C][/ROW]
[ROW][C]Estimates ( 4 )[/C][C]0.2957[/C][C]-0.1935[/C][C]0[/C][C]-0.7774[/C][C]0[/C][C]0[/C][C]-1[/C][/ROW]
[ROW][C](p-val)[/C][C](0.031 )[/C][C](0.0869 )[/C][C](NA )[/C][C](0 )[/C][C](NA )[/C][C](NA )[/C][C](0 )[/C][/ROW]
[ROW][C]Estimates ( 5 )[/C][C]0.3374[/C][C]0[/C][C]0[/C][C]-1.1488[/C][C]0[/C][C]0[/C][C]-1.0001[/C][/ROW]
[ROW][C](p-val)[/C][C](0.004 )[/C][C](NA )[/C][C](NA )[/C][C](0 )[/C][C](NA )[/C][C](NA )[/C][C](0 )[/C][/ROW]
[ROW][C]Estimates ( 6 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 7 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 8 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 9 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 10 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 11 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 12 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 13 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300985&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300985&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2ar3ma1sar1sar2sma1
Estimates ( 1 )0.3858-0.18940.1171-0.85630.0304-0.0327-1
(p-val)(0.0068 )(0.0767 )(0.3164 )(0 )(0.7688 )(0.7461 )(0 )
Estimates ( 2 )0.3816-0.18910.1185-0.85430-0.0396-1.0001
(p-val)(0.0066 )(0.0765 )(0.3072 )(0 )(NA )(0.6854 )(0 )
Estimates ( 3 )0.3856-0.18750.1198-0.856100-1.0001
(p-val)(0.0061 )(0.0791 )(0.3029 )(0 )(NA )(NA )(0 )
Estimates ( 4 )0.2957-0.19350-0.777400-1
(p-val)(0.031 )(0.0869 )(NA )(0 )(NA )(NA )(0 )
Estimates ( 5 )0.337400-1.148800-1.0001
(p-val)(0.004 )(NA )(NA )(0 )(NA )(NA )(0 )
Estimates ( 6 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 7 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 8 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 9 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 10 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 11 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 12 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 13 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )







Estimated ARIMA Residuals
Value
-0.0182129509761466
0.0166031693910529
-0.00445421636087761
0.00338035869145025
0.000583350456436664
0.0280910938835297
0.00473792829759999
0.0452008112332218
-0.00196494619996354
0.0217575722332453
0.0184589995247412
0.028771577212598
-0.00400897928107492
0.0254561759325892
0.0141956053895158
0.00208763836339201
0.00585542807497559
0.0175340752183973
0.0218679285793812
-0.0177812668663452
0.0313754681309385
-0.018826500646307
0.0148001496506037
-0.000824407936924691
-0.00140363633840923
-0.00900168398447361
-0.00120917570113075
-0.0222645401982031
-0.0218402185126821
0.0149355558554353
-0.0124126518825562
0.010513560280322
0.00249155342996964
-0.00456206444313878
0.0092246380357218
0.0220595457245733
0.0123281826876162
0.0163550163505226
0.0250387847758334
0.0126843568613835
-0.353644985237892
0.0261960787344104
0.0814191896759077
0.0525570833742054
0.0352180397568094
0.0849949447476755
0.0613948439457645
0.0563427130142258
0.0488499463438693
0.0170684192746468
0.0201208781932307
0.0393299106185081
0.100168471562643
0.000618178953060167
0.0118805657019564
-0.0366585316412377
-0.000416063035125218
0.00747992722133966
-0.0338907841548999
0.00269320145980863
0.0236542475306302
0.0132885041937942
0.0161870422142588
0.0249065837526902
0.0425453992306796
-0.0129061802355515
-0.017875928733074
-0.0342340731154013
-0.00495745007722835
-0.00744595503944418
-0.0151075049934683
0.00410809399106157
-0.00374292512266298
0.0103585220255269
0.0143356323969867
-0.00840032573721958
0.0147511823141053
-0.00198969267496963
-0.0148364813892229
-0.0369265767531868
0.0324450946602283
-0.0126414317233685
0.0235632633454314
0.00996549002289303
0.0208285173929854
-0.00713961122664525
0.0106194100170098
0.00419028945718883
0.0563719544280869
-0.0157836505993569
-0.0393048593149622
0.0488706145366789
-0.0182927234796063
0.0192649737223195
0.0120697429571173
0.0188676725230806
0.0314985808594242
0.0105174864096815
0.0214288189999914
-0.0295779466497446
0.0905366950356756
-0.0245294920708309
-0.0266877531458751
0.0614555038195385
-0.049189467756393
0.0131980016731942
0.00514981695312839
-0.0397335689578526
0.0350766159855679
0.010621732872486
-0.011671485556904
-0.00253156417041326
0.0398023093423369
-0.0261242179681298

\begin{tabular}{lllllllll}
\hline
Estimated ARIMA Residuals \tabularnewline
Value \tabularnewline
-0.0182129509761466 \tabularnewline
0.0166031693910529 \tabularnewline
-0.00445421636087761 \tabularnewline
0.00338035869145025 \tabularnewline
0.000583350456436664 \tabularnewline
0.0280910938835297 \tabularnewline
0.00473792829759999 \tabularnewline
0.0452008112332218 \tabularnewline
-0.00196494619996354 \tabularnewline
0.0217575722332453 \tabularnewline
0.0184589995247412 \tabularnewline
0.028771577212598 \tabularnewline
-0.00400897928107492 \tabularnewline
0.0254561759325892 \tabularnewline
0.0141956053895158 \tabularnewline
0.00208763836339201 \tabularnewline
0.00585542807497559 \tabularnewline
0.0175340752183973 \tabularnewline
0.0218679285793812 \tabularnewline
-0.0177812668663452 \tabularnewline
0.0313754681309385 \tabularnewline
-0.018826500646307 \tabularnewline
0.0148001496506037 \tabularnewline
-0.000824407936924691 \tabularnewline
-0.00140363633840923 \tabularnewline
-0.00900168398447361 \tabularnewline
-0.00120917570113075 \tabularnewline
-0.0222645401982031 \tabularnewline
-0.0218402185126821 \tabularnewline
0.0149355558554353 \tabularnewline
-0.0124126518825562 \tabularnewline
0.010513560280322 \tabularnewline
0.00249155342996964 \tabularnewline
-0.00456206444313878 \tabularnewline
0.0092246380357218 \tabularnewline
0.0220595457245733 \tabularnewline
0.0123281826876162 \tabularnewline
0.0163550163505226 \tabularnewline
0.0250387847758334 \tabularnewline
0.0126843568613835 \tabularnewline
-0.353644985237892 \tabularnewline
0.0261960787344104 \tabularnewline
0.0814191896759077 \tabularnewline
0.0525570833742054 \tabularnewline
0.0352180397568094 \tabularnewline
0.0849949447476755 \tabularnewline
0.0613948439457645 \tabularnewline
0.0563427130142258 \tabularnewline
0.0488499463438693 \tabularnewline
0.0170684192746468 \tabularnewline
0.0201208781932307 \tabularnewline
0.0393299106185081 \tabularnewline
0.100168471562643 \tabularnewline
0.000618178953060167 \tabularnewline
0.0118805657019564 \tabularnewline
-0.0366585316412377 \tabularnewline
-0.000416063035125218 \tabularnewline
0.00747992722133966 \tabularnewline
-0.0338907841548999 \tabularnewline
0.00269320145980863 \tabularnewline
0.0236542475306302 \tabularnewline
0.0132885041937942 \tabularnewline
0.0161870422142588 \tabularnewline
0.0249065837526902 \tabularnewline
0.0425453992306796 \tabularnewline
-0.0129061802355515 \tabularnewline
-0.017875928733074 \tabularnewline
-0.0342340731154013 \tabularnewline
-0.00495745007722835 \tabularnewline
-0.00744595503944418 \tabularnewline
-0.0151075049934683 \tabularnewline
0.00410809399106157 \tabularnewline
-0.00374292512266298 \tabularnewline
0.0103585220255269 \tabularnewline
0.0143356323969867 \tabularnewline
-0.00840032573721958 \tabularnewline
0.0147511823141053 \tabularnewline
-0.00198969267496963 \tabularnewline
-0.0148364813892229 \tabularnewline
-0.0369265767531868 \tabularnewline
0.0324450946602283 \tabularnewline
-0.0126414317233685 \tabularnewline
0.0235632633454314 \tabularnewline
0.00996549002289303 \tabularnewline
0.0208285173929854 \tabularnewline
-0.00713961122664525 \tabularnewline
0.0106194100170098 \tabularnewline
0.00419028945718883 \tabularnewline
0.0563719544280869 \tabularnewline
-0.0157836505993569 \tabularnewline
-0.0393048593149622 \tabularnewline
0.0488706145366789 \tabularnewline
-0.0182927234796063 \tabularnewline
0.0192649737223195 \tabularnewline
0.0120697429571173 \tabularnewline
0.0188676725230806 \tabularnewline
0.0314985808594242 \tabularnewline
0.0105174864096815 \tabularnewline
0.0214288189999914 \tabularnewline
-0.0295779466497446 \tabularnewline
0.0905366950356756 \tabularnewline
-0.0245294920708309 \tabularnewline
-0.0266877531458751 \tabularnewline
0.0614555038195385 \tabularnewline
-0.049189467756393 \tabularnewline
0.0131980016731942 \tabularnewline
0.00514981695312839 \tabularnewline
-0.0397335689578526 \tabularnewline
0.0350766159855679 \tabularnewline
0.010621732872486 \tabularnewline
-0.011671485556904 \tabularnewline
-0.00253156417041326 \tabularnewline
0.0398023093423369 \tabularnewline
-0.0261242179681298 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300985&T=2

[TABLE]
[ROW][C]Estimated ARIMA Residuals[/C][/ROW]
[ROW][C]Value[/C][/ROW]
[ROW][C]-0.0182129509761466[/C][/ROW]
[ROW][C]0.0166031693910529[/C][/ROW]
[ROW][C]-0.00445421636087761[/C][/ROW]
[ROW][C]0.00338035869145025[/C][/ROW]
[ROW][C]0.000583350456436664[/C][/ROW]
[ROW][C]0.0280910938835297[/C][/ROW]
[ROW][C]0.00473792829759999[/C][/ROW]
[ROW][C]0.0452008112332218[/C][/ROW]
[ROW][C]-0.00196494619996354[/C][/ROW]
[ROW][C]0.0217575722332453[/C][/ROW]
[ROW][C]0.0184589995247412[/C][/ROW]
[ROW][C]0.028771577212598[/C][/ROW]
[ROW][C]-0.00400897928107492[/C][/ROW]
[ROW][C]0.0254561759325892[/C][/ROW]
[ROW][C]0.0141956053895158[/C][/ROW]
[ROW][C]0.00208763836339201[/C][/ROW]
[ROW][C]0.00585542807497559[/C][/ROW]
[ROW][C]0.0175340752183973[/C][/ROW]
[ROW][C]0.0218679285793812[/C][/ROW]
[ROW][C]-0.0177812668663452[/C][/ROW]
[ROW][C]0.0313754681309385[/C][/ROW]
[ROW][C]-0.018826500646307[/C][/ROW]
[ROW][C]0.0148001496506037[/C][/ROW]
[ROW][C]-0.000824407936924691[/C][/ROW]
[ROW][C]-0.00140363633840923[/C][/ROW]
[ROW][C]-0.00900168398447361[/C][/ROW]
[ROW][C]-0.00120917570113075[/C][/ROW]
[ROW][C]-0.0222645401982031[/C][/ROW]
[ROW][C]-0.0218402185126821[/C][/ROW]
[ROW][C]0.0149355558554353[/C][/ROW]
[ROW][C]-0.0124126518825562[/C][/ROW]
[ROW][C]0.010513560280322[/C][/ROW]
[ROW][C]0.00249155342996964[/C][/ROW]
[ROW][C]-0.00456206444313878[/C][/ROW]
[ROW][C]0.0092246380357218[/C][/ROW]
[ROW][C]0.0220595457245733[/C][/ROW]
[ROW][C]0.0123281826876162[/C][/ROW]
[ROW][C]0.0163550163505226[/C][/ROW]
[ROW][C]0.0250387847758334[/C][/ROW]
[ROW][C]0.0126843568613835[/C][/ROW]
[ROW][C]-0.353644985237892[/C][/ROW]
[ROW][C]0.0261960787344104[/C][/ROW]
[ROW][C]0.0814191896759077[/C][/ROW]
[ROW][C]0.0525570833742054[/C][/ROW]
[ROW][C]0.0352180397568094[/C][/ROW]
[ROW][C]0.0849949447476755[/C][/ROW]
[ROW][C]0.0613948439457645[/C][/ROW]
[ROW][C]0.0563427130142258[/C][/ROW]
[ROW][C]0.0488499463438693[/C][/ROW]
[ROW][C]0.0170684192746468[/C][/ROW]
[ROW][C]0.0201208781932307[/C][/ROW]
[ROW][C]0.0393299106185081[/C][/ROW]
[ROW][C]0.100168471562643[/C][/ROW]
[ROW][C]0.000618178953060167[/C][/ROW]
[ROW][C]0.0118805657019564[/C][/ROW]
[ROW][C]-0.0366585316412377[/C][/ROW]
[ROW][C]-0.000416063035125218[/C][/ROW]
[ROW][C]0.00747992722133966[/C][/ROW]
[ROW][C]-0.0338907841548999[/C][/ROW]
[ROW][C]0.00269320145980863[/C][/ROW]
[ROW][C]0.0236542475306302[/C][/ROW]
[ROW][C]0.0132885041937942[/C][/ROW]
[ROW][C]0.0161870422142588[/C][/ROW]
[ROW][C]0.0249065837526902[/C][/ROW]
[ROW][C]0.0425453992306796[/C][/ROW]
[ROW][C]-0.0129061802355515[/C][/ROW]
[ROW][C]-0.017875928733074[/C][/ROW]
[ROW][C]-0.0342340731154013[/C][/ROW]
[ROW][C]-0.00495745007722835[/C][/ROW]
[ROW][C]-0.00744595503944418[/C][/ROW]
[ROW][C]-0.0151075049934683[/C][/ROW]
[ROW][C]0.00410809399106157[/C][/ROW]
[ROW][C]-0.00374292512266298[/C][/ROW]
[ROW][C]0.0103585220255269[/C][/ROW]
[ROW][C]0.0143356323969867[/C][/ROW]
[ROW][C]-0.00840032573721958[/C][/ROW]
[ROW][C]0.0147511823141053[/C][/ROW]
[ROW][C]-0.00198969267496963[/C][/ROW]
[ROW][C]-0.0148364813892229[/C][/ROW]
[ROW][C]-0.0369265767531868[/C][/ROW]
[ROW][C]0.0324450946602283[/C][/ROW]
[ROW][C]-0.0126414317233685[/C][/ROW]
[ROW][C]0.0235632633454314[/C][/ROW]
[ROW][C]0.00996549002289303[/C][/ROW]
[ROW][C]0.0208285173929854[/C][/ROW]
[ROW][C]-0.00713961122664525[/C][/ROW]
[ROW][C]0.0106194100170098[/C][/ROW]
[ROW][C]0.00419028945718883[/C][/ROW]
[ROW][C]0.0563719544280869[/C][/ROW]
[ROW][C]-0.0157836505993569[/C][/ROW]
[ROW][C]-0.0393048593149622[/C][/ROW]
[ROW][C]0.0488706145366789[/C][/ROW]
[ROW][C]-0.0182927234796063[/C][/ROW]
[ROW][C]0.0192649737223195[/C][/ROW]
[ROW][C]0.0120697429571173[/C][/ROW]
[ROW][C]0.0188676725230806[/C][/ROW]
[ROW][C]0.0314985808594242[/C][/ROW]
[ROW][C]0.0105174864096815[/C][/ROW]
[ROW][C]0.0214288189999914[/C][/ROW]
[ROW][C]-0.0295779466497446[/C][/ROW]
[ROW][C]0.0905366950356756[/C][/ROW]
[ROW][C]-0.0245294920708309[/C][/ROW]
[ROW][C]-0.0266877531458751[/C][/ROW]
[ROW][C]0.0614555038195385[/C][/ROW]
[ROW][C]-0.049189467756393[/C][/ROW]
[ROW][C]0.0131980016731942[/C][/ROW]
[ROW][C]0.00514981695312839[/C][/ROW]
[ROW][C]-0.0397335689578526[/C][/ROW]
[ROW][C]0.0350766159855679[/C][/ROW]
[ROW][C]0.010621732872486[/C][/ROW]
[ROW][C]-0.011671485556904[/C][/ROW]
[ROW][C]-0.00253156417041326[/C][/ROW]
[ROW][C]0.0398023093423369[/C][/ROW]
[ROW][C]-0.0261242179681298[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300985&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300985&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimated ARIMA Residuals
Value
-0.0182129509761466
0.0166031693910529
-0.00445421636087761
0.00338035869145025
0.000583350456436664
0.0280910938835297
0.00473792829759999
0.0452008112332218
-0.00196494619996354
0.0217575722332453
0.0184589995247412
0.028771577212598
-0.00400897928107492
0.0254561759325892
0.0141956053895158
0.00208763836339201
0.00585542807497559
0.0175340752183973
0.0218679285793812
-0.0177812668663452
0.0313754681309385
-0.018826500646307
0.0148001496506037
-0.000824407936924691
-0.00140363633840923
-0.00900168398447361
-0.00120917570113075
-0.0222645401982031
-0.0218402185126821
0.0149355558554353
-0.0124126518825562
0.010513560280322
0.00249155342996964
-0.00456206444313878
0.0092246380357218
0.0220595457245733
0.0123281826876162
0.0163550163505226
0.0250387847758334
0.0126843568613835
-0.353644985237892
0.0261960787344104
0.0814191896759077
0.0525570833742054
0.0352180397568094
0.0849949447476755
0.0613948439457645
0.0563427130142258
0.0488499463438693
0.0170684192746468
0.0201208781932307
0.0393299106185081
0.100168471562643
0.000618178953060167
0.0118805657019564
-0.0366585316412377
-0.000416063035125218
0.00747992722133966
-0.0338907841548999
0.00269320145980863
0.0236542475306302
0.0132885041937942
0.0161870422142588
0.0249065837526902
0.0425453992306796
-0.0129061802355515
-0.017875928733074
-0.0342340731154013
-0.00495745007722835
-0.00744595503944418
-0.0151075049934683
0.00410809399106157
-0.00374292512266298
0.0103585220255269
0.0143356323969867
-0.00840032573721958
0.0147511823141053
-0.00198969267496963
-0.0148364813892229
-0.0369265767531868
0.0324450946602283
-0.0126414317233685
0.0235632633454314
0.00996549002289303
0.0208285173929854
-0.00713961122664525
0.0106194100170098
0.00419028945718883
0.0563719544280869
-0.0157836505993569
-0.0393048593149622
0.0488706145366789
-0.0182927234796063
0.0192649737223195
0.0120697429571173
0.0188676725230806
0.0314985808594242
0.0105174864096815
0.0214288189999914
-0.0295779466497446
0.0905366950356756
-0.0245294920708309
-0.0266877531458751
0.0614555038195385
-0.049189467756393
0.0131980016731942
0.00514981695312839
-0.0397335689578526
0.0350766159855679
0.010621732872486
-0.011671485556904
-0.00253156417041326
0.0398023093423369
-0.0261242179681298



Parameters (Session):
par1 = TRUE ; par2 = 0.2 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = 3 ; par7 = 1 ; par8 = 2 ; par9 = 1 ;
Parameters (R input):
par1 = TRUE ; par2 = 0.2 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = 3 ; par7 = 1 ; par8 = 2 ; par9 = 1 ;
R code (references can be found in the software module):
library(lattice)
if (par1 == 'TRUE') par1 <- TRUE
if (par1 == 'FALSE') par1 <- FALSE
par2 <- as.numeric(par2) #Box-Cox lambda transformation parameter
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #degree (p) of the non-seasonal AR(p) polynomial
par7 <- as.numeric(par7) #degree (q) of the non-seasonal MA(q) polynomial
par8 <- as.numeric(par8) #degree (P) of the seasonal AR(P) polynomial
par9 <- as.numeric(par9) #degree (Q) of the seasonal MA(Q) polynomial
armaGR <- function(arima.out, names, n){
try1 <- arima.out$coef
try2 <- sqrt(diag(arima.out$var.coef))
try.data.frame <- data.frame(matrix(NA,ncol=4,nrow=length(names)))
dimnames(try.data.frame) <- list(names,c('coef','std','tstat','pv'))
try.data.frame[,1] <- try1
for(i in 1:length(try2)) try.data.frame[which(rownames(try.data.frame)==names(try2)[i]),2] <- try2[i]
try.data.frame[,3] <- try.data.frame[,1] / try.data.frame[,2]
try.data.frame[,4] <- round((1-pt(abs(try.data.frame[,3]),df=n-(length(try2)+1)))*2,5)
vector <- rep(NA,length(names))
vector[is.na(try.data.frame[,4])] <- 0
maxi <- which.max(try.data.frame[,4])
continue <- max(try.data.frame[,4],na.rm=TRUE) > .05
vector[maxi] <- 0
list(summary=try.data.frame,next.vector=vector,continue=continue)
}
arimaSelect <- function(series, order=c(13,0,0), seasonal=list(order=c(2,0,0),period=12), include.mean=F){
nrc <- order[1]+order[3]+seasonal$order[1]+seasonal$order[3]
coeff <- matrix(NA, nrow=nrc*2, ncol=nrc)
pval <- matrix(NA, nrow=nrc*2, ncol=nrc)
mylist <- rep(list(NULL), nrc)
names <- NULL
if(order[1] > 0) names <- paste('ar',1:order[1],sep='')
if(order[3] > 0) names <- c( names , paste('ma',1:order[3],sep='') )
if(seasonal$order[1] > 0) names <- c(names, paste('sar',1:seasonal$order[1],sep=''))
if(seasonal$order[3] > 0) names <- c(names, paste('sma',1:seasonal$order[3],sep=''))
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML')
mylist[[1]] <- arima.out
last.arma <- armaGR(arima.out, names, length(series))
mystop <- FALSE
i <- 1
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- 2
aic <- arima.out$aic
while(!mystop){
mylist[[i]] <- arima.out
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML', fixed=last.arma$next.vector)
aic <- c(aic, arima.out$aic)
last.arma <- armaGR(arima.out, names, length(series))
mystop <- !last.arma$continue
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- i+1
}
list(coeff, pval, mylist, aic=aic)
}
arimaSelectplot <- function(arimaSelect.out,noms,choix){
noms <- names(arimaSelect.out[[3]][[1]]$coef)
coeff <- arimaSelect.out[[1]]
k <- min(which(is.na(coeff[,1])))-1
coeff <- coeff[1:k,]
pval <- arimaSelect.out[[2]][1:k,]
aic <- arimaSelect.out$aic[1:k]
coeff[coeff==0] <- NA
n <- ncol(coeff)
if(missing(choix)) choix <- k
layout(matrix(c(1,1,1,2,
3,3,3,2,
3,3,3,4,
5,6,7,7),nr=4),
widths=c(10,35,45,15),
heights=c(30,30,15,15))
couleurs <- rainbow(75)[1:50]#(50)
ticks <- pretty(coeff)
par(mar=c(1,1,3,1))
plot(aic,k:1-.5,type='o',pch=21,bg='blue',cex=2,axes=F,lty=2,xpd=NA)
points(aic[choix],k-choix+.5,pch=21,cex=4,bg=2,xpd=NA)
title('aic',line=2)
par(mar=c(3,0,0,0))
plot(0,axes=F,xlab='',ylab='',xlim=range(ticks),ylim=c(.1,1))
rect(xleft = min(ticks) + (0:49)/50*(max(ticks)-min(ticks)),
xright = min(ticks) + (1:50)/50*(max(ticks)-min(ticks)),
ytop = rep(1,50),
ybottom= rep(0,50),col=couleurs,border=NA)
axis(1,ticks)
rect(xleft=min(ticks),xright=max(ticks),ytop=1,ybottom=0)
text(mean(coeff,na.rm=T),.5,'coefficients',cex=2,font=2)
par(mar=c(1,1,3,1))
image(1:n,1:k,t(coeff[k:1,]),axes=F,col=couleurs,zlim=range(ticks))
for(i in 1:n) for(j in 1:k) if(!is.na(coeff[j,i])) {
if(pval[j,i]<.01) symb = 'green'
else if( (pval[j,i]<.05) & (pval[j,i]>=.01)) symb = 'orange'
else if( (pval[j,i]<.1) & (pval[j,i]>=.05)) symb = 'red'
else symb = 'black'
polygon(c(i+.5 ,i+.2 ,i+.5 ,i+.5),
c(k-j+0.5,k-j+0.5,k-j+0.8,k-j+0.5),
col=symb)
if(j==choix) {
rect(xleft=i-.5,
xright=i+.5,
ybottom=k-j+1.5,
ytop=k-j+.5,
lwd=4)
text(i,
k-j+1,
round(coeff[j,i],2),
cex=1.2,
font=2)
}
else{
rect(xleft=i-.5,xright=i+.5,ybottom=k-j+1.5,ytop=k-j+.5)
text(i,k-j+1,round(coeff[j,i],2),cex=1.2,font=1)
}
}
axis(3,1:n,noms)
par(mar=c(0.5,0,0,0.5))
plot(0,axes=F,xlab='',ylab='',type='n',xlim=c(0,8),ylim=c(-.2,.8))
cols <- c('green','orange','red','black')
niv <- c('0','0.01','0.05','0.1')
for(i in 0:3){
polygon(c(1+2*i ,1+2*i ,1+2*i-.5 ,1+2*i),
c(.4 ,.7 , .4 , .4),
col=cols[i+1])
text(2*i,0.5,niv[i+1],cex=1.5)
}
text(8,.5,1,cex=1.5)
text(4,0,'p-value',cex=2)
box()
residus <- arimaSelect.out[[3]][[choix]]$res
par(mar=c(1,2,4,1))
acf(residus,main='')
title('acf',line=.5)
par(mar=c(1,2,4,1))
pacf(residus,main='')
title('pacf',line=.5)
par(mar=c(2,2,4,1))
qqnorm(residus,main='')
title('qq-norm',line=.5)
qqline(residus)
residus
}
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
(selection <- arimaSelect(x, order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5)))
bitmap(file='test1.png')
resid <- arimaSelectplot(selection)
dev.off()
resid
bitmap(file='test2.png')
acf(resid,length(resid)/2, main='Residual Autocorrelation Function')
dev.off()
bitmap(file='test3.png')
pacf(resid,length(resid)/2, main='Residual Partial Autocorrelation Function')
dev.off()
bitmap(file='test4.png')
cpgram(resid, main='Residual Cumulative Periodogram')
dev.off()
bitmap(file='test5.png')
hist(resid, main='Residual Histogram', xlab='values of Residuals')
dev.off()
bitmap(file='test6.png')
densityplot(~resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test7.png')
qqnorm(resid, main='Residual Normal Q-Q Plot')
qqline(resid)
dev.off()
ncols <- length(selection[[1]][1,])
nrows <- length(selection[[2]][,1])-1
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ARIMA Parameter Estimation and Backward Selection', ncols+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Iteration', header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,names(selection[[3]][[1]]$coef)[i],header=TRUE)
}
a<-table.row.end(a)
for (j in 1:nrows) {
a<-table.row.start(a)
mydum <- 'Estimates ('
mydum <- paste(mydum,j)
mydum <- paste(mydum,')')
a<-table.element(a,mydum, header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,round(selection[[1]][j,i],4))
}
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'(p-val)', header=TRUE)
for (i in 1:ncols) {
mydum <- '('
mydum <- paste(mydum,round(selection[[2]][j,i],4),sep='')
mydum <- paste(mydum,')')
a<-table.element(a,mydum)
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimated ARIMA Residuals', 1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Value', 1,TRUE)
a<-table.row.end(a)
for (i in (par4*par5+par3):length(resid)) {
a<-table.row.start(a)
a<-table.element(a,resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')