Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationSun, 18 Dec 2016 08:54:34 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/18/t1482048253zltuq3us155exyn.htm/, Retrieved Fri, 01 Nov 2024 03:35:44 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=300974, Retrieved Fri, 01 Nov 2024 03:35:44 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact171
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Chi-Squared Test, McNemar Test, and Fisher Exact Test] [] [2015-11-15 16:35:00] [32b17a345b130fdf5cc88718ed94a974]
- RMPD    [Multiple Regression] [Multiple Regressi...] [2016-12-18 07:54:34] [2ea868439aa9f960cb5a0f1a9b97f873] [Current]
Feedback Forum

Post a new message
Dataseries X:
4	5	5	4	9
5	5	5	4	8
5	5	4	4	10
3	4	4	4	8
5	5	5	4	9
5	5	5	4	10
5	4	5	5	9
4	4	4	4	9
5	5	4	4	9
5	5	5	5	9
4	3	4	3	10
3	5	4	3	9
4	5	5	4	13
5	5	5	4	11
4	4	4	4	10
5	4	5	4	8
4	5	5	4	11
5	4	4	4	6
5	4	5	5	7
5	5	5	4	9
3	5	5	4	9
4	5	5	4	10
4	4	4	4	9
5	5	5	5	10
3	4	3	3	8
5	5	4	5	10
4	4	4	3	10
4	5	4	4	11
4	5	4	4	10
4	3	5	4	9
5	4	5	3	7
5	5	5	4	11
4	4	5	5	6
5	5	5	4	11
5	5	5	5	10
4	4	4	4	9
5	4	4	4	10
4	4	4	4	10
4	5	4	3	9
4	4	4	4	8
4	4	4	4	9
4	3	4	3	9
5	5	4	3	10
5	4	5	4	11
4	4	4	4	7,5
4	4	4	4	9
4	4	4	1	10
4	4	4	4	8
4	4	4	3	3
5	5	5	4	10
4	4	4	4	10
4	5	4	4	10
5	5	5	4	4
4	5	4	4	10
4	5	4	4	8
4	4	4	3	9
5	4	3	4	13
4	4	4	4	10
5	4	4	3	8
4	5	4	4	9
4	5	5	4	11
4	5	5	4	10
5	5	5	3	9
5	5	5	4	10
4	4	3	3	7
4	2	4	3	10
4	5	5	4	10
4	4	4	4	11
4	4	4	3	12
4	5	5	4	8
4	5	5	4	10
2	5	4	5	6
5	5	5	4	9
4	5	4	4	11
5	5	4	3	10
5	5	5	4	10
4	5	5	5	8
5	5	5	5	10
5	5	5	4	9
4	5	5	4	9
4	4	4	4	10
4	4	4	4	10
4	3	4	4	11
5	5	5	5	9
4	5	4	3	12
4	4	4	4	7
5	5	5	5	9
5	5	5	5	9
4	5	5	4	11
5	4	2	4	8
4	3	4	3	9
4	4	4	4	9
3	4	3	4	9
4	5	5	4	9
5	5	5	5	11
5	5	5	5	9
4	5	5	4	7
5	5	5	5	15
3	4	4	3	9
5	5	5	5	9
4	5	4	4	12
5	5	5	5	10
3	4	4	3	9
4	4	4	4	10
5	5	5	5	10
5	5	5	4	9
4	5	4	5	10
4	5	4	4	10
4	5	4	4	9
5	4	5	5	9
4	4	4	3	9
5	4	5	4	9
4	3	4	4	11
4	4	4	4	9
4	4	4	4	7
5	5	5	5	11
5	5	4	4	9
5	5	5	5	7
5	5	5	3	12
4	5	4	4	8
5	4	5	5	9
4	5	5	4	9
5	5	5	4	9
5	4	3	5	9
5	5	4	4	11
4	5	4	4	9
4	4	4	4	10
5	5	5	4	10
5	5	4	4	9
4	5	4	4	8
5	5	4	4	10
4	4	4	4	9
5	5	5	5	8
4	3	4	3	10
4	5	4	4	9
3	3	2	5	13
4	5	4	4	8
4	5	5	4	11
4	4	4	4	9
4	5	4	4	8
5	5	5	4	9
5	5	4	5	10
3	5	5	4	10
4	5	4	3	10
4	5	4	4	9
5	5	4	3	11
4	5	4	4	7
5	5	5	5	9
3	4	4	3	10
5	5	5	5	11
5	5	5	4	8
3	5	5	3	8
5	5	5	4	7
4	5	4	4	9
5	5	5	4	9
5	5	5	5	10
5	4	5	5	9
5	5	5	4	11
4	5	4	3	8
5	4	5	4	11
5	4	2	5	9
4	5	4	4	9
4	5	5	4	9
4	4	5	3	7
4	5	4	4	10
4	4	4	3	9
5	5	5	3	9




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time9 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time9 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300974&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]9 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=300974&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300974&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time9 seconds
R ServerBig Analytics Cloud Computing Center







Multiple Linear Regression - Estimated Regression Equation
GWSUM[t] = + 8.21286 + 0.250411IK1[t] + 0.127425IK2[t] -0.151055IK3[t] + 0.0255397IK4[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
GWSUM[t] =  +  8.21286 +  0.250411IK1[t] +  0.127425IK2[t] -0.151055IK3[t] +  0.0255397IK4[t]  + e[t] \tabularnewline
 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300974&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]GWSUM[t] =  +  8.21286 +  0.250411IK1[t] +  0.127425IK2[t] -0.151055IK3[t] +  0.0255397IK4[t]  + e[t][/C][/ROW]
[ROW][C][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300974&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300974&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
GWSUM[t] = + 8.21286 + 0.250411IK1[t] + 0.127425IK2[t] -0.151055IK3[t] + 0.0255397IK4[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+8.213 1.151+7.1320e+00 3.112e-11 1.556e-11
IK1+0.2504 0.2101+1.1920e+00 0.2351 0.1175
IK2+0.1274 0.2146+5.9380e-01 0.5535 0.2767
IK3-0.1511 0.2147-7.0360e-01 0.4827 0.2414
IK4+0.02554 0.192+1.3300e-01 0.8943 0.4472

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & +8.213 &  1.151 & +7.1320e+00 &  3.112e-11 &  1.556e-11 \tabularnewline
IK1 & +0.2504 &  0.2101 & +1.1920e+00 &  0.2351 &  0.1175 \tabularnewline
IK2 & +0.1274 &  0.2146 & +5.9380e-01 &  0.5535 &  0.2767 \tabularnewline
IK3 & -0.1511 &  0.2147 & -7.0360e-01 &  0.4827 &  0.2414 \tabularnewline
IK4 & +0.02554 &  0.192 & +1.3300e-01 &  0.8943 &  0.4472 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300974&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]+8.213[/C][C] 1.151[/C][C]+7.1320e+00[/C][C] 3.112e-11[/C][C] 1.556e-11[/C][/ROW]
[ROW][C]IK1[/C][C]+0.2504[/C][C] 0.2101[/C][C]+1.1920e+00[/C][C] 0.2351[/C][C] 0.1175[/C][/ROW]
[ROW][C]IK2[/C][C]+0.1274[/C][C] 0.2146[/C][C]+5.9380e-01[/C][C] 0.5535[/C][C] 0.2767[/C][/ROW]
[ROW][C]IK3[/C][C]-0.1511[/C][C] 0.2147[/C][C]-7.0360e-01[/C][C] 0.4827[/C][C] 0.2414[/C][/ROW]
[ROW][C]IK4[/C][C]+0.02554[/C][C] 0.192[/C][C]+1.3300e-01[/C][C] 0.8943[/C][C] 0.4472[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300974&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300974&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+8.213 1.151+7.1320e+00 3.112e-11 1.556e-11
IK1+0.2504 0.2101+1.1920e+00 0.2351 0.1175
IK2+0.1274 0.2146+5.9380e-01 0.5535 0.2767
IK3-0.1511 0.2147-7.0360e-01 0.4827 0.2414
IK4+0.02554 0.192+1.3300e-01 0.8943 0.4472







Multiple Linear Regression - Regression Statistics
Multiple R 0.1165
R-squared 0.01358
Adjusted R-squared-0.01077
F-TEST (value) 0.5576
F-TEST (DF numerator)4
F-TEST (DF denominator)162
p-value 0.6938
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 1.513
Sum Squared Residuals 371

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R &  0.1165 \tabularnewline
R-squared &  0.01358 \tabularnewline
Adjusted R-squared & -0.01077 \tabularnewline
F-TEST (value) &  0.5576 \tabularnewline
F-TEST (DF numerator) & 4 \tabularnewline
F-TEST (DF denominator) & 162 \tabularnewline
p-value &  0.6938 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation &  1.513 \tabularnewline
Sum Squared Residuals &  371 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300974&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C] 0.1165[/C][/ROW]
[ROW][C]R-squared[/C][C] 0.01358[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]-0.01077[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C] 0.5576[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]4[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]162[/C][/ROW]
[ROW][C]p-value[/C][C] 0.6938[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C] 1.513[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C] 371[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300974&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300974&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R 0.1165
R-squared 0.01358
Adjusted R-squared-0.01077
F-TEST (value) 0.5576
F-TEST (DF numerator)4
F-TEST (DF denominator)162
p-value 0.6938
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 1.513
Sum Squared Residuals 371







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 9 9.199-0.1985
2 8 9.449-1.449
3 10 9.6 0.4
4 8 8.972-0.9717
5 9 9.449-0.4489
6 10 9.449 0.5511
7 9 9.347-0.347
8 9 9.222-0.2221
9 9 9.6-0.6
10 9 9.474-0.4745
11 10 9.069 0.9308
12 9 9.074-0.07361
13 13 9.199 3.801
14 11 9.449 1.551
15 10 9.222 0.7779
16 8 9.321-1.321
17 11 9.199 1.801
18 6 9.473-3.473
19 7 9.347-2.347
20 9 9.449-0.4489
21 9 8.948 0.0519
22 10 9.199 0.8015
23 9 9.222-0.2221
24 10 9.474 0.5255
25 8 9.097-1.097
26 10 9.626 0.3745
27 10 9.197 0.8034
28 11 9.35 1.65
29 10 9.35 0.6504
30 9 8.944 0.05634
31 7 9.296-2.296
32 11 9.449 1.551
33 6 9.097-3.097
34 11 9.449 1.551
35 10 9.474 0.5255
36 9 9.222-0.2221
37 10 9.473 0.5274
38 10 9.222 0.7779
39 9 9.324-0.324
40 8 9.222-1.222
41 9 9.222-0.2221
42 9 9.069-0.06917
43 10 9.574 0.4256
44 11 9.321 1.679
45 7.5 9.222-1.722
46 9 9.222-0.2221
47 10 9.146 0.8545
48 8 9.222-1.222
49 3 9.197-6.197
50 10 9.449 0.5511
51 10 9.222 0.7779
52 10 9.35 0.6504
53 4 9.449-5.449
54 10 9.35 0.6504
55 8 9.35-1.35
56 9 9.197-0.1966
57 13 9.624 3.376
58 10 9.222 0.7779
59 8 9.447-1.447
60 9 9.35-0.3496
61 11 9.199 1.801
62 10 9.199 0.8015
63 9 9.423-0.4234
64 10 9.449 0.5511
65 7 9.348-2.348
66 10 8.942 1.058
67 10 9.199 0.8015
68 11 9.222 1.778
69 12 9.197 2.803
70 8 9.199-1.199
71 10 9.199 0.8015
72 6 8.874-2.874
73 9 9.449-0.4489
74 11 9.35 1.65
75 10 9.574 0.4256
76 10 9.449 0.5511
77 8 9.224-1.224
78 10 9.474 0.5255
79 9 9.449-0.4489
80 9 9.199-0.1985
81 10 9.222 0.7779
82 10 9.222 0.7779
83 11 9.095 1.905
84 9 9.474-0.4745
85 12 9.324 2.676
86 7 9.222-2.222
87 9 9.474-0.4745
88 9 9.474-0.4745
89 11 9.199 1.801
90 8 9.775-1.775
91 9 9.069-0.06917
92 9 9.222-0.2221
93 9 9.123-0.1228
94 9 9.199-0.1985
95 11 9.474 1.526
96 9 9.474-0.4745
97 7 9.199-2.199
98 15 9.474 5.526
99 9 8.946 0.05381
100 9 9.474-0.4745
101 12 9.35 2.65
102 10 9.474 0.5255
103 9 8.946 0.05381
104 10 9.222 0.7779
105 10 9.474 0.5255
106 9 9.449-0.4489
107 10 9.375 0.6249
108 10 9.35 0.6504
109 9 9.35-0.3496
110 9 9.347-0.347
111 9 9.197-0.1966
112 9 9.321-0.3215
113 11 9.095 1.905
114 9 9.222-0.2221
115 7 9.222-2.222
116 11 9.474 1.526
117 9 9.6-0.6
118 7 9.474-2.474
119 12 9.423 2.577
120 8 9.35-1.35
121 9 9.347-0.347
122 9 9.199-0.1985
123 9 9.449-0.4489
124 9 9.649-0.6491
125 11 9.6 1.4
126 9 9.35-0.3496
127 10 9.222 0.7779
128 10 9.449 0.5511
129 9 9.6-0.6
130 8 9.35-1.35
131 10 9.6 0.4
132 9 9.222-0.2221
133 8 9.474-1.474
134 10 9.069 0.9308
135 9 9.35-0.3496
136 13 9.172 3.828
137 8 9.35-1.35
138 11 9.199 1.801
139 9 9.222-0.2221
140 8 9.35-1.35
141 9 9.449-0.4489
142 10 9.626 0.3745
143 10 8.948 1.052
144 10 9.324 0.676
145 9 9.35-0.3496
146 11 9.574 1.426
147 7 9.35-2.35
148 9 9.474-0.4745
149 10 8.946 1.054
150 11 9.474 1.526
151 8 9.449-1.449
152 8 8.923-0.9226
153 7 9.449-2.449
154 9 9.35-0.3496
155 9 9.449-0.4489
156 10 9.474 0.5255
157 9 9.347-0.347
158 11 9.449 1.551
159 8 9.324-1.324
160 11 9.321 1.679
161 9 9.8-0.8002
162 9 9.35-0.3496
163 9 9.199-0.1985
164 7 9.046-2.046
165 10 9.35 0.6504
166 9 9.197-0.1966
167 9 9.423-0.4234

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 &  9 &  9.199 & -0.1985 \tabularnewline
2 &  8 &  9.449 & -1.449 \tabularnewline
3 &  10 &  9.6 &  0.4 \tabularnewline
4 &  8 &  8.972 & -0.9717 \tabularnewline
5 &  9 &  9.449 & -0.4489 \tabularnewline
6 &  10 &  9.449 &  0.5511 \tabularnewline
7 &  9 &  9.347 & -0.347 \tabularnewline
8 &  9 &  9.222 & -0.2221 \tabularnewline
9 &  9 &  9.6 & -0.6 \tabularnewline
10 &  9 &  9.474 & -0.4745 \tabularnewline
11 &  10 &  9.069 &  0.9308 \tabularnewline
12 &  9 &  9.074 & -0.07361 \tabularnewline
13 &  13 &  9.199 &  3.801 \tabularnewline
14 &  11 &  9.449 &  1.551 \tabularnewline
15 &  10 &  9.222 &  0.7779 \tabularnewline
16 &  8 &  9.321 & -1.321 \tabularnewline
17 &  11 &  9.199 &  1.801 \tabularnewline
18 &  6 &  9.473 & -3.473 \tabularnewline
19 &  7 &  9.347 & -2.347 \tabularnewline
20 &  9 &  9.449 & -0.4489 \tabularnewline
21 &  9 &  8.948 &  0.0519 \tabularnewline
22 &  10 &  9.199 &  0.8015 \tabularnewline
23 &  9 &  9.222 & -0.2221 \tabularnewline
24 &  10 &  9.474 &  0.5255 \tabularnewline
25 &  8 &  9.097 & -1.097 \tabularnewline
26 &  10 &  9.626 &  0.3745 \tabularnewline
27 &  10 &  9.197 &  0.8034 \tabularnewline
28 &  11 &  9.35 &  1.65 \tabularnewline
29 &  10 &  9.35 &  0.6504 \tabularnewline
30 &  9 &  8.944 &  0.05634 \tabularnewline
31 &  7 &  9.296 & -2.296 \tabularnewline
32 &  11 &  9.449 &  1.551 \tabularnewline
33 &  6 &  9.097 & -3.097 \tabularnewline
34 &  11 &  9.449 &  1.551 \tabularnewline
35 &  10 &  9.474 &  0.5255 \tabularnewline
36 &  9 &  9.222 & -0.2221 \tabularnewline
37 &  10 &  9.473 &  0.5274 \tabularnewline
38 &  10 &  9.222 &  0.7779 \tabularnewline
39 &  9 &  9.324 & -0.324 \tabularnewline
40 &  8 &  9.222 & -1.222 \tabularnewline
41 &  9 &  9.222 & -0.2221 \tabularnewline
42 &  9 &  9.069 & -0.06917 \tabularnewline
43 &  10 &  9.574 &  0.4256 \tabularnewline
44 &  11 &  9.321 &  1.679 \tabularnewline
45 &  7.5 &  9.222 & -1.722 \tabularnewline
46 &  9 &  9.222 & -0.2221 \tabularnewline
47 &  10 &  9.146 &  0.8545 \tabularnewline
48 &  8 &  9.222 & -1.222 \tabularnewline
49 &  3 &  9.197 & -6.197 \tabularnewline
50 &  10 &  9.449 &  0.5511 \tabularnewline
51 &  10 &  9.222 &  0.7779 \tabularnewline
52 &  10 &  9.35 &  0.6504 \tabularnewline
53 &  4 &  9.449 & -5.449 \tabularnewline
54 &  10 &  9.35 &  0.6504 \tabularnewline
55 &  8 &  9.35 & -1.35 \tabularnewline
56 &  9 &  9.197 & -0.1966 \tabularnewline
57 &  13 &  9.624 &  3.376 \tabularnewline
58 &  10 &  9.222 &  0.7779 \tabularnewline
59 &  8 &  9.447 & -1.447 \tabularnewline
60 &  9 &  9.35 & -0.3496 \tabularnewline
61 &  11 &  9.199 &  1.801 \tabularnewline
62 &  10 &  9.199 &  0.8015 \tabularnewline
63 &  9 &  9.423 & -0.4234 \tabularnewline
64 &  10 &  9.449 &  0.5511 \tabularnewline
65 &  7 &  9.348 & -2.348 \tabularnewline
66 &  10 &  8.942 &  1.058 \tabularnewline
67 &  10 &  9.199 &  0.8015 \tabularnewline
68 &  11 &  9.222 &  1.778 \tabularnewline
69 &  12 &  9.197 &  2.803 \tabularnewline
70 &  8 &  9.199 & -1.199 \tabularnewline
71 &  10 &  9.199 &  0.8015 \tabularnewline
72 &  6 &  8.874 & -2.874 \tabularnewline
73 &  9 &  9.449 & -0.4489 \tabularnewline
74 &  11 &  9.35 &  1.65 \tabularnewline
75 &  10 &  9.574 &  0.4256 \tabularnewline
76 &  10 &  9.449 &  0.5511 \tabularnewline
77 &  8 &  9.224 & -1.224 \tabularnewline
78 &  10 &  9.474 &  0.5255 \tabularnewline
79 &  9 &  9.449 & -0.4489 \tabularnewline
80 &  9 &  9.199 & -0.1985 \tabularnewline
81 &  10 &  9.222 &  0.7779 \tabularnewline
82 &  10 &  9.222 &  0.7779 \tabularnewline
83 &  11 &  9.095 &  1.905 \tabularnewline
84 &  9 &  9.474 & -0.4745 \tabularnewline
85 &  12 &  9.324 &  2.676 \tabularnewline
86 &  7 &  9.222 & -2.222 \tabularnewline
87 &  9 &  9.474 & -0.4745 \tabularnewline
88 &  9 &  9.474 & -0.4745 \tabularnewline
89 &  11 &  9.199 &  1.801 \tabularnewline
90 &  8 &  9.775 & -1.775 \tabularnewline
91 &  9 &  9.069 & -0.06917 \tabularnewline
92 &  9 &  9.222 & -0.2221 \tabularnewline
93 &  9 &  9.123 & -0.1228 \tabularnewline
94 &  9 &  9.199 & -0.1985 \tabularnewline
95 &  11 &  9.474 &  1.526 \tabularnewline
96 &  9 &  9.474 & -0.4745 \tabularnewline
97 &  7 &  9.199 & -2.199 \tabularnewline
98 &  15 &  9.474 &  5.526 \tabularnewline
99 &  9 &  8.946 &  0.05381 \tabularnewline
100 &  9 &  9.474 & -0.4745 \tabularnewline
101 &  12 &  9.35 &  2.65 \tabularnewline
102 &  10 &  9.474 &  0.5255 \tabularnewline
103 &  9 &  8.946 &  0.05381 \tabularnewline
104 &  10 &  9.222 &  0.7779 \tabularnewline
105 &  10 &  9.474 &  0.5255 \tabularnewline
106 &  9 &  9.449 & -0.4489 \tabularnewline
107 &  10 &  9.375 &  0.6249 \tabularnewline
108 &  10 &  9.35 &  0.6504 \tabularnewline
109 &  9 &  9.35 & -0.3496 \tabularnewline
110 &  9 &  9.347 & -0.347 \tabularnewline
111 &  9 &  9.197 & -0.1966 \tabularnewline
112 &  9 &  9.321 & -0.3215 \tabularnewline
113 &  11 &  9.095 &  1.905 \tabularnewline
114 &  9 &  9.222 & -0.2221 \tabularnewline
115 &  7 &  9.222 & -2.222 \tabularnewline
116 &  11 &  9.474 &  1.526 \tabularnewline
117 &  9 &  9.6 & -0.6 \tabularnewline
118 &  7 &  9.474 & -2.474 \tabularnewline
119 &  12 &  9.423 &  2.577 \tabularnewline
120 &  8 &  9.35 & -1.35 \tabularnewline
121 &  9 &  9.347 & -0.347 \tabularnewline
122 &  9 &  9.199 & -0.1985 \tabularnewline
123 &  9 &  9.449 & -0.4489 \tabularnewline
124 &  9 &  9.649 & -0.6491 \tabularnewline
125 &  11 &  9.6 &  1.4 \tabularnewline
126 &  9 &  9.35 & -0.3496 \tabularnewline
127 &  10 &  9.222 &  0.7779 \tabularnewline
128 &  10 &  9.449 &  0.5511 \tabularnewline
129 &  9 &  9.6 & -0.6 \tabularnewline
130 &  8 &  9.35 & -1.35 \tabularnewline
131 &  10 &  9.6 &  0.4 \tabularnewline
132 &  9 &  9.222 & -0.2221 \tabularnewline
133 &  8 &  9.474 & -1.474 \tabularnewline
134 &  10 &  9.069 &  0.9308 \tabularnewline
135 &  9 &  9.35 & -0.3496 \tabularnewline
136 &  13 &  9.172 &  3.828 \tabularnewline
137 &  8 &  9.35 & -1.35 \tabularnewline
138 &  11 &  9.199 &  1.801 \tabularnewline
139 &  9 &  9.222 & -0.2221 \tabularnewline
140 &  8 &  9.35 & -1.35 \tabularnewline
141 &  9 &  9.449 & -0.4489 \tabularnewline
142 &  10 &  9.626 &  0.3745 \tabularnewline
143 &  10 &  8.948 &  1.052 \tabularnewline
144 &  10 &  9.324 &  0.676 \tabularnewline
145 &  9 &  9.35 & -0.3496 \tabularnewline
146 &  11 &  9.574 &  1.426 \tabularnewline
147 &  7 &  9.35 & -2.35 \tabularnewline
148 &  9 &  9.474 & -0.4745 \tabularnewline
149 &  10 &  8.946 &  1.054 \tabularnewline
150 &  11 &  9.474 &  1.526 \tabularnewline
151 &  8 &  9.449 & -1.449 \tabularnewline
152 &  8 &  8.923 & -0.9226 \tabularnewline
153 &  7 &  9.449 & -2.449 \tabularnewline
154 &  9 &  9.35 & -0.3496 \tabularnewline
155 &  9 &  9.449 & -0.4489 \tabularnewline
156 &  10 &  9.474 &  0.5255 \tabularnewline
157 &  9 &  9.347 & -0.347 \tabularnewline
158 &  11 &  9.449 &  1.551 \tabularnewline
159 &  8 &  9.324 & -1.324 \tabularnewline
160 &  11 &  9.321 &  1.679 \tabularnewline
161 &  9 &  9.8 & -0.8002 \tabularnewline
162 &  9 &  9.35 & -0.3496 \tabularnewline
163 &  9 &  9.199 & -0.1985 \tabularnewline
164 &  7 &  9.046 & -2.046 \tabularnewline
165 &  10 &  9.35 &  0.6504 \tabularnewline
166 &  9 &  9.197 & -0.1966 \tabularnewline
167 &  9 &  9.423 & -0.4234 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300974&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C] 9[/C][C] 9.199[/C][C]-0.1985[/C][/ROW]
[ROW][C]2[/C][C] 8[/C][C] 9.449[/C][C]-1.449[/C][/ROW]
[ROW][C]3[/C][C] 10[/C][C] 9.6[/C][C] 0.4[/C][/ROW]
[ROW][C]4[/C][C] 8[/C][C] 8.972[/C][C]-0.9717[/C][/ROW]
[ROW][C]5[/C][C] 9[/C][C] 9.449[/C][C]-0.4489[/C][/ROW]
[ROW][C]6[/C][C] 10[/C][C] 9.449[/C][C] 0.5511[/C][/ROW]
[ROW][C]7[/C][C] 9[/C][C] 9.347[/C][C]-0.347[/C][/ROW]
[ROW][C]8[/C][C] 9[/C][C] 9.222[/C][C]-0.2221[/C][/ROW]
[ROW][C]9[/C][C] 9[/C][C] 9.6[/C][C]-0.6[/C][/ROW]
[ROW][C]10[/C][C] 9[/C][C] 9.474[/C][C]-0.4745[/C][/ROW]
[ROW][C]11[/C][C] 10[/C][C] 9.069[/C][C] 0.9308[/C][/ROW]
[ROW][C]12[/C][C] 9[/C][C] 9.074[/C][C]-0.07361[/C][/ROW]
[ROW][C]13[/C][C] 13[/C][C] 9.199[/C][C] 3.801[/C][/ROW]
[ROW][C]14[/C][C] 11[/C][C] 9.449[/C][C] 1.551[/C][/ROW]
[ROW][C]15[/C][C] 10[/C][C] 9.222[/C][C] 0.7779[/C][/ROW]
[ROW][C]16[/C][C] 8[/C][C] 9.321[/C][C]-1.321[/C][/ROW]
[ROW][C]17[/C][C] 11[/C][C] 9.199[/C][C] 1.801[/C][/ROW]
[ROW][C]18[/C][C] 6[/C][C] 9.473[/C][C]-3.473[/C][/ROW]
[ROW][C]19[/C][C] 7[/C][C] 9.347[/C][C]-2.347[/C][/ROW]
[ROW][C]20[/C][C] 9[/C][C] 9.449[/C][C]-0.4489[/C][/ROW]
[ROW][C]21[/C][C] 9[/C][C] 8.948[/C][C] 0.0519[/C][/ROW]
[ROW][C]22[/C][C] 10[/C][C] 9.199[/C][C] 0.8015[/C][/ROW]
[ROW][C]23[/C][C] 9[/C][C] 9.222[/C][C]-0.2221[/C][/ROW]
[ROW][C]24[/C][C] 10[/C][C] 9.474[/C][C] 0.5255[/C][/ROW]
[ROW][C]25[/C][C] 8[/C][C] 9.097[/C][C]-1.097[/C][/ROW]
[ROW][C]26[/C][C] 10[/C][C] 9.626[/C][C] 0.3745[/C][/ROW]
[ROW][C]27[/C][C] 10[/C][C] 9.197[/C][C] 0.8034[/C][/ROW]
[ROW][C]28[/C][C] 11[/C][C] 9.35[/C][C] 1.65[/C][/ROW]
[ROW][C]29[/C][C] 10[/C][C] 9.35[/C][C] 0.6504[/C][/ROW]
[ROW][C]30[/C][C] 9[/C][C] 8.944[/C][C] 0.05634[/C][/ROW]
[ROW][C]31[/C][C] 7[/C][C] 9.296[/C][C]-2.296[/C][/ROW]
[ROW][C]32[/C][C] 11[/C][C] 9.449[/C][C] 1.551[/C][/ROW]
[ROW][C]33[/C][C] 6[/C][C] 9.097[/C][C]-3.097[/C][/ROW]
[ROW][C]34[/C][C] 11[/C][C] 9.449[/C][C] 1.551[/C][/ROW]
[ROW][C]35[/C][C] 10[/C][C] 9.474[/C][C] 0.5255[/C][/ROW]
[ROW][C]36[/C][C] 9[/C][C] 9.222[/C][C]-0.2221[/C][/ROW]
[ROW][C]37[/C][C] 10[/C][C] 9.473[/C][C] 0.5274[/C][/ROW]
[ROW][C]38[/C][C] 10[/C][C] 9.222[/C][C] 0.7779[/C][/ROW]
[ROW][C]39[/C][C] 9[/C][C] 9.324[/C][C]-0.324[/C][/ROW]
[ROW][C]40[/C][C] 8[/C][C] 9.222[/C][C]-1.222[/C][/ROW]
[ROW][C]41[/C][C] 9[/C][C] 9.222[/C][C]-0.2221[/C][/ROW]
[ROW][C]42[/C][C] 9[/C][C] 9.069[/C][C]-0.06917[/C][/ROW]
[ROW][C]43[/C][C] 10[/C][C] 9.574[/C][C] 0.4256[/C][/ROW]
[ROW][C]44[/C][C] 11[/C][C] 9.321[/C][C] 1.679[/C][/ROW]
[ROW][C]45[/C][C] 7.5[/C][C] 9.222[/C][C]-1.722[/C][/ROW]
[ROW][C]46[/C][C] 9[/C][C] 9.222[/C][C]-0.2221[/C][/ROW]
[ROW][C]47[/C][C] 10[/C][C] 9.146[/C][C] 0.8545[/C][/ROW]
[ROW][C]48[/C][C] 8[/C][C] 9.222[/C][C]-1.222[/C][/ROW]
[ROW][C]49[/C][C] 3[/C][C] 9.197[/C][C]-6.197[/C][/ROW]
[ROW][C]50[/C][C] 10[/C][C] 9.449[/C][C] 0.5511[/C][/ROW]
[ROW][C]51[/C][C] 10[/C][C] 9.222[/C][C] 0.7779[/C][/ROW]
[ROW][C]52[/C][C] 10[/C][C] 9.35[/C][C] 0.6504[/C][/ROW]
[ROW][C]53[/C][C] 4[/C][C] 9.449[/C][C]-5.449[/C][/ROW]
[ROW][C]54[/C][C] 10[/C][C] 9.35[/C][C] 0.6504[/C][/ROW]
[ROW][C]55[/C][C] 8[/C][C] 9.35[/C][C]-1.35[/C][/ROW]
[ROW][C]56[/C][C] 9[/C][C] 9.197[/C][C]-0.1966[/C][/ROW]
[ROW][C]57[/C][C] 13[/C][C] 9.624[/C][C] 3.376[/C][/ROW]
[ROW][C]58[/C][C] 10[/C][C] 9.222[/C][C] 0.7779[/C][/ROW]
[ROW][C]59[/C][C] 8[/C][C] 9.447[/C][C]-1.447[/C][/ROW]
[ROW][C]60[/C][C] 9[/C][C] 9.35[/C][C]-0.3496[/C][/ROW]
[ROW][C]61[/C][C] 11[/C][C] 9.199[/C][C] 1.801[/C][/ROW]
[ROW][C]62[/C][C] 10[/C][C] 9.199[/C][C] 0.8015[/C][/ROW]
[ROW][C]63[/C][C] 9[/C][C] 9.423[/C][C]-0.4234[/C][/ROW]
[ROW][C]64[/C][C] 10[/C][C] 9.449[/C][C] 0.5511[/C][/ROW]
[ROW][C]65[/C][C] 7[/C][C] 9.348[/C][C]-2.348[/C][/ROW]
[ROW][C]66[/C][C] 10[/C][C] 8.942[/C][C] 1.058[/C][/ROW]
[ROW][C]67[/C][C] 10[/C][C] 9.199[/C][C] 0.8015[/C][/ROW]
[ROW][C]68[/C][C] 11[/C][C] 9.222[/C][C] 1.778[/C][/ROW]
[ROW][C]69[/C][C] 12[/C][C] 9.197[/C][C] 2.803[/C][/ROW]
[ROW][C]70[/C][C] 8[/C][C] 9.199[/C][C]-1.199[/C][/ROW]
[ROW][C]71[/C][C] 10[/C][C] 9.199[/C][C] 0.8015[/C][/ROW]
[ROW][C]72[/C][C] 6[/C][C] 8.874[/C][C]-2.874[/C][/ROW]
[ROW][C]73[/C][C] 9[/C][C] 9.449[/C][C]-0.4489[/C][/ROW]
[ROW][C]74[/C][C] 11[/C][C] 9.35[/C][C] 1.65[/C][/ROW]
[ROW][C]75[/C][C] 10[/C][C] 9.574[/C][C] 0.4256[/C][/ROW]
[ROW][C]76[/C][C] 10[/C][C] 9.449[/C][C] 0.5511[/C][/ROW]
[ROW][C]77[/C][C] 8[/C][C] 9.224[/C][C]-1.224[/C][/ROW]
[ROW][C]78[/C][C] 10[/C][C] 9.474[/C][C] 0.5255[/C][/ROW]
[ROW][C]79[/C][C] 9[/C][C] 9.449[/C][C]-0.4489[/C][/ROW]
[ROW][C]80[/C][C] 9[/C][C] 9.199[/C][C]-0.1985[/C][/ROW]
[ROW][C]81[/C][C] 10[/C][C] 9.222[/C][C] 0.7779[/C][/ROW]
[ROW][C]82[/C][C] 10[/C][C] 9.222[/C][C] 0.7779[/C][/ROW]
[ROW][C]83[/C][C] 11[/C][C] 9.095[/C][C] 1.905[/C][/ROW]
[ROW][C]84[/C][C] 9[/C][C] 9.474[/C][C]-0.4745[/C][/ROW]
[ROW][C]85[/C][C] 12[/C][C] 9.324[/C][C] 2.676[/C][/ROW]
[ROW][C]86[/C][C] 7[/C][C] 9.222[/C][C]-2.222[/C][/ROW]
[ROW][C]87[/C][C] 9[/C][C] 9.474[/C][C]-0.4745[/C][/ROW]
[ROW][C]88[/C][C] 9[/C][C] 9.474[/C][C]-0.4745[/C][/ROW]
[ROW][C]89[/C][C] 11[/C][C] 9.199[/C][C] 1.801[/C][/ROW]
[ROW][C]90[/C][C] 8[/C][C] 9.775[/C][C]-1.775[/C][/ROW]
[ROW][C]91[/C][C] 9[/C][C] 9.069[/C][C]-0.06917[/C][/ROW]
[ROW][C]92[/C][C] 9[/C][C] 9.222[/C][C]-0.2221[/C][/ROW]
[ROW][C]93[/C][C] 9[/C][C] 9.123[/C][C]-0.1228[/C][/ROW]
[ROW][C]94[/C][C] 9[/C][C] 9.199[/C][C]-0.1985[/C][/ROW]
[ROW][C]95[/C][C] 11[/C][C] 9.474[/C][C] 1.526[/C][/ROW]
[ROW][C]96[/C][C] 9[/C][C] 9.474[/C][C]-0.4745[/C][/ROW]
[ROW][C]97[/C][C] 7[/C][C] 9.199[/C][C]-2.199[/C][/ROW]
[ROW][C]98[/C][C] 15[/C][C] 9.474[/C][C] 5.526[/C][/ROW]
[ROW][C]99[/C][C] 9[/C][C] 8.946[/C][C] 0.05381[/C][/ROW]
[ROW][C]100[/C][C] 9[/C][C] 9.474[/C][C]-0.4745[/C][/ROW]
[ROW][C]101[/C][C] 12[/C][C] 9.35[/C][C] 2.65[/C][/ROW]
[ROW][C]102[/C][C] 10[/C][C] 9.474[/C][C] 0.5255[/C][/ROW]
[ROW][C]103[/C][C] 9[/C][C] 8.946[/C][C] 0.05381[/C][/ROW]
[ROW][C]104[/C][C] 10[/C][C] 9.222[/C][C] 0.7779[/C][/ROW]
[ROW][C]105[/C][C] 10[/C][C] 9.474[/C][C] 0.5255[/C][/ROW]
[ROW][C]106[/C][C] 9[/C][C] 9.449[/C][C]-0.4489[/C][/ROW]
[ROW][C]107[/C][C] 10[/C][C] 9.375[/C][C] 0.6249[/C][/ROW]
[ROW][C]108[/C][C] 10[/C][C] 9.35[/C][C] 0.6504[/C][/ROW]
[ROW][C]109[/C][C] 9[/C][C] 9.35[/C][C]-0.3496[/C][/ROW]
[ROW][C]110[/C][C] 9[/C][C] 9.347[/C][C]-0.347[/C][/ROW]
[ROW][C]111[/C][C] 9[/C][C] 9.197[/C][C]-0.1966[/C][/ROW]
[ROW][C]112[/C][C] 9[/C][C] 9.321[/C][C]-0.3215[/C][/ROW]
[ROW][C]113[/C][C] 11[/C][C] 9.095[/C][C] 1.905[/C][/ROW]
[ROW][C]114[/C][C] 9[/C][C] 9.222[/C][C]-0.2221[/C][/ROW]
[ROW][C]115[/C][C] 7[/C][C] 9.222[/C][C]-2.222[/C][/ROW]
[ROW][C]116[/C][C] 11[/C][C] 9.474[/C][C] 1.526[/C][/ROW]
[ROW][C]117[/C][C] 9[/C][C] 9.6[/C][C]-0.6[/C][/ROW]
[ROW][C]118[/C][C] 7[/C][C] 9.474[/C][C]-2.474[/C][/ROW]
[ROW][C]119[/C][C] 12[/C][C] 9.423[/C][C] 2.577[/C][/ROW]
[ROW][C]120[/C][C] 8[/C][C] 9.35[/C][C]-1.35[/C][/ROW]
[ROW][C]121[/C][C] 9[/C][C] 9.347[/C][C]-0.347[/C][/ROW]
[ROW][C]122[/C][C] 9[/C][C] 9.199[/C][C]-0.1985[/C][/ROW]
[ROW][C]123[/C][C] 9[/C][C] 9.449[/C][C]-0.4489[/C][/ROW]
[ROW][C]124[/C][C] 9[/C][C] 9.649[/C][C]-0.6491[/C][/ROW]
[ROW][C]125[/C][C] 11[/C][C] 9.6[/C][C] 1.4[/C][/ROW]
[ROW][C]126[/C][C] 9[/C][C] 9.35[/C][C]-0.3496[/C][/ROW]
[ROW][C]127[/C][C] 10[/C][C] 9.222[/C][C] 0.7779[/C][/ROW]
[ROW][C]128[/C][C] 10[/C][C] 9.449[/C][C] 0.5511[/C][/ROW]
[ROW][C]129[/C][C] 9[/C][C] 9.6[/C][C]-0.6[/C][/ROW]
[ROW][C]130[/C][C] 8[/C][C] 9.35[/C][C]-1.35[/C][/ROW]
[ROW][C]131[/C][C] 10[/C][C] 9.6[/C][C] 0.4[/C][/ROW]
[ROW][C]132[/C][C] 9[/C][C] 9.222[/C][C]-0.2221[/C][/ROW]
[ROW][C]133[/C][C] 8[/C][C] 9.474[/C][C]-1.474[/C][/ROW]
[ROW][C]134[/C][C] 10[/C][C] 9.069[/C][C] 0.9308[/C][/ROW]
[ROW][C]135[/C][C] 9[/C][C] 9.35[/C][C]-0.3496[/C][/ROW]
[ROW][C]136[/C][C] 13[/C][C] 9.172[/C][C] 3.828[/C][/ROW]
[ROW][C]137[/C][C] 8[/C][C] 9.35[/C][C]-1.35[/C][/ROW]
[ROW][C]138[/C][C] 11[/C][C] 9.199[/C][C] 1.801[/C][/ROW]
[ROW][C]139[/C][C] 9[/C][C] 9.222[/C][C]-0.2221[/C][/ROW]
[ROW][C]140[/C][C] 8[/C][C] 9.35[/C][C]-1.35[/C][/ROW]
[ROW][C]141[/C][C] 9[/C][C] 9.449[/C][C]-0.4489[/C][/ROW]
[ROW][C]142[/C][C] 10[/C][C] 9.626[/C][C] 0.3745[/C][/ROW]
[ROW][C]143[/C][C] 10[/C][C] 8.948[/C][C] 1.052[/C][/ROW]
[ROW][C]144[/C][C] 10[/C][C] 9.324[/C][C] 0.676[/C][/ROW]
[ROW][C]145[/C][C] 9[/C][C] 9.35[/C][C]-0.3496[/C][/ROW]
[ROW][C]146[/C][C] 11[/C][C] 9.574[/C][C] 1.426[/C][/ROW]
[ROW][C]147[/C][C] 7[/C][C] 9.35[/C][C]-2.35[/C][/ROW]
[ROW][C]148[/C][C] 9[/C][C] 9.474[/C][C]-0.4745[/C][/ROW]
[ROW][C]149[/C][C] 10[/C][C] 8.946[/C][C] 1.054[/C][/ROW]
[ROW][C]150[/C][C] 11[/C][C] 9.474[/C][C] 1.526[/C][/ROW]
[ROW][C]151[/C][C] 8[/C][C] 9.449[/C][C]-1.449[/C][/ROW]
[ROW][C]152[/C][C] 8[/C][C] 8.923[/C][C]-0.9226[/C][/ROW]
[ROW][C]153[/C][C] 7[/C][C] 9.449[/C][C]-2.449[/C][/ROW]
[ROW][C]154[/C][C] 9[/C][C] 9.35[/C][C]-0.3496[/C][/ROW]
[ROW][C]155[/C][C] 9[/C][C] 9.449[/C][C]-0.4489[/C][/ROW]
[ROW][C]156[/C][C] 10[/C][C] 9.474[/C][C] 0.5255[/C][/ROW]
[ROW][C]157[/C][C] 9[/C][C] 9.347[/C][C]-0.347[/C][/ROW]
[ROW][C]158[/C][C] 11[/C][C] 9.449[/C][C] 1.551[/C][/ROW]
[ROW][C]159[/C][C] 8[/C][C] 9.324[/C][C]-1.324[/C][/ROW]
[ROW][C]160[/C][C] 11[/C][C] 9.321[/C][C] 1.679[/C][/ROW]
[ROW][C]161[/C][C] 9[/C][C] 9.8[/C][C]-0.8002[/C][/ROW]
[ROW][C]162[/C][C] 9[/C][C] 9.35[/C][C]-0.3496[/C][/ROW]
[ROW][C]163[/C][C] 9[/C][C] 9.199[/C][C]-0.1985[/C][/ROW]
[ROW][C]164[/C][C] 7[/C][C] 9.046[/C][C]-2.046[/C][/ROW]
[ROW][C]165[/C][C] 10[/C][C] 9.35[/C][C] 0.6504[/C][/ROW]
[ROW][C]166[/C][C] 9[/C][C] 9.197[/C][C]-0.1966[/C][/ROW]
[ROW][C]167[/C][C] 9[/C][C] 9.423[/C][C]-0.4234[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300974&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300974&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 9 9.199-0.1985
2 8 9.449-1.449
3 10 9.6 0.4
4 8 8.972-0.9717
5 9 9.449-0.4489
6 10 9.449 0.5511
7 9 9.347-0.347
8 9 9.222-0.2221
9 9 9.6-0.6
10 9 9.474-0.4745
11 10 9.069 0.9308
12 9 9.074-0.07361
13 13 9.199 3.801
14 11 9.449 1.551
15 10 9.222 0.7779
16 8 9.321-1.321
17 11 9.199 1.801
18 6 9.473-3.473
19 7 9.347-2.347
20 9 9.449-0.4489
21 9 8.948 0.0519
22 10 9.199 0.8015
23 9 9.222-0.2221
24 10 9.474 0.5255
25 8 9.097-1.097
26 10 9.626 0.3745
27 10 9.197 0.8034
28 11 9.35 1.65
29 10 9.35 0.6504
30 9 8.944 0.05634
31 7 9.296-2.296
32 11 9.449 1.551
33 6 9.097-3.097
34 11 9.449 1.551
35 10 9.474 0.5255
36 9 9.222-0.2221
37 10 9.473 0.5274
38 10 9.222 0.7779
39 9 9.324-0.324
40 8 9.222-1.222
41 9 9.222-0.2221
42 9 9.069-0.06917
43 10 9.574 0.4256
44 11 9.321 1.679
45 7.5 9.222-1.722
46 9 9.222-0.2221
47 10 9.146 0.8545
48 8 9.222-1.222
49 3 9.197-6.197
50 10 9.449 0.5511
51 10 9.222 0.7779
52 10 9.35 0.6504
53 4 9.449-5.449
54 10 9.35 0.6504
55 8 9.35-1.35
56 9 9.197-0.1966
57 13 9.624 3.376
58 10 9.222 0.7779
59 8 9.447-1.447
60 9 9.35-0.3496
61 11 9.199 1.801
62 10 9.199 0.8015
63 9 9.423-0.4234
64 10 9.449 0.5511
65 7 9.348-2.348
66 10 8.942 1.058
67 10 9.199 0.8015
68 11 9.222 1.778
69 12 9.197 2.803
70 8 9.199-1.199
71 10 9.199 0.8015
72 6 8.874-2.874
73 9 9.449-0.4489
74 11 9.35 1.65
75 10 9.574 0.4256
76 10 9.449 0.5511
77 8 9.224-1.224
78 10 9.474 0.5255
79 9 9.449-0.4489
80 9 9.199-0.1985
81 10 9.222 0.7779
82 10 9.222 0.7779
83 11 9.095 1.905
84 9 9.474-0.4745
85 12 9.324 2.676
86 7 9.222-2.222
87 9 9.474-0.4745
88 9 9.474-0.4745
89 11 9.199 1.801
90 8 9.775-1.775
91 9 9.069-0.06917
92 9 9.222-0.2221
93 9 9.123-0.1228
94 9 9.199-0.1985
95 11 9.474 1.526
96 9 9.474-0.4745
97 7 9.199-2.199
98 15 9.474 5.526
99 9 8.946 0.05381
100 9 9.474-0.4745
101 12 9.35 2.65
102 10 9.474 0.5255
103 9 8.946 0.05381
104 10 9.222 0.7779
105 10 9.474 0.5255
106 9 9.449-0.4489
107 10 9.375 0.6249
108 10 9.35 0.6504
109 9 9.35-0.3496
110 9 9.347-0.347
111 9 9.197-0.1966
112 9 9.321-0.3215
113 11 9.095 1.905
114 9 9.222-0.2221
115 7 9.222-2.222
116 11 9.474 1.526
117 9 9.6-0.6
118 7 9.474-2.474
119 12 9.423 2.577
120 8 9.35-1.35
121 9 9.347-0.347
122 9 9.199-0.1985
123 9 9.449-0.4489
124 9 9.649-0.6491
125 11 9.6 1.4
126 9 9.35-0.3496
127 10 9.222 0.7779
128 10 9.449 0.5511
129 9 9.6-0.6
130 8 9.35-1.35
131 10 9.6 0.4
132 9 9.222-0.2221
133 8 9.474-1.474
134 10 9.069 0.9308
135 9 9.35-0.3496
136 13 9.172 3.828
137 8 9.35-1.35
138 11 9.199 1.801
139 9 9.222-0.2221
140 8 9.35-1.35
141 9 9.449-0.4489
142 10 9.626 0.3745
143 10 8.948 1.052
144 10 9.324 0.676
145 9 9.35-0.3496
146 11 9.574 1.426
147 7 9.35-2.35
148 9 9.474-0.4745
149 10 8.946 1.054
150 11 9.474 1.526
151 8 9.449-1.449
152 8 8.923-0.9226
153 7 9.449-2.449
154 9 9.35-0.3496
155 9 9.449-0.4489
156 10 9.474 0.5255
157 9 9.347-0.347
158 11 9.449 1.551
159 8 9.324-1.324
160 11 9.321 1.679
161 9 9.8-0.8002
162 9 9.35-0.3496
163 9 9.199-0.1985
164 7 9.046-2.046
165 10 9.35 0.6504
166 9 9.197-0.1966
167 9 9.423-0.4234







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
8 0.1903 0.3807 0.8097
9 0.1172 0.2345 0.8828
10 0.05345 0.1069 0.9466
11 0.02791 0.05582 0.9721
12 0.01236 0.02472 0.9876
13 0.4986 0.9971 0.5014
14 0.452 0.9039 0.548
15 0.3981 0.7961 0.6019
16 0.4162 0.8323 0.5838
17 0.3807 0.7615 0.6193
18 0.5382 0.9237 0.4618
19 0.5407 0.9187 0.4593
20 0.4763 0.9527 0.5237
21 0.4633 0.9266 0.5367
22 0.392 0.7841 0.608
23 0.328 0.6561 0.672
24 0.296 0.5919 0.704
25 0.2528 0.5056 0.7472
26 0.241 0.4819 0.759
27 0.2121 0.4242 0.7879
28 0.2144 0.4288 0.7856
29 0.1724 0.3448 0.8276
30 0.1425 0.2851 0.8575
31 0.1772 0.3544 0.8228
32 0.1793 0.3587 0.8207
33 0.306 0.612 0.694
34 0.2955 0.591 0.7045
35 0.2542 0.5084 0.7458
36 0.2115 0.4231 0.7885
37 0.2013 0.4027 0.7987
38 0.1856 0.3713 0.8144
39 0.1688 0.3377 0.8312
40 0.1486 0.2972 0.8514
41 0.1193 0.2385 0.8807
42 0.1013 0.2025 0.8987
43 0.07957 0.1591 0.9204
44 0.09942 0.1988 0.9006
45 0.0995 0.199 0.9005
46 0.07866 0.1573 0.9213
47 0.06279 0.1256 0.9372
48 0.05401 0.108 0.946
49 0.6766 0.6469 0.3234
50 0.633 0.7341 0.367
51 0.6144 0.7713 0.3856
52 0.5726 0.8547 0.4274
53 0.9553 0.08947 0.04474
54 0.9448 0.1105 0.05525
55 0.9427 0.1146 0.05731
56 0.9284 0.1433 0.07165
57 0.9771 0.04585 0.02293
58 0.9724 0.05525 0.02762
59 0.9712 0.05757 0.02879
60 0.9637 0.07268 0.03634
61 0.9663 0.06732 0.03366
62 0.959 0.08192 0.04096
63 0.949 0.1021 0.05104
64 0.9372 0.1256 0.06279
65 0.9539 0.09211 0.04606
66 0.9568 0.08636 0.04318
67 0.9482 0.1036 0.05181
68 0.9522 0.09562 0.04781
69 0.9725 0.05508 0.02754
70 0.97 0.05995 0.02997
71 0.9638 0.07247 0.03624
72 0.9807 0.03855 0.01928
73 0.9754 0.04929 0.02464
74 0.9766 0.04673 0.02337
75 0.9705 0.05894 0.02947
76 0.9633 0.07343 0.03671
77 0.9604 0.07915 0.03957
78 0.9511 0.09775 0.04888
79 0.9397 0.1205 0.06026
80 0.9253 0.1494 0.07468
81 0.9129 0.1742 0.08711
82 0.8988 0.2024 0.1012
83 0.9085 0.1831 0.09154
84 0.8906 0.2188 0.1094
85 0.9322 0.1356 0.06778
86 0.9494 0.1012 0.05058
87 0.9382 0.1236 0.0618
88 0.9252 0.1495 0.07476
89 0.931 0.138 0.069
90 0.934 0.132 0.06602
91 0.9188 0.1623 0.08116
92 0.9015 0.1969 0.09847
93 0.8815 0.2369 0.1185
94 0.8578 0.2845 0.1422
95 0.8586 0.2828 0.1414
96 0.8341 0.3319 0.1659
97 0.8652 0.2695 0.1348
98 0.996 0.008018 0.004009
99 0.9944 0.01122 0.005609
100 0.9924 0.01529 0.007646
101 0.997 0.006099 0.00305
102 0.996 0.008081 0.00404
103 0.9943 0.01139 0.005693
104 0.9925 0.01498 0.007491
105 0.9904 0.0192 0.009599
106 0.987 0.02593 0.01297
107 0.9839 0.03221 0.01611
108 0.9803 0.03939 0.01969
109 0.9738 0.0523 0.02615
110 0.9665 0.06692 0.03346
111 0.9572 0.08562 0.04281
112 0.9467 0.1066 0.05332
113 0.9464 0.1071 0.05355
114 0.9325 0.135 0.0675
115 0.9584 0.08325 0.04163
116 0.9646 0.07085 0.03542
117 0.9544 0.09113 0.04556
118 0.9697 0.0607 0.03035
119 0.9893 0.02135 0.01067
120 0.9883 0.02331 0.01166
121 0.985 0.02993 0.01497
122 0.9791 0.04176 0.02088
123 0.9715 0.05693 0.02847
124 0.9686 0.06281 0.0314
125 0.9735 0.05296 0.02648
126 0.9638 0.07244 0.03622
127 0.9523 0.09539 0.04769
128 0.9441 0.1119 0.05595
129 0.9266 0.1468 0.07341
130 0.9204 0.1592 0.07958
131 0.9052 0.1897 0.09483
132 0.8845 0.231 0.1155
133 0.8852 0.2295 0.1148
134 0.8553 0.2895 0.1447
135 0.8179 0.3641 0.1821
136 0.923 0.1541 0.07703
137 0.9142 0.1717 0.08583
138 0.9329 0.1342 0.06708
139 0.9081 0.1837 0.09185
140 0.8977 0.2046 0.1023
141 0.8649 0.2702 0.1351
142 0.8269 0.3462 0.1731
143 0.821 0.358 0.179
144 0.8008 0.3983 0.1991
145 0.7446 0.5107 0.2554
146 0.8163 0.3674 0.1837
147 0.8643 0.2714 0.1357
148 0.8284 0.3431 0.1716
149 0.8443 0.3115 0.1557
150 0.8295 0.3409 0.1705
151 0.8186 0.3627 0.1814
152 0.7492 0.5017 0.2508
153 0.9156 0.1689 0.08443
154 0.8619 0.2763 0.1381
155 0.8271 0.3458 0.1729
156 0.7483 0.5035 0.2517
157 0.7731 0.4537 0.2269
158 0.6668 0.6664 0.3332
159 0.4997 0.9994 0.5003

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
8 &  0.1903 &  0.3807 &  0.8097 \tabularnewline
9 &  0.1172 &  0.2345 &  0.8828 \tabularnewline
10 &  0.05345 &  0.1069 &  0.9466 \tabularnewline
11 &  0.02791 &  0.05582 &  0.9721 \tabularnewline
12 &  0.01236 &  0.02472 &  0.9876 \tabularnewline
13 &  0.4986 &  0.9971 &  0.5014 \tabularnewline
14 &  0.452 &  0.9039 &  0.548 \tabularnewline
15 &  0.3981 &  0.7961 &  0.6019 \tabularnewline
16 &  0.4162 &  0.8323 &  0.5838 \tabularnewline
17 &  0.3807 &  0.7615 &  0.6193 \tabularnewline
18 &  0.5382 &  0.9237 &  0.4618 \tabularnewline
19 &  0.5407 &  0.9187 &  0.4593 \tabularnewline
20 &  0.4763 &  0.9527 &  0.5237 \tabularnewline
21 &  0.4633 &  0.9266 &  0.5367 \tabularnewline
22 &  0.392 &  0.7841 &  0.608 \tabularnewline
23 &  0.328 &  0.6561 &  0.672 \tabularnewline
24 &  0.296 &  0.5919 &  0.704 \tabularnewline
25 &  0.2528 &  0.5056 &  0.7472 \tabularnewline
26 &  0.241 &  0.4819 &  0.759 \tabularnewline
27 &  0.2121 &  0.4242 &  0.7879 \tabularnewline
28 &  0.2144 &  0.4288 &  0.7856 \tabularnewline
29 &  0.1724 &  0.3448 &  0.8276 \tabularnewline
30 &  0.1425 &  0.2851 &  0.8575 \tabularnewline
31 &  0.1772 &  0.3544 &  0.8228 \tabularnewline
32 &  0.1793 &  0.3587 &  0.8207 \tabularnewline
33 &  0.306 &  0.612 &  0.694 \tabularnewline
34 &  0.2955 &  0.591 &  0.7045 \tabularnewline
35 &  0.2542 &  0.5084 &  0.7458 \tabularnewline
36 &  0.2115 &  0.4231 &  0.7885 \tabularnewline
37 &  0.2013 &  0.4027 &  0.7987 \tabularnewline
38 &  0.1856 &  0.3713 &  0.8144 \tabularnewline
39 &  0.1688 &  0.3377 &  0.8312 \tabularnewline
40 &  0.1486 &  0.2972 &  0.8514 \tabularnewline
41 &  0.1193 &  0.2385 &  0.8807 \tabularnewline
42 &  0.1013 &  0.2025 &  0.8987 \tabularnewline
43 &  0.07957 &  0.1591 &  0.9204 \tabularnewline
44 &  0.09942 &  0.1988 &  0.9006 \tabularnewline
45 &  0.0995 &  0.199 &  0.9005 \tabularnewline
46 &  0.07866 &  0.1573 &  0.9213 \tabularnewline
47 &  0.06279 &  0.1256 &  0.9372 \tabularnewline
48 &  0.05401 &  0.108 &  0.946 \tabularnewline
49 &  0.6766 &  0.6469 &  0.3234 \tabularnewline
50 &  0.633 &  0.7341 &  0.367 \tabularnewline
51 &  0.6144 &  0.7713 &  0.3856 \tabularnewline
52 &  0.5726 &  0.8547 &  0.4274 \tabularnewline
53 &  0.9553 &  0.08947 &  0.04474 \tabularnewline
54 &  0.9448 &  0.1105 &  0.05525 \tabularnewline
55 &  0.9427 &  0.1146 &  0.05731 \tabularnewline
56 &  0.9284 &  0.1433 &  0.07165 \tabularnewline
57 &  0.9771 &  0.04585 &  0.02293 \tabularnewline
58 &  0.9724 &  0.05525 &  0.02762 \tabularnewline
59 &  0.9712 &  0.05757 &  0.02879 \tabularnewline
60 &  0.9637 &  0.07268 &  0.03634 \tabularnewline
61 &  0.9663 &  0.06732 &  0.03366 \tabularnewline
62 &  0.959 &  0.08192 &  0.04096 \tabularnewline
63 &  0.949 &  0.1021 &  0.05104 \tabularnewline
64 &  0.9372 &  0.1256 &  0.06279 \tabularnewline
65 &  0.9539 &  0.09211 &  0.04606 \tabularnewline
66 &  0.9568 &  0.08636 &  0.04318 \tabularnewline
67 &  0.9482 &  0.1036 &  0.05181 \tabularnewline
68 &  0.9522 &  0.09562 &  0.04781 \tabularnewline
69 &  0.9725 &  0.05508 &  0.02754 \tabularnewline
70 &  0.97 &  0.05995 &  0.02997 \tabularnewline
71 &  0.9638 &  0.07247 &  0.03624 \tabularnewline
72 &  0.9807 &  0.03855 &  0.01928 \tabularnewline
73 &  0.9754 &  0.04929 &  0.02464 \tabularnewline
74 &  0.9766 &  0.04673 &  0.02337 \tabularnewline
75 &  0.9705 &  0.05894 &  0.02947 \tabularnewline
76 &  0.9633 &  0.07343 &  0.03671 \tabularnewline
77 &  0.9604 &  0.07915 &  0.03957 \tabularnewline
78 &  0.9511 &  0.09775 &  0.04888 \tabularnewline
79 &  0.9397 &  0.1205 &  0.06026 \tabularnewline
80 &  0.9253 &  0.1494 &  0.07468 \tabularnewline
81 &  0.9129 &  0.1742 &  0.08711 \tabularnewline
82 &  0.8988 &  0.2024 &  0.1012 \tabularnewline
83 &  0.9085 &  0.1831 &  0.09154 \tabularnewline
84 &  0.8906 &  0.2188 &  0.1094 \tabularnewline
85 &  0.9322 &  0.1356 &  0.06778 \tabularnewline
86 &  0.9494 &  0.1012 &  0.05058 \tabularnewline
87 &  0.9382 &  0.1236 &  0.0618 \tabularnewline
88 &  0.9252 &  0.1495 &  0.07476 \tabularnewline
89 &  0.931 &  0.138 &  0.069 \tabularnewline
90 &  0.934 &  0.132 &  0.06602 \tabularnewline
91 &  0.9188 &  0.1623 &  0.08116 \tabularnewline
92 &  0.9015 &  0.1969 &  0.09847 \tabularnewline
93 &  0.8815 &  0.2369 &  0.1185 \tabularnewline
94 &  0.8578 &  0.2845 &  0.1422 \tabularnewline
95 &  0.8586 &  0.2828 &  0.1414 \tabularnewline
96 &  0.8341 &  0.3319 &  0.1659 \tabularnewline
97 &  0.8652 &  0.2695 &  0.1348 \tabularnewline
98 &  0.996 &  0.008018 &  0.004009 \tabularnewline
99 &  0.9944 &  0.01122 &  0.005609 \tabularnewline
100 &  0.9924 &  0.01529 &  0.007646 \tabularnewline
101 &  0.997 &  0.006099 &  0.00305 \tabularnewline
102 &  0.996 &  0.008081 &  0.00404 \tabularnewline
103 &  0.9943 &  0.01139 &  0.005693 \tabularnewline
104 &  0.9925 &  0.01498 &  0.007491 \tabularnewline
105 &  0.9904 &  0.0192 &  0.009599 \tabularnewline
106 &  0.987 &  0.02593 &  0.01297 \tabularnewline
107 &  0.9839 &  0.03221 &  0.01611 \tabularnewline
108 &  0.9803 &  0.03939 &  0.01969 \tabularnewline
109 &  0.9738 &  0.0523 &  0.02615 \tabularnewline
110 &  0.9665 &  0.06692 &  0.03346 \tabularnewline
111 &  0.9572 &  0.08562 &  0.04281 \tabularnewline
112 &  0.9467 &  0.1066 &  0.05332 \tabularnewline
113 &  0.9464 &  0.1071 &  0.05355 \tabularnewline
114 &  0.9325 &  0.135 &  0.0675 \tabularnewline
115 &  0.9584 &  0.08325 &  0.04163 \tabularnewline
116 &  0.9646 &  0.07085 &  0.03542 \tabularnewline
117 &  0.9544 &  0.09113 &  0.04556 \tabularnewline
118 &  0.9697 &  0.0607 &  0.03035 \tabularnewline
119 &  0.9893 &  0.02135 &  0.01067 \tabularnewline
120 &  0.9883 &  0.02331 &  0.01166 \tabularnewline
121 &  0.985 &  0.02993 &  0.01497 \tabularnewline
122 &  0.9791 &  0.04176 &  0.02088 \tabularnewline
123 &  0.9715 &  0.05693 &  0.02847 \tabularnewline
124 &  0.9686 &  0.06281 &  0.0314 \tabularnewline
125 &  0.9735 &  0.05296 &  0.02648 \tabularnewline
126 &  0.9638 &  0.07244 &  0.03622 \tabularnewline
127 &  0.9523 &  0.09539 &  0.04769 \tabularnewline
128 &  0.9441 &  0.1119 &  0.05595 \tabularnewline
129 &  0.9266 &  0.1468 &  0.07341 \tabularnewline
130 &  0.9204 &  0.1592 &  0.07958 \tabularnewline
131 &  0.9052 &  0.1897 &  0.09483 \tabularnewline
132 &  0.8845 &  0.231 &  0.1155 \tabularnewline
133 &  0.8852 &  0.2295 &  0.1148 \tabularnewline
134 &  0.8553 &  0.2895 &  0.1447 \tabularnewline
135 &  0.8179 &  0.3641 &  0.1821 \tabularnewline
136 &  0.923 &  0.1541 &  0.07703 \tabularnewline
137 &  0.9142 &  0.1717 &  0.08583 \tabularnewline
138 &  0.9329 &  0.1342 &  0.06708 \tabularnewline
139 &  0.9081 &  0.1837 &  0.09185 \tabularnewline
140 &  0.8977 &  0.2046 &  0.1023 \tabularnewline
141 &  0.8649 &  0.2702 &  0.1351 \tabularnewline
142 &  0.8269 &  0.3462 &  0.1731 \tabularnewline
143 &  0.821 &  0.358 &  0.179 \tabularnewline
144 &  0.8008 &  0.3983 &  0.1991 \tabularnewline
145 &  0.7446 &  0.5107 &  0.2554 \tabularnewline
146 &  0.8163 &  0.3674 &  0.1837 \tabularnewline
147 &  0.8643 &  0.2714 &  0.1357 \tabularnewline
148 &  0.8284 &  0.3431 &  0.1716 \tabularnewline
149 &  0.8443 &  0.3115 &  0.1557 \tabularnewline
150 &  0.8295 &  0.3409 &  0.1705 \tabularnewline
151 &  0.8186 &  0.3627 &  0.1814 \tabularnewline
152 &  0.7492 &  0.5017 &  0.2508 \tabularnewline
153 &  0.9156 &  0.1689 &  0.08443 \tabularnewline
154 &  0.8619 &  0.2763 &  0.1381 \tabularnewline
155 &  0.8271 &  0.3458 &  0.1729 \tabularnewline
156 &  0.7483 &  0.5035 &  0.2517 \tabularnewline
157 &  0.7731 &  0.4537 &  0.2269 \tabularnewline
158 &  0.6668 &  0.6664 &  0.3332 \tabularnewline
159 &  0.4997 &  0.9994 &  0.5003 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300974&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]8[/C][C] 0.1903[/C][C] 0.3807[/C][C] 0.8097[/C][/ROW]
[ROW][C]9[/C][C] 0.1172[/C][C] 0.2345[/C][C] 0.8828[/C][/ROW]
[ROW][C]10[/C][C] 0.05345[/C][C] 0.1069[/C][C] 0.9466[/C][/ROW]
[ROW][C]11[/C][C] 0.02791[/C][C] 0.05582[/C][C] 0.9721[/C][/ROW]
[ROW][C]12[/C][C] 0.01236[/C][C] 0.02472[/C][C] 0.9876[/C][/ROW]
[ROW][C]13[/C][C] 0.4986[/C][C] 0.9971[/C][C] 0.5014[/C][/ROW]
[ROW][C]14[/C][C] 0.452[/C][C] 0.9039[/C][C] 0.548[/C][/ROW]
[ROW][C]15[/C][C] 0.3981[/C][C] 0.7961[/C][C] 0.6019[/C][/ROW]
[ROW][C]16[/C][C] 0.4162[/C][C] 0.8323[/C][C] 0.5838[/C][/ROW]
[ROW][C]17[/C][C] 0.3807[/C][C] 0.7615[/C][C] 0.6193[/C][/ROW]
[ROW][C]18[/C][C] 0.5382[/C][C] 0.9237[/C][C] 0.4618[/C][/ROW]
[ROW][C]19[/C][C] 0.5407[/C][C] 0.9187[/C][C] 0.4593[/C][/ROW]
[ROW][C]20[/C][C] 0.4763[/C][C] 0.9527[/C][C] 0.5237[/C][/ROW]
[ROW][C]21[/C][C] 0.4633[/C][C] 0.9266[/C][C] 0.5367[/C][/ROW]
[ROW][C]22[/C][C] 0.392[/C][C] 0.7841[/C][C] 0.608[/C][/ROW]
[ROW][C]23[/C][C] 0.328[/C][C] 0.6561[/C][C] 0.672[/C][/ROW]
[ROW][C]24[/C][C] 0.296[/C][C] 0.5919[/C][C] 0.704[/C][/ROW]
[ROW][C]25[/C][C] 0.2528[/C][C] 0.5056[/C][C] 0.7472[/C][/ROW]
[ROW][C]26[/C][C] 0.241[/C][C] 0.4819[/C][C] 0.759[/C][/ROW]
[ROW][C]27[/C][C] 0.2121[/C][C] 0.4242[/C][C] 0.7879[/C][/ROW]
[ROW][C]28[/C][C] 0.2144[/C][C] 0.4288[/C][C] 0.7856[/C][/ROW]
[ROW][C]29[/C][C] 0.1724[/C][C] 0.3448[/C][C] 0.8276[/C][/ROW]
[ROW][C]30[/C][C] 0.1425[/C][C] 0.2851[/C][C] 0.8575[/C][/ROW]
[ROW][C]31[/C][C] 0.1772[/C][C] 0.3544[/C][C] 0.8228[/C][/ROW]
[ROW][C]32[/C][C] 0.1793[/C][C] 0.3587[/C][C] 0.8207[/C][/ROW]
[ROW][C]33[/C][C] 0.306[/C][C] 0.612[/C][C] 0.694[/C][/ROW]
[ROW][C]34[/C][C] 0.2955[/C][C] 0.591[/C][C] 0.7045[/C][/ROW]
[ROW][C]35[/C][C] 0.2542[/C][C] 0.5084[/C][C] 0.7458[/C][/ROW]
[ROW][C]36[/C][C] 0.2115[/C][C] 0.4231[/C][C] 0.7885[/C][/ROW]
[ROW][C]37[/C][C] 0.2013[/C][C] 0.4027[/C][C] 0.7987[/C][/ROW]
[ROW][C]38[/C][C] 0.1856[/C][C] 0.3713[/C][C] 0.8144[/C][/ROW]
[ROW][C]39[/C][C] 0.1688[/C][C] 0.3377[/C][C] 0.8312[/C][/ROW]
[ROW][C]40[/C][C] 0.1486[/C][C] 0.2972[/C][C] 0.8514[/C][/ROW]
[ROW][C]41[/C][C] 0.1193[/C][C] 0.2385[/C][C] 0.8807[/C][/ROW]
[ROW][C]42[/C][C] 0.1013[/C][C] 0.2025[/C][C] 0.8987[/C][/ROW]
[ROW][C]43[/C][C] 0.07957[/C][C] 0.1591[/C][C] 0.9204[/C][/ROW]
[ROW][C]44[/C][C] 0.09942[/C][C] 0.1988[/C][C] 0.9006[/C][/ROW]
[ROW][C]45[/C][C] 0.0995[/C][C] 0.199[/C][C] 0.9005[/C][/ROW]
[ROW][C]46[/C][C] 0.07866[/C][C] 0.1573[/C][C] 0.9213[/C][/ROW]
[ROW][C]47[/C][C] 0.06279[/C][C] 0.1256[/C][C] 0.9372[/C][/ROW]
[ROW][C]48[/C][C] 0.05401[/C][C] 0.108[/C][C] 0.946[/C][/ROW]
[ROW][C]49[/C][C] 0.6766[/C][C] 0.6469[/C][C] 0.3234[/C][/ROW]
[ROW][C]50[/C][C] 0.633[/C][C] 0.7341[/C][C] 0.367[/C][/ROW]
[ROW][C]51[/C][C] 0.6144[/C][C] 0.7713[/C][C] 0.3856[/C][/ROW]
[ROW][C]52[/C][C] 0.5726[/C][C] 0.8547[/C][C] 0.4274[/C][/ROW]
[ROW][C]53[/C][C] 0.9553[/C][C] 0.08947[/C][C] 0.04474[/C][/ROW]
[ROW][C]54[/C][C] 0.9448[/C][C] 0.1105[/C][C] 0.05525[/C][/ROW]
[ROW][C]55[/C][C] 0.9427[/C][C] 0.1146[/C][C] 0.05731[/C][/ROW]
[ROW][C]56[/C][C] 0.9284[/C][C] 0.1433[/C][C] 0.07165[/C][/ROW]
[ROW][C]57[/C][C] 0.9771[/C][C] 0.04585[/C][C] 0.02293[/C][/ROW]
[ROW][C]58[/C][C] 0.9724[/C][C] 0.05525[/C][C] 0.02762[/C][/ROW]
[ROW][C]59[/C][C] 0.9712[/C][C] 0.05757[/C][C] 0.02879[/C][/ROW]
[ROW][C]60[/C][C] 0.9637[/C][C] 0.07268[/C][C] 0.03634[/C][/ROW]
[ROW][C]61[/C][C] 0.9663[/C][C] 0.06732[/C][C] 0.03366[/C][/ROW]
[ROW][C]62[/C][C] 0.959[/C][C] 0.08192[/C][C] 0.04096[/C][/ROW]
[ROW][C]63[/C][C] 0.949[/C][C] 0.1021[/C][C] 0.05104[/C][/ROW]
[ROW][C]64[/C][C] 0.9372[/C][C] 0.1256[/C][C] 0.06279[/C][/ROW]
[ROW][C]65[/C][C] 0.9539[/C][C] 0.09211[/C][C] 0.04606[/C][/ROW]
[ROW][C]66[/C][C] 0.9568[/C][C] 0.08636[/C][C] 0.04318[/C][/ROW]
[ROW][C]67[/C][C] 0.9482[/C][C] 0.1036[/C][C] 0.05181[/C][/ROW]
[ROW][C]68[/C][C] 0.9522[/C][C] 0.09562[/C][C] 0.04781[/C][/ROW]
[ROW][C]69[/C][C] 0.9725[/C][C] 0.05508[/C][C] 0.02754[/C][/ROW]
[ROW][C]70[/C][C] 0.97[/C][C] 0.05995[/C][C] 0.02997[/C][/ROW]
[ROW][C]71[/C][C] 0.9638[/C][C] 0.07247[/C][C] 0.03624[/C][/ROW]
[ROW][C]72[/C][C] 0.9807[/C][C] 0.03855[/C][C] 0.01928[/C][/ROW]
[ROW][C]73[/C][C] 0.9754[/C][C] 0.04929[/C][C] 0.02464[/C][/ROW]
[ROW][C]74[/C][C] 0.9766[/C][C] 0.04673[/C][C] 0.02337[/C][/ROW]
[ROW][C]75[/C][C] 0.9705[/C][C] 0.05894[/C][C] 0.02947[/C][/ROW]
[ROW][C]76[/C][C] 0.9633[/C][C] 0.07343[/C][C] 0.03671[/C][/ROW]
[ROW][C]77[/C][C] 0.9604[/C][C] 0.07915[/C][C] 0.03957[/C][/ROW]
[ROW][C]78[/C][C] 0.9511[/C][C] 0.09775[/C][C] 0.04888[/C][/ROW]
[ROW][C]79[/C][C] 0.9397[/C][C] 0.1205[/C][C] 0.06026[/C][/ROW]
[ROW][C]80[/C][C] 0.9253[/C][C] 0.1494[/C][C] 0.07468[/C][/ROW]
[ROW][C]81[/C][C] 0.9129[/C][C] 0.1742[/C][C] 0.08711[/C][/ROW]
[ROW][C]82[/C][C] 0.8988[/C][C] 0.2024[/C][C] 0.1012[/C][/ROW]
[ROW][C]83[/C][C] 0.9085[/C][C] 0.1831[/C][C] 0.09154[/C][/ROW]
[ROW][C]84[/C][C] 0.8906[/C][C] 0.2188[/C][C] 0.1094[/C][/ROW]
[ROW][C]85[/C][C] 0.9322[/C][C] 0.1356[/C][C] 0.06778[/C][/ROW]
[ROW][C]86[/C][C] 0.9494[/C][C] 0.1012[/C][C] 0.05058[/C][/ROW]
[ROW][C]87[/C][C] 0.9382[/C][C] 0.1236[/C][C] 0.0618[/C][/ROW]
[ROW][C]88[/C][C] 0.9252[/C][C] 0.1495[/C][C] 0.07476[/C][/ROW]
[ROW][C]89[/C][C] 0.931[/C][C] 0.138[/C][C] 0.069[/C][/ROW]
[ROW][C]90[/C][C] 0.934[/C][C] 0.132[/C][C] 0.06602[/C][/ROW]
[ROW][C]91[/C][C] 0.9188[/C][C] 0.1623[/C][C] 0.08116[/C][/ROW]
[ROW][C]92[/C][C] 0.9015[/C][C] 0.1969[/C][C] 0.09847[/C][/ROW]
[ROW][C]93[/C][C] 0.8815[/C][C] 0.2369[/C][C] 0.1185[/C][/ROW]
[ROW][C]94[/C][C] 0.8578[/C][C] 0.2845[/C][C] 0.1422[/C][/ROW]
[ROW][C]95[/C][C] 0.8586[/C][C] 0.2828[/C][C] 0.1414[/C][/ROW]
[ROW][C]96[/C][C] 0.8341[/C][C] 0.3319[/C][C] 0.1659[/C][/ROW]
[ROW][C]97[/C][C] 0.8652[/C][C] 0.2695[/C][C] 0.1348[/C][/ROW]
[ROW][C]98[/C][C] 0.996[/C][C] 0.008018[/C][C] 0.004009[/C][/ROW]
[ROW][C]99[/C][C] 0.9944[/C][C] 0.01122[/C][C] 0.005609[/C][/ROW]
[ROW][C]100[/C][C] 0.9924[/C][C] 0.01529[/C][C] 0.007646[/C][/ROW]
[ROW][C]101[/C][C] 0.997[/C][C] 0.006099[/C][C] 0.00305[/C][/ROW]
[ROW][C]102[/C][C] 0.996[/C][C] 0.008081[/C][C] 0.00404[/C][/ROW]
[ROW][C]103[/C][C] 0.9943[/C][C] 0.01139[/C][C] 0.005693[/C][/ROW]
[ROW][C]104[/C][C] 0.9925[/C][C] 0.01498[/C][C] 0.007491[/C][/ROW]
[ROW][C]105[/C][C] 0.9904[/C][C] 0.0192[/C][C] 0.009599[/C][/ROW]
[ROW][C]106[/C][C] 0.987[/C][C] 0.02593[/C][C] 0.01297[/C][/ROW]
[ROW][C]107[/C][C] 0.9839[/C][C] 0.03221[/C][C] 0.01611[/C][/ROW]
[ROW][C]108[/C][C] 0.9803[/C][C] 0.03939[/C][C] 0.01969[/C][/ROW]
[ROW][C]109[/C][C] 0.9738[/C][C] 0.0523[/C][C] 0.02615[/C][/ROW]
[ROW][C]110[/C][C] 0.9665[/C][C] 0.06692[/C][C] 0.03346[/C][/ROW]
[ROW][C]111[/C][C] 0.9572[/C][C] 0.08562[/C][C] 0.04281[/C][/ROW]
[ROW][C]112[/C][C] 0.9467[/C][C] 0.1066[/C][C] 0.05332[/C][/ROW]
[ROW][C]113[/C][C] 0.9464[/C][C] 0.1071[/C][C] 0.05355[/C][/ROW]
[ROW][C]114[/C][C] 0.9325[/C][C] 0.135[/C][C] 0.0675[/C][/ROW]
[ROW][C]115[/C][C] 0.9584[/C][C] 0.08325[/C][C] 0.04163[/C][/ROW]
[ROW][C]116[/C][C] 0.9646[/C][C] 0.07085[/C][C] 0.03542[/C][/ROW]
[ROW][C]117[/C][C] 0.9544[/C][C] 0.09113[/C][C] 0.04556[/C][/ROW]
[ROW][C]118[/C][C] 0.9697[/C][C] 0.0607[/C][C] 0.03035[/C][/ROW]
[ROW][C]119[/C][C] 0.9893[/C][C] 0.02135[/C][C] 0.01067[/C][/ROW]
[ROW][C]120[/C][C] 0.9883[/C][C] 0.02331[/C][C] 0.01166[/C][/ROW]
[ROW][C]121[/C][C] 0.985[/C][C] 0.02993[/C][C] 0.01497[/C][/ROW]
[ROW][C]122[/C][C] 0.9791[/C][C] 0.04176[/C][C] 0.02088[/C][/ROW]
[ROW][C]123[/C][C] 0.9715[/C][C] 0.05693[/C][C] 0.02847[/C][/ROW]
[ROW][C]124[/C][C] 0.9686[/C][C] 0.06281[/C][C] 0.0314[/C][/ROW]
[ROW][C]125[/C][C] 0.9735[/C][C] 0.05296[/C][C] 0.02648[/C][/ROW]
[ROW][C]126[/C][C] 0.9638[/C][C] 0.07244[/C][C] 0.03622[/C][/ROW]
[ROW][C]127[/C][C] 0.9523[/C][C] 0.09539[/C][C] 0.04769[/C][/ROW]
[ROW][C]128[/C][C] 0.9441[/C][C] 0.1119[/C][C] 0.05595[/C][/ROW]
[ROW][C]129[/C][C] 0.9266[/C][C] 0.1468[/C][C] 0.07341[/C][/ROW]
[ROW][C]130[/C][C] 0.9204[/C][C] 0.1592[/C][C] 0.07958[/C][/ROW]
[ROW][C]131[/C][C] 0.9052[/C][C] 0.1897[/C][C] 0.09483[/C][/ROW]
[ROW][C]132[/C][C] 0.8845[/C][C] 0.231[/C][C] 0.1155[/C][/ROW]
[ROW][C]133[/C][C] 0.8852[/C][C] 0.2295[/C][C] 0.1148[/C][/ROW]
[ROW][C]134[/C][C] 0.8553[/C][C] 0.2895[/C][C] 0.1447[/C][/ROW]
[ROW][C]135[/C][C] 0.8179[/C][C] 0.3641[/C][C] 0.1821[/C][/ROW]
[ROW][C]136[/C][C] 0.923[/C][C] 0.1541[/C][C] 0.07703[/C][/ROW]
[ROW][C]137[/C][C] 0.9142[/C][C] 0.1717[/C][C] 0.08583[/C][/ROW]
[ROW][C]138[/C][C] 0.9329[/C][C] 0.1342[/C][C] 0.06708[/C][/ROW]
[ROW][C]139[/C][C] 0.9081[/C][C] 0.1837[/C][C] 0.09185[/C][/ROW]
[ROW][C]140[/C][C] 0.8977[/C][C] 0.2046[/C][C] 0.1023[/C][/ROW]
[ROW][C]141[/C][C] 0.8649[/C][C] 0.2702[/C][C] 0.1351[/C][/ROW]
[ROW][C]142[/C][C] 0.8269[/C][C] 0.3462[/C][C] 0.1731[/C][/ROW]
[ROW][C]143[/C][C] 0.821[/C][C] 0.358[/C][C] 0.179[/C][/ROW]
[ROW][C]144[/C][C] 0.8008[/C][C] 0.3983[/C][C] 0.1991[/C][/ROW]
[ROW][C]145[/C][C] 0.7446[/C][C] 0.5107[/C][C] 0.2554[/C][/ROW]
[ROW][C]146[/C][C] 0.8163[/C][C] 0.3674[/C][C] 0.1837[/C][/ROW]
[ROW][C]147[/C][C] 0.8643[/C][C] 0.2714[/C][C] 0.1357[/C][/ROW]
[ROW][C]148[/C][C] 0.8284[/C][C] 0.3431[/C][C] 0.1716[/C][/ROW]
[ROW][C]149[/C][C] 0.8443[/C][C] 0.3115[/C][C] 0.1557[/C][/ROW]
[ROW][C]150[/C][C] 0.8295[/C][C] 0.3409[/C][C] 0.1705[/C][/ROW]
[ROW][C]151[/C][C] 0.8186[/C][C] 0.3627[/C][C] 0.1814[/C][/ROW]
[ROW][C]152[/C][C] 0.7492[/C][C] 0.5017[/C][C] 0.2508[/C][/ROW]
[ROW][C]153[/C][C] 0.9156[/C][C] 0.1689[/C][C] 0.08443[/C][/ROW]
[ROW][C]154[/C][C] 0.8619[/C][C] 0.2763[/C][C] 0.1381[/C][/ROW]
[ROW][C]155[/C][C] 0.8271[/C][C] 0.3458[/C][C] 0.1729[/C][/ROW]
[ROW][C]156[/C][C] 0.7483[/C][C] 0.5035[/C][C] 0.2517[/C][/ROW]
[ROW][C]157[/C][C] 0.7731[/C][C] 0.4537[/C][C] 0.2269[/C][/ROW]
[ROW][C]158[/C][C] 0.6668[/C][C] 0.6664[/C][C] 0.3332[/C][/ROW]
[ROW][C]159[/C][C] 0.4997[/C][C] 0.9994[/C][C] 0.5003[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300974&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300974&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
8 0.1903 0.3807 0.8097
9 0.1172 0.2345 0.8828
10 0.05345 0.1069 0.9466
11 0.02791 0.05582 0.9721
12 0.01236 0.02472 0.9876
13 0.4986 0.9971 0.5014
14 0.452 0.9039 0.548
15 0.3981 0.7961 0.6019
16 0.4162 0.8323 0.5838
17 0.3807 0.7615 0.6193
18 0.5382 0.9237 0.4618
19 0.5407 0.9187 0.4593
20 0.4763 0.9527 0.5237
21 0.4633 0.9266 0.5367
22 0.392 0.7841 0.608
23 0.328 0.6561 0.672
24 0.296 0.5919 0.704
25 0.2528 0.5056 0.7472
26 0.241 0.4819 0.759
27 0.2121 0.4242 0.7879
28 0.2144 0.4288 0.7856
29 0.1724 0.3448 0.8276
30 0.1425 0.2851 0.8575
31 0.1772 0.3544 0.8228
32 0.1793 0.3587 0.8207
33 0.306 0.612 0.694
34 0.2955 0.591 0.7045
35 0.2542 0.5084 0.7458
36 0.2115 0.4231 0.7885
37 0.2013 0.4027 0.7987
38 0.1856 0.3713 0.8144
39 0.1688 0.3377 0.8312
40 0.1486 0.2972 0.8514
41 0.1193 0.2385 0.8807
42 0.1013 0.2025 0.8987
43 0.07957 0.1591 0.9204
44 0.09942 0.1988 0.9006
45 0.0995 0.199 0.9005
46 0.07866 0.1573 0.9213
47 0.06279 0.1256 0.9372
48 0.05401 0.108 0.946
49 0.6766 0.6469 0.3234
50 0.633 0.7341 0.367
51 0.6144 0.7713 0.3856
52 0.5726 0.8547 0.4274
53 0.9553 0.08947 0.04474
54 0.9448 0.1105 0.05525
55 0.9427 0.1146 0.05731
56 0.9284 0.1433 0.07165
57 0.9771 0.04585 0.02293
58 0.9724 0.05525 0.02762
59 0.9712 0.05757 0.02879
60 0.9637 0.07268 0.03634
61 0.9663 0.06732 0.03366
62 0.959 0.08192 0.04096
63 0.949 0.1021 0.05104
64 0.9372 0.1256 0.06279
65 0.9539 0.09211 0.04606
66 0.9568 0.08636 0.04318
67 0.9482 0.1036 0.05181
68 0.9522 0.09562 0.04781
69 0.9725 0.05508 0.02754
70 0.97 0.05995 0.02997
71 0.9638 0.07247 0.03624
72 0.9807 0.03855 0.01928
73 0.9754 0.04929 0.02464
74 0.9766 0.04673 0.02337
75 0.9705 0.05894 0.02947
76 0.9633 0.07343 0.03671
77 0.9604 0.07915 0.03957
78 0.9511 0.09775 0.04888
79 0.9397 0.1205 0.06026
80 0.9253 0.1494 0.07468
81 0.9129 0.1742 0.08711
82 0.8988 0.2024 0.1012
83 0.9085 0.1831 0.09154
84 0.8906 0.2188 0.1094
85 0.9322 0.1356 0.06778
86 0.9494 0.1012 0.05058
87 0.9382 0.1236 0.0618
88 0.9252 0.1495 0.07476
89 0.931 0.138 0.069
90 0.934 0.132 0.06602
91 0.9188 0.1623 0.08116
92 0.9015 0.1969 0.09847
93 0.8815 0.2369 0.1185
94 0.8578 0.2845 0.1422
95 0.8586 0.2828 0.1414
96 0.8341 0.3319 0.1659
97 0.8652 0.2695 0.1348
98 0.996 0.008018 0.004009
99 0.9944 0.01122 0.005609
100 0.9924 0.01529 0.007646
101 0.997 0.006099 0.00305
102 0.996 0.008081 0.00404
103 0.9943 0.01139 0.005693
104 0.9925 0.01498 0.007491
105 0.9904 0.0192 0.009599
106 0.987 0.02593 0.01297
107 0.9839 0.03221 0.01611
108 0.9803 0.03939 0.01969
109 0.9738 0.0523 0.02615
110 0.9665 0.06692 0.03346
111 0.9572 0.08562 0.04281
112 0.9467 0.1066 0.05332
113 0.9464 0.1071 0.05355
114 0.9325 0.135 0.0675
115 0.9584 0.08325 0.04163
116 0.9646 0.07085 0.03542
117 0.9544 0.09113 0.04556
118 0.9697 0.0607 0.03035
119 0.9893 0.02135 0.01067
120 0.9883 0.02331 0.01166
121 0.985 0.02993 0.01497
122 0.9791 0.04176 0.02088
123 0.9715 0.05693 0.02847
124 0.9686 0.06281 0.0314
125 0.9735 0.05296 0.02648
126 0.9638 0.07244 0.03622
127 0.9523 0.09539 0.04769
128 0.9441 0.1119 0.05595
129 0.9266 0.1468 0.07341
130 0.9204 0.1592 0.07958
131 0.9052 0.1897 0.09483
132 0.8845 0.231 0.1155
133 0.8852 0.2295 0.1148
134 0.8553 0.2895 0.1447
135 0.8179 0.3641 0.1821
136 0.923 0.1541 0.07703
137 0.9142 0.1717 0.08583
138 0.9329 0.1342 0.06708
139 0.9081 0.1837 0.09185
140 0.8977 0.2046 0.1023
141 0.8649 0.2702 0.1351
142 0.8269 0.3462 0.1731
143 0.821 0.358 0.179
144 0.8008 0.3983 0.1991
145 0.7446 0.5107 0.2554
146 0.8163 0.3674 0.1837
147 0.8643 0.2714 0.1357
148 0.8284 0.3431 0.1716
149 0.8443 0.3115 0.1557
150 0.8295 0.3409 0.1705
151 0.8186 0.3627 0.1814
152 0.7492 0.5017 0.2508
153 0.9156 0.1689 0.08443
154 0.8619 0.2763 0.1381
155 0.8271 0.3458 0.1729
156 0.7483 0.5035 0.2517
157 0.7731 0.4537 0.2269
158 0.6668 0.6664 0.3332
159 0.4997 0.9994 0.5003







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level3 0.01974NOK
5% type I error level200.131579NOK
10% type I error level490.322368NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 3 &  0.01974 & NOK \tabularnewline
5% type I error level & 20 & 0.131579 & NOK \tabularnewline
10% type I error level & 49 & 0.322368 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300974&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]3[/C][C] 0.01974[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]20[/C][C]0.131579[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]49[/C][C]0.322368[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300974&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300974&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level3 0.01974NOK
5% type I error level200.131579NOK
10% type I error level490.322368NOK







Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.11245, df1 = 2, df2 = 160, p-value = 0.8937
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 2.1286, df1 = 8, df2 = 154, p-value = 0.03623
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.1894, df1 = 2, df2 = 160, p-value = 0.3071

\begin{tabular}{lllllllll}
\hline
Ramsey RESET F-Test for powers (2 and 3) of fitted values \tabularnewline
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.11245, df1 = 2, df2 = 160, p-value = 0.8937
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of regressors \tabularnewline
> reset_test_regressors
	RESET test
data:  mylm
RESET = 2.1286, df1 = 8, df2 = 154, p-value = 0.03623
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of principal components \tabularnewline
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.1894, df1 = 2, df2 = 160, p-value = 0.3071
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=300974&T=7

[TABLE]
[ROW][C]Ramsey RESET F-Test for powers (2 and 3) of fitted values[/C][/ROW]
[ROW][C]
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.11245, df1 = 2, df2 = 160, p-value = 0.8937
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of regressors[/C][/ROW] [ROW][C]
> reset_test_regressors
	RESET test
data:  mylm
RESET = 2.1286, df1 = 8, df2 = 154, p-value = 0.03623
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of principal components[/C][/ROW] [ROW][C]
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.1894, df1 = 2, df2 = 160, p-value = 0.3071
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=300974&T=7

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300974&T=7

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.11245, df1 = 2, df2 = 160, p-value = 0.8937
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 2.1286, df1 = 8, df2 = 154, p-value = 0.03623
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.1894, df1 = 2, df2 = 160, p-value = 0.3071







Variance Inflation Factors (Multicollinearity)
> vif
     IK1      IK2      IK3      IK4 
1.269588 1.273202 1.362718 1.174980 

\begin{tabular}{lllllllll}
\hline
Variance Inflation Factors (Multicollinearity) \tabularnewline
> vif
     IK1      IK2      IK3      IK4 
1.269588 1.273202 1.362718 1.174980 
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=300974&T=8

[TABLE]
[ROW][C]Variance Inflation Factors (Multicollinearity)[/C][/ROW]
[ROW][C]
> vif
     IK1      IK2      IK3      IK4 
1.269588 1.273202 1.362718 1.174980 
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=300974&T=8

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300974&T=8

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variance Inflation Factors (Multicollinearity)
> vif
     IK1      IK2      IK3      IK4 
1.269588 1.273202 1.362718 1.174980 



Parameters (Session):
Parameters (R input):
par1 = 5 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
library(car)
library(MASS)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
mywarning <- ''
par1 <- as.numeric(par1)
if(is.na(par1)) {
par1 <- 1
mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.'
}
if (par4=='') par4 <- 0
par4 <- as.numeric(par4)
if (par5=='') par5 <- 0
par5 <- as.numeric(par5)
x <- na.omit(t(y))
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'Seasonal Differences (s=12)'){
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'First and Seasonal Differences (s=12)'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if(par4 > 0) {
x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep='')))
for (i in 1:(n-par4)) {
for (j in 1:par4) {
x2[i,j] <- x[i+par4-j,par1]
}
}
x <- cbind(x[(par4+1):n,], x2)
n <- n - par4
}
if(par5 > 0) {
x2 <- array(0, dim=c(n-par5*12,par5), dimnames=list(1:(n-par5*12), paste(colnames(x)[par1],'(t-',1:par5,'s)',sep='')))
for (i in 1:(n-par5*12)) {
for (j in 1:par5) {
x2[i,j] <- x[i+par5*12-j*12,par1]
}
}
x <- cbind(x[(par5*12+1):n,], x2)
n <- n - par5*12
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
(k <- length(x[n,]))
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
print(x)
(k <- length(x[n,]))
head(x)
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
sresid <- studres(mylm)
hist(sresid, freq=FALSE, main='Distribution of Studentized Residuals')
xfit<-seq(min(sresid),max(sresid),length=40)
yfit<-dnorm(xfit)
lines(xfit, yfit)
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqPlot(mylm, main='QQ Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
print(z)
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, mywarning)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Multiple Linear Regression - Ordinary Least Squares', 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
myr <- as.numeric(mysum$resid)
myr
if(n < 200) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' '))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of fitted values',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_fitted <- resettest(mylm,power=2:3,type='fitted')
a<-table.element(a,paste('
',RC.texteval('reset_test_fitted'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of regressors',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_regressors <- resettest(mylm,power=2:3,type='regressor')
a<-table.element(a,paste('
',RC.texteval('reset_test_regressors'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of principal components',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_principal_components <- resettest(mylm,power=2:3,type='princomp')
a<-table.element(a,paste('
',RC.texteval('reset_test_principal_components'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable8.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variance Inflation Factors (Multicollinearity)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
vif <- vif(mylm)
a<-table.element(a,paste('
',RC.texteval('vif'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable9.tab')