Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimabackwardselection.wasp
Title produced by softwareARIMA Backward Selection
Date of computationSat, 17 Dec 2016 20:43:16 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/17/t1482003818pvqz1d0zl2wudmh.htm/, Retrieved Fri, 01 Nov 2024 03:47:43 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=300925, Retrieved Fri, 01 Nov 2024 03:47:43 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact94
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [ARIMA Backward Selection] [forecasting backw...] [2016-12-17 19:43:16] [e6dc02234f5305f92311fb16bc25f73e] [Current]
-         [ARIMA Backward Selection] [arima] [2016-12-17 19:45:34] [4067f2cd79b347c20c712be3b84ed58d]
- R         [ARIMA Backward Selection] [sdfsdf] [2016-12-17 20:21:06] [4067f2cd79b347c20c712be3b84ed58d]
Feedback Forum

Post a new message
Dataseries X:
13663
11635
9606
8784.5
9415.5
10418
11344.5
11271
11895
12152.5
12731
12951
10692
8563.5
6217
5562
6294.5
7422
9254.5
10607
11268
12041
12962.5
12200.5
10400.5
8765
7000
6677
7318
7999
8762
9696
10373
10682.5
10935.5
10815.5
8669
7079.5
5640
5238.5
5777.5
6479
7290
7343
7810.5
8171.5
8532
8719
7281.5
5923.5
4837
4675.5
4585.5
5083
5766
6201
6778
7393.5
7849.5
8282.5
7610
6192.5
4693.5
4869
5149
5648.5
6230.5
7032
7727
8087.5
8443
9002
7717.5
6374.5
4995.5
4655
5198
5501
6119.5
6922
7390
7466.5
7773
7865
6567
5132.5
3656.5
3623
4045.5
4617
5374
6022.5
6464.5
7058
7484.5
7955
6801
5499
4179.5
4305.5
3304
5773.5
6419.5
6938
7760
8224
8381
8667
7304.5
5565.5
4023
3932.5
4508.5
5491
6284




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time10 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time10 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300925&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]10 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=300925&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300925&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time10 seconds
R ServerBig Analytics Cloud Computing Center







ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2ar3ma1sar1sar2sma1
Estimates ( 1 )-0.14570.03390.0973-0.99920.0299-0.1105-0.7543
(p-val)(0.2148 )(0.7373 )(0.3483 )(0 )(0.9237 )(0.6411 )(0.0569 )
Estimates ( 2 )-0.14110.0340.0946-1.00080-0.1183-0.7405
(p-val)(0.1605 )(0.7352 )(0.3532 )(0 )(NA )(0.4744 )(0 )
Estimates ( 3 )-0.146300.0895-1.00090-0.1191-0.7375
(p-val)(0.1412 )(NA )(0.3743 )(0 )(NA )(0.4718 )(0 )
Estimates ( 4 )-0.152800.0993-1.000800-0.7685
(p-val)(0.1224 )(NA )(0.3178 )(0 )(NA )(NA )(0 )
Estimates ( 5 )-0.150900-1.000900-0.7832
(p-val)(0.1282 )(NA )(NA )(0 )(NA )(NA )(0 )
Estimates ( 6 )000-1.000700-1.3299
(p-val)(NA )(NA )(NA )(0 )(NA )(NA )(0 )
Estimates ( 7 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 8 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 9 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 10 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 11 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 12 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 13 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )

\begin{tabular}{lllllllll}
\hline
ARIMA Parameter Estimation and Backward Selection \tabularnewline
Iteration & ar1 & ar2 & ar3 & ma1 & sar1 & sar2 & sma1 \tabularnewline
Estimates ( 1 ) & -0.1457 & 0.0339 & 0.0973 & -0.9992 & 0.0299 & -0.1105 & -0.7543 \tabularnewline
(p-val) & (0.2148 ) & (0.7373 ) & (0.3483 ) & (0 ) & (0.9237 ) & (0.6411 ) & (0.0569 ) \tabularnewline
Estimates ( 2 ) & -0.1411 & 0.034 & 0.0946 & -1.0008 & 0 & -0.1183 & -0.7405 \tabularnewline
(p-val) & (0.1605 ) & (0.7352 ) & (0.3532 ) & (0 ) & (NA ) & (0.4744 ) & (0 ) \tabularnewline
Estimates ( 3 ) & -0.1463 & 0 & 0.0895 & -1.0009 & 0 & -0.1191 & -0.7375 \tabularnewline
(p-val) & (0.1412 ) & (NA ) & (0.3743 ) & (0 ) & (NA ) & (0.4718 ) & (0 ) \tabularnewline
Estimates ( 4 ) & -0.1528 & 0 & 0.0993 & -1.0008 & 0 & 0 & -0.7685 \tabularnewline
(p-val) & (0.1224 ) & (NA ) & (0.3178 ) & (0 ) & (NA ) & (NA ) & (0 ) \tabularnewline
Estimates ( 5 ) & -0.1509 & 0 & 0 & -1.0009 & 0 & 0 & -0.7832 \tabularnewline
(p-val) & (0.1282 ) & (NA ) & (NA ) & (0 ) & (NA ) & (NA ) & (0 ) \tabularnewline
Estimates ( 6 ) & 0 & 0 & 0 & -1.0007 & 0 & 0 & -1.3299 \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (0 ) & (NA ) & (NA ) & (0 ) \tabularnewline
Estimates ( 7 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 8 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 9 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 10 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 11 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 12 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 13 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300925&T=1

[TABLE]
[ROW][C]ARIMA Parameter Estimation and Backward Selection[/C][/ROW]
[ROW][C]Iteration[/C][C]ar1[/C][C]ar2[/C][C]ar3[/C][C]ma1[/C][C]sar1[/C][C]sar2[/C][C]sma1[/C][/ROW]
[ROW][C]Estimates ( 1 )[/C][C]-0.1457[/C][C]0.0339[/C][C]0.0973[/C][C]-0.9992[/C][C]0.0299[/C][C]-0.1105[/C][C]-0.7543[/C][/ROW]
[ROW][C](p-val)[/C][C](0.2148 )[/C][C](0.7373 )[/C][C](0.3483 )[/C][C](0 )[/C][C](0.9237 )[/C][C](0.6411 )[/C][C](0.0569 )[/C][/ROW]
[ROW][C]Estimates ( 2 )[/C][C]-0.1411[/C][C]0.034[/C][C]0.0946[/C][C]-1.0008[/C][C]0[/C][C]-0.1183[/C][C]-0.7405[/C][/ROW]
[ROW][C](p-val)[/C][C](0.1605 )[/C][C](0.7352 )[/C][C](0.3532 )[/C][C](0 )[/C][C](NA )[/C][C](0.4744 )[/C][C](0 )[/C][/ROW]
[ROW][C]Estimates ( 3 )[/C][C]-0.1463[/C][C]0[/C][C]0.0895[/C][C]-1.0009[/C][C]0[/C][C]-0.1191[/C][C]-0.7375[/C][/ROW]
[ROW][C](p-val)[/C][C](0.1412 )[/C][C](NA )[/C][C](0.3743 )[/C][C](0 )[/C][C](NA )[/C][C](0.4718 )[/C][C](0 )[/C][/ROW]
[ROW][C]Estimates ( 4 )[/C][C]-0.1528[/C][C]0[/C][C]0.0993[/C][C]-1.0008[/C][C]0[/C][C]0[/C][C]-0.7685[/C][/ROW]
[ROW][C](p-val)[/C][C](0.1224 )[/C][C](NA )[/C][C](0.3178 )[/C][C](0 )[/C][C](NA )[/C][C](NA )[/C][C](0 )[/C][/ROW]
[ROW][C]Estimates ( 5 )[/C][C]-0.1509[/C][C]0[/C][C]0[/C][C]-1.0009[/C][C]0[/C][C]0[/C][C]-0.7832[/C][/ROW]
[ROW][C](p-val)[/C][C](0.1282 )[/C][C](NA )[/C][C](NA )[/C][C](0 )[/C][C](NA )[/C][C](NA )[/C][C](0 )[/C][/ROW]
[ROW][C]Estimates ( 6 )[/C][C]0[/C][C]0[/C][C]0[/C][C]-1.0007[/C][C]0[/C][C]0[/C][C]-1.3299[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](0 )[/C][C](NA )[/C][C](NA )[/C][C](0 )[/C][/ROW]
[ROW][C]Estimates ( 7 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 8 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 9 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 10 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 11 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 12 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 13 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300925&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300925&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2ar3ma1sar1sar2sma1
Estimates ( 1 )-0.14570.03390.0973-0.99920.0299-0.1105-0.7543
(p-val)(0.2148 )(0.7373 )(0.3483 )(0 )(0.9237 )(0.6411 )(0.0569 )
Estimates ( 2 )-0.14110.0340.0946-1.00080-0.1183-0.7405
(p-val)(0.1605 )(0.7352 )(0.3532 )(0 )(NA )(0.4744 )(0 )
Estimates ( 3 )-0.146300.0895-1.00090-0.1191-0.7375
(p-val)(0.1412 )(NA )(0.3743 )(0 )(NA )(0.4718 )(0 )
Estimates ( 4 )-0.152800.0993-1.000800-0.7685
(p-val)(0.1224 )(NA )(0.3178 )(0 )(NA )(NA )(0 )
Estimates ( 5 )-0.150900-1.000900-0.7832
(p-val)(0.1282 )(NA )(NA )(0 )(NA )(NA )(0 )
Estimates ( 6 )000-1.000700-1.3299
(p-val)(NA )(NA )(NA )(0 )(NA )(NA )(0 )
Estimates ( 7 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 8 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 9 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 10 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 11 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 12 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 13 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )







Estimated ARIMA Residuals
Value
0.901975977626245
-2.72096707994518
4.80851909606492
6.48077773368014
5.8677556077267
13.1419813168187
16.1229306057639
-0.776373615452482
1.8907166208978
0.473736855692692
-13.5797219893973
0.754252514123639
0.731019908153447
0.820801735023427
1.62350985131331
-4.75979557124467
-9.7786885409151
-12.3374596600191
0.455044851445414
-0.851326461980175
-4.50093540774478
-8.03489233103326
-0.262916904080665
-4.33440958708464
0.0503744389652258
5.17300276371239
1.15618067548618
-2.78062764174652
-4.13335388295692
-5.59246640982169
-11.4647952201462
-3.36168060127851
-0.703999181902995
-2.05992074233142
5.41030197074414
6.66863112292407
3.60995350033486
8.86428251311214
5.56548088092797
-13.2589602720203
-7.21722994958566
-5.08682663092171
-1.36342544307188
0.786089129935452
3.97046357454821
0.379087558191168
7.45248605452775
16.6311506128026
2.59818171081204
-2.19773915991633
8.88990018461223
-2.72419230533264
-6.04889250150172
-7.49366676731427
3.33408374491461
1.48120274980303
-2.78997808210843
-3.44317371484809
5.9276567945543
2.27270432227028
1.36171992973034
0.619918113614056
-3.62467068915465
1.27495900111747
-7.90947542887402
-5.84604019163549
2.40569632732024
-2.86059366767236
-7.43896224828725
-3.98983980956571
-2.78279680622213
-0.620863937120568
-2.26158135072995
-4.35226173729363
3.09040850562415
0.838036129485402
0.160450512016216
0.0376401605530298
0.378178292910716
-2.4143185222453
3.35879115830739
0.244487684774134
4.14317674329722
2.65953049237177
1.06025378828124
0.761592198908789
5.71556988598835
-30.6816619680549
34.1599890236343
1.9073345685123
-4.05726275312308
2.78524645632216
-0.151879470457884
-5.71625869471755
-1.38939270142837
-1.7788515334148
-7.4321545857183
-5.38735731857567
-0.979643272828367
9.40817799178276
-0.485402441894833
-0.553309717653729

\begin{tabular}{lllllllll}
\hline
Estimated ARIMA Residuals \tabularnewline
Value \tabularnewline
0.901975977626245 \tabularnewline
-2.72096707994518 \tabularnewline
4.80851909606492 \tabularnewline
6.48077773368014 \tabularnewline
5.8677556077267 \tabularnewline
13.1419813168187 \tabularnewline
16.1229306057639 \tabularnewline
-0.776373615452482 \tabularnewline
1.8907166208978 \tabularnewline
0.473736855692692 \tabularnewline
-13.5797219893973 \tabularnewline
0.754252514123639 \tabularnewline
0.731019908153447 \tabularnewline
0.820801735023427 \tabularnewline
1.62350985131331 \tabularnewline
-4.75979557124467 \tabularnewline
-9.7786885409151 \tabularnewline
-12.3374596600191 \tabularnewline
0.455044851445414 \tabularnewline
-0.851326461980175 \tabularnewline
-4.50093540774478 \tabularnewline
-8.03489233103326 \tabularnewline
-0.262916904080665 \tabularnewline
-4.33440958708464 \tabularnewline
0.0503744389652258 \tabularnewline
5.17300276371239 \tabularnewline
1.15618067548618 \tabularnewline
-2.78062764174652 \tabularnewline
-4.13335388295692 \tabularnewline
-5.59246640982169 \tabularnewline
-11.4647952201462 \tabularnewline
-3.36168060127851 \tabularnewline
-0.703999181902995 \tabularnewline
-2.05992074233142 \tabularnewline
5.41030197074414 \tabularnewline
6.66863112292407 \tabularnewline
3.60995350033486 \tabularnewline
8.86428251311214 \tabularnewline
5.56548088092797 \tabularnewline
-13.2589602720203 \tabularnewline
-7.21722994958566 \tabularnewline
-5.08682663092171 \tabularnewline
-1.36342544307188 \tabularnewline
0.786089129935452 \tabularnewline
3.97046357454821 \tabularnewline
0.379087558191168 \tabularnewline
7.45248605452775 \tabularnewline
16.6311506128026 \tabularnewline
2.59818171081204 \tabularnewline
-2.19773915991633 \tabularnewline
8.88990018461223 \tabularnewline
-2.72419230533264 \tabularnewline
-6.04889250150172 \tabularnewline
-7.49366676731427 \tabularnewline
3.33408374491461 \tabularnewline
1.48120274980303 \tabularnewline
-2.78997808210843 \tabularnewline
-3.44317371484809 \tabularnewline
5.9276567945543 \tabularnewline
2.27270432227028 \tabularnewline
1.36171992973034 \tabularnewline
0.619918113614056 \tabularnewline
-3.62467068915465 \tabularnewline
1.27495900111747 \tabularnewline
-7.90947542887402 \tabularnewline
-5.84604019163549 \tabularnewline
2.40569632732024 \tabularnewline
-2.86059366767236 \tabularnewline
-7.43896224828725 \tabularnewline
-3.98983980956571 \tabularnewline
-2.78279680622213 \tabularnewline
-0.620863937120568 \tabularnewline
-2.26158135072995 \tabularnewline
-4.35226173729363 \tabularnewline
3.09040850562415 \tabularnewline
0.838036129485402 \tabularnewline
0.160450512016216 \tabularnewline
0.0376401605530298 \tabularnewline
0.378178292910716 \tabularnewline
-2.4143185222453 \tabularnewline
3.35879115830739 \tabularnewline
0.244487684774134 \tabularnewline
4.14317674329722 \tabularnewline
2.65953049237177 \tabularnewline
1.06025378828124 \tabularnewline
0.761592198908789 \tabularnewline
5.71556988598835 \tabularnewline
-30.6816619680549 \tabularnewline
34.1599890236343 \tabularnewline
1.9073345685123 \tabularnewline
-4.05726275312308 \tabularnewline
2.78524645632216 \tabularnewline
-0.151879470457884 \tabularnewline
-5.71625869471755 \tabularnewline
-1.38939270142837 \tabularnewline
-1.7788515334148 \tabularnewline
-7.4321545857183 \tabularnewline
-5.38735731857567 \tabularnewline
-0.979643272828367 \tabularnewline
9.40817799178276 \tabularnewline
-0.485402441894833 \tabularnewline
-0.553309717653729 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300925&T=2

[TABLE]
[ROW][C]Estimated ARIMA Residuals[/C][/ROW]
[ROW][C]Value[/C][/ROW]
[ROW][C]0.901975977626245[/C][/ROW]
[ROW][C]-2.72096707994518[/C][/ROW]
[ROW][C]4.80851909606492[/C][/ROW]
[ROW][C]6.48077773368014[/C][/ROW]
[ROW][C]5.8677556077267[/C][/ROW]
[ROW][C]13.1419813168187[/C][/ROW]
[ROW][C]16.1229306057639[/C][/ROW]
[ROW][C]-0.776373615452482[/C][/ROW]
[ROW][C]1.8907166208978[/C][/ROW]
[ROW][C]0.473736855692692[/C][/ROW]
[ROW][C]-13.5797219893973[/C][/ROW]
[ROW][C]0.754252514123639[/C][/ROW]
[ROW][C]0.731019908153447[/C][/ROW]
[ROW][C]0.820801735023427[/C][/ROW]
[ROW][C]1.62350985131331[/C][/ROW]
[ROW][C]-4.75979557124467[/C][/ROW]
[ROW][C]-9.7786885409151[/C][/ROW]
[ROW][C]-12.3374596600191[/C][/ROW]
[ROW][C]0.455044851445414[/C][/ROW]
[ROW][C]-0.851326461980175[/C][/ROW]
[ROW][C]-4.50093540774478[/C][/ROW]
[ROW][C]-8.03489233103326[/C][/ROW]
[ROW][C]-0.262916904080665[/C][/ROW]
[ROW][C]-4.33440958708464[/C][/ROW]
[ROW][C]0.0503744389652258[/C][/ROW]
[ROW][C]5.17300276371239[/C][/ROW]
[ROW][C]1.15618067548618[/C][/ROW]
[ROW][C]-2.78062764174652[/C][/ROW]
[ROW][C]-4.13335388295692[/C][/ROW]
[ROW][C]-5.59246640982169[/C][/ROW]
[ROW][C]-11.4647952201462[/C][/ROW]
[ROW][C]-3.36168060127851[/C][/ROW]
[ROW][C]-0.703999181902995[/C][/ROW]
[ROW][C]-2.05992074233142[/C][/ROW]
[ROW][C]5.41030197074414[/C][/ROW]
[ROW][C]6.66863112292407[/C][/ROW]
[ROW][C]3.60995350033486[/C][/ROW]
[ROW][C]8.86428251311214[/C][/ROW]
[ROW][C]5.56548088092797[/C][/ROW]
[ROW][C]-13.2589602720203[/C][/ROW]
[ROW][C]-7.21722994958566[/C][/ROW]
[ROW][C]-5.08682663092171[/C][/ROW]
[ROW][C]-1.36342544307188[/C][/ROW]
[ROW][C]0.786089129935452[/C][/ROW]
[ROW][C]3.97046357454821[/C][/ROW]
[ROW][C]0.379087558191168[/C][/ROW]
[ROW][C]7.45248605452775[/C][/ROW]
[ROW][C]16.6311506128026[/C][/ROW]
[ROW][C]2.59818171081204[/C][/ROW]
[ROW][C]-2.19773915991633[/C][/ROW]
[ROW][C]8.88990018461223[/C][/ROW]
[ROW][C]-2.72419230533264[/C][/ROW]
[ROW][C]-6.04889250150172[/C][/ROW]
[ROW][C]-7.49366676731427[/C][/ROW]
[ROW][C]3.33408374491461[/C][/ROW]
[ROW][C]1.48120274980303[/C][/ROW]
[ROW][C]-2.78997808210843[/C][/ROW]
[ROW][C]-3.44317371484809[/C][/ROW]
[ROW][C]5.9276567945543[/C][/ROW]
[ROW][C]2.27270432227028[/C][/ROW]
[ROW][C]1.36171992973034[/C][/ROW]
[ROW][C]0.619918113614056[/C][/ROW]
[ROW][C]-3.62467068915465[/C][/ROW]
[ROW][C]1.27495900111747[/C][/ROW]
[ROW][C]-7.90947542887402[/C][/ROW]
[ROW][C]-5.84604019163549[/C][/ROW]
[ROW][C]2.40569632732024[/C][/ROW]
[ROW][C]-2.86059366767236[/C][/ROW]
[ROW][C]-7.43896224828725[/C][/ROW]
[ROW][C]-3.98983980956571[/C][/ROW]
[ROW][C]-2.78279680622213[/C][/ROW]
[ROW][C]-0.620863937120568[/C][/ROW]
[ROW][C]-2.26158135072995[/C][/ROW]
[ROW][C]-4.35226173729363[/C][/ROW]
[ROW][C]3.09040850562415[/C][/ROW]
[ROW][C]0.838036129485402[/C][/ROW]
[ROW][C]0.160450512016216[/C][/ROW]
[ROW][C]0.0376401605530298[/C][/ROW]
[ROW][C]0.378178292910716[/C][/ROW]
[ROW][C]-2.4143185222453[/C][/ROW]
[ROW][C]3.35879115830739[/C][/ROW]
[ROW][C]0.244487684774134[/C][/ROW]
[ROW][C]4.14317674329722[/C][/ROW]
[ROW][C]2.65953049237177[/C][/ROW]
[ROW][C]1.06025378828124[/C][/ROW]
[ROW][C]0.761592198908789[/C][/ROW]
[ROW][C]5.71556988598835[/C][/ROW]
[ROW][C]-30.6816619680549[/C][/ROW]
[ROW][C]34.1599890236343[/C][/ROW]
[ROW][C]1.9073345685123[/C][/ROW]
[ROW][C]-4.05726275312308[/C][/ROW]
[ROW][C]2.78524645632216[/C][/ROW]
[ROW][C]-0.151879470457884[/C][/ROW]
[ROW][C]-5.71625869471755[/C][/ROW]
[ROW][C]-1.38939270142837[/C][/ROW]
[ROW][C]-1.7788515334148[/C][/ROW]
[ROW][C]-7.4321545857183[/C][/ROW]
[ROW][C]-5.38735731857567[/C][/ROW]
[ROW][C]-0.979643272828367[/C][/ROW]
[ROW][C]9.40817799178276[/C][/ROW]
[ROW][C]-0.485402441894833[/C][/ROW]
[ROW][C]-0.553309717653729[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300925&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300925&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimated ARIMA Residuals
Value
0.901975977626245
-2.72096707994518
4.80851909606492
6.48077773368014
5.8677556077267
13.1419813168187
16.1229306057639
-0.776373615452482
1.8907166208978
0.473736855692692
-13.5797219893973
0.754252514123639
0.731019908153447
0.820801735023427
1.62350985131331
-4.75979557124467
-9.7786885409151
-12.3374596600191
0.455044851445414
-0.851326461980175
-4.50093540774478
-8.03489233103326
-0.262916904080665
-4.33440958708464
0.0503744389652258
5.17300276371239
1.15618067548618
-2.78062764174652
-4.13335388295692
-5.59246640982169
-11.4647952201462
-3.36168060127851
-0.703999181902995
-2.05992074233142
5.41030197074414
6.66863112292407
3.60995350033486
8.86428251311214
5.56548088092797
-13.2589602720203
-7.21722994958566
-5.08682663092171
-1.36342544307188
0.786089129935452
3.97046357454821
0.379087558191168
7.45248605452775
16.6311506128026
2.59818171081204
-2.19773915991633
8.88990018461223
-2.72419230533264
-6.04889250150172
-7.49366676731427
3.33408374491461
1.48120274980303
-2.78997808210843
-3.44317371484809
5.9276567945543
2.27270432227028
1.36171992973034
0.619918113614056
-3.62467068915465
1.27495900111747
-7.90947542887402
-5.84604019163549
2.40569632732024
-2.86059366767236
-7.43896224828725
-3.98983980956571
-2.78279680622213
-0.620863937120568
-2.26158135072995
-4.35226173729363
3.09040850562415
0.838036129485402
0.160450512016216
0.0376401605530298
0.378178292910716
-2.4143185222453
3.35879115830739
0.244487684774134
4.14317674329722
2.65953049237177
1.06025378828124
0.761592198908789
5.71556988598835
-30.6816619680549
34.1599890236343
1.9073345685123
-4.05726275312308
2.78524645632216
-0.151879470457884
-5.71625869471755
-1.38939270142837
-1.7788515334148
-7.4321545857183
-5.38735731857567
-0.979643272828367
9.40817799178276
-0.485402441894833
-0.553309717653729



Parameters (Session):
par1 = 1 ; par2 = 2 ; par3 = 1 ; par4 = 12 ;
Parameters (R input):
par1 = FALSE ; par2 = 0.6 ; par3 = 2 ; par4 = 1 ; par5 = 12 ; par6 = 3 ; par7 = 1 ; par8 = 2 ; par9 = 1 ;
R code (references can be found in the software module):
library(lattice)
if (par1 == 'TRUE') par1 <- TRUE
if (par1 == 'FALSE') par1 <- FALSE
par2 <- as.numeric(par2) #Box-Cox lambda transformation parameter
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #degree (p) of the non-seasonal AR(p) polynomial
par7 <- as.numeric(par7) #degree (q) of the non-seasonal MA(q) polynomial
par8 <- as.numeric(par8) #degree (P) of the seasonal AR(P) polynomial
par9 <- as.numeric(par9) #degree (Q) of the seasonal MA(Q) polynomial
armaGR <- function(arima.out, names, n){
try1 <- arima.out$coef
try2 <- sqrt(diag(arima.out$var.coef))
try.data.frame <- data.frame(matrix(NA,ncol=4,nrow=length(names)))
dimnames(try.data.frame) <- list(names,c('coef','std','tstat','pv'))
try.data.frame[,1] <- try1
for(i in 1:length(try2)) try.data.frame[which(rownames(try.data.frame)==names(try2)[i]),2] <- try2[i]
try.data.frame[,3] <- try.data.frame[,1] / try.data.frame[,2]
try.data.frame[,4] <- round((1-pt(abs(try.data.frame[,3]),df=n-(length(try2)+1)))*2,5)
vector <- rep(NA,length(names))
vector[is.na(try.data.frame[,4])] <- 0
maxi <- which.max(try.data.frame[,4])
continue <- max(try.data.frame[,4],na.rm=TRUE) > .05
vector[maxi] <- 0
list(summary=try.data.frame,next.vector=vector,continue=continue)
}
arimaSelect <- function(series, order=c(13,0,0), seasonal=list(order=c(2,0,0),period=12), include.mean=F){
nrc <- order[1]+order[3]+seasonal$order[1]+seasonal$order[3]
coeff <- matrix(NA, nrow=nrc*2, ncol=nrc)
pval <- matrix(NA, nrow=nrc*2, ncol=nrc)
mylist <- rep(list(NULL), nrc)
names <- NULL
if(order[1] > 0) names <- paste('ar',1:order[1],sep='')
if(order[3] > 0) names <- c( names , paste('ma',1:order[3],sep='') )
if(seasonal$order[1] > 0) names <- c(names, paste('sar',1:seasonal$order[1],sep=''))
if(seasonal$order[3] > 0) names <- c(names, paste('sma',1:seasonal$order[3],sep=''))
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML')
mylist[[1]] <- arima.out
last.arma <- armaGR(arima.out, names, length(series))
mystop <- FALSE
i <- 1
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- 2
aic <- arima.out$aic
while(!mystop){
mylist[[i]] <- arima.out
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML', fixed=last.arma$next.vector)
aic <- c(aic, arima.out$aic)
last.arma <- armaGR(arima.out, names, length(series))
mystop <- !last.arma$continue
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- i+1
}
list(coeff, pval, mylist, aic=aic)
}
arimaSelectplot <- function(arimaSelect.out,noms,choix){
noms <- names(arimaSelect.out[[3]][[1]]$coef)
coeff <- arimaSelect.out[[1]]
k <- min(which(is.na(coeff[,1])))-1
coeff <- coeff[1:k,]
pval <- arimaSelect.out[[2]][1:k,]
aic <- arimaSelect.out$aic[1:k]
coeff[coeff==0] <- NA
n <- ncol(coeff)
if(missing(choix)) choix <- k
layout(matrix(c(1,1,1,2,
3,3,3,2,
3,3,3,4,
5,6,7,7),nr=4),
widths=c(10,35,45,15),
heights=c(30,30,15,15))
couleurs <- rainbow(75)[1:50]#(50)
ticks <- pretty(coeff)
par(mar=c(1,1,3,1))
plot(aic,k:1-.5,type='o',pch=21,bg='blue',cex=2,axes=F,lty=2,xpd=NA)
points(aic[choix],k-choix+.5,pch=21,cex=4,bg=2,xpd=NA)
title('aic',line=2)
par(mar=c(3,0,0,0))
plot(0,axes=F,xlab='',ylab='',xlim=range(ticks),ylim=c(.1,1))
rect(xleft = min(ticks) + (0:49)/50*(max(ticks)-min(ticks)),
xright = min(ticks) + (1:50)/50*(max(ticks)-min(ticks)),
ytop = rep(1,50),
ybottom= rep(0,50),col=couleurs,border=NA)
axis(1,ticks)
rect(xleft=min(ticks),xright=max(ticks),ytop=1,ybottom=0)
text(mean(coeff,na.rm=T),.5,'coefficients',cex=2,font=2)
par(mar=c(1,1,3,1))
image(1:n,1:k,t(coeff[k:1,]),axes=F,col=couleurs,zlim=range(ticks))
for(i in 1:n) for(j in 1:k) if(!is.na(coeff[j,i])) {
if(pval[j,i]<.01) symb = 'green'
else if( (pval[j,i]<.05) & (pval[j,i]>=.01)) symb = 'orange'
else if( (pval[j,i]<.1) & (pval[j,i]>=.05)) symb = 'red'
else symb = 'black'
polygon(c(i+.5 ,i+.2 ,i+.5 ,i+.5),
c(k-j+0.5,k-j+0.5,k-j+0.8,k-j+0.5),
col=symb)
if(j==choix) {
rect(xleft=i-.5,
xright=i+.5,
ybottom=k-j+1.5,
ytop=k-j+.5,
lwd=4)
text(i,
k-j+1,
round(coeff[j,i],2),
cex=1.2,
font=2)
}
else{
rect(xleft=i-.5,xright=i+.5,ybottom=k-j+1.5,ytop=k-j+.5)
text(i,k-j+1,round(coeff[j,i],2),cex=1.2,font=1)
}
}
axis(3,1:n,noms)
par(mar=c(0.5,0,0,0.5))
plot(0,axes=F,xlab='',ylab='',type='n',xlim=c(0,8),ylim=c(-.2,.8))
cols <- c('green','orange','red','black')
niv <- c('0','0.01','0.05','0.1')
for(i in 0:3){
polygon(c(1+2*i ,1+2*i ,1+2*i-.5 ,1+2*i),
c(.4 ,.7 , .4 , .4),
col=cols[i+1])
text(2*i,0.5,niv[i+1],cex=1.5)
}
text(8,.5,1,cex=1.5)
text(4,0,'p-value',cex=2)
box()
residus <- arimaSelect.out[[3]][[choix]]$res
par(mar=c(1,2,4,1))
acf(residus,main='')
title('acf',line=.5)
par(mar=c(1,2,4,1))
pacf(residus,main='')
title('pacf',line=.5)
par(mar=c(2,2,4,1))
qqnorm(residus,main='')
title('qq-norm',line=.5)
qqline(residus)
residus
}
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
(selection <- arimaSelect(x, order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5)))
bitmap(file='test1.png')
resid <- arimaSelectplot(selection)
dev.off()
resid
bitmap(file='test2.png')
acf(resid,length(resid)/2, main='Residual Autocorrelation Function')
dev.off()
bitmap(file='test3.png')
pacf(resid,length(resid)/2, main='Residual Partial Autocorrelation Function')
dev.off()
bitmap(file='test4.png')
cpgram(resid, main='Residual Cumulative Periodogram')
dev.off()
bitmap(file='test5.png')
hist(resid, main='Residual Histogram', xlab='values of Residuals')
dev.off()
bitmap(file='test6.png')
densityplot(~resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test7.png')
qqnorm(resid, main='Residual Normal Q-Q Plot')
qqline(resid)
dev.off()
ncols <- length(selection[[1]][1,])
nrows <- length(selection[[2]][,1])-1
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ARIMA Parameter Estimation and Backward Selection', ncols+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Iteration', header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,names(selection[[3]][[1]]$coef)[i],header=TRUE)
}
a<-table.row.end(a)
for (j in 1:nrows) {
a<-table.row.start(a)
mydum <- 'Estimates ('
mydum <- paste(mydum,j)
mydum <- paste(mydum,')')
a<-table.element(a,mydum, header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,round(selection[[1]][j,i],4))
}
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'(p-val)', header=TRUE)
for (i in 1:ncols) {
mydum <- '('
mydum <- paste(mydum,round(selection[[2]][j,i],4),sep='')
mydum <- paste(mydum,')')
a<-table.element(a,mydum)
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimated ARIMA Residuals', 1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Value', 1,TRUE)
a<-table.row.end(a)
for (i in (par4*par5+par3):length(resid)) {
a<-table.row.start(a)
a<-table.element(a,resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')