Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_correlation.wasp
Title produced by softwarePearson Correlation
Date of computationSat, 17 Dec 2016 18:53:30 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/17/t14819972690dzteybjd4hjsml.htm/, Retrieved Fri, 01 Nov 2024 03:36:05 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=300902, Retrieved Fri, 01 Nov 2024 03:36:05 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact90
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Pearson Correlation] [pearson correlation] [2016-12-17 17:53:30] [8e62cbb8023b87d93040197279d31dd8] [Current]
Feedback Forum

Post a new message
Dataseries X:
11
9
12
NA
NA
12
12
NA
NA
11
12
12
15
13
12
11
NA
NA
9
NA
11
NA
12
NA
NA
NA
12
12
14
NA
12
9
13
NA
13
12
NA
12
12
12
NA
12
11
13
13
NA
NA
13
10
NA
13
NA
NA
5
NA
10
NA
15
13
NA
12
13
13
11
NA
NA
12
12
13
14
NA
NA
NA
NA
NA
12
12
10
12
12
NA
NA
12
13
NA
14
10
12
NA
13
11
NA
12
NA
12
13
12
9
NA
12
NA
14
NA
11
NA
NA
NA
NA
NA
12
NA
NA
NA
12
NA
9
13
NA
10
14
10
12
NA
11
NA
14
13
12
NA
NA
10
NA
12
NA
12
NA
15
NA
NA
12
12
10
12
12
NA
12
11
13
NA
NA
NA
13
11
10
9
NA
12
NA
NA
13
10
13
NA
NA
NA
NA
12
NA
12
Dataseries Y:
18
19
18
15
19
19
19
NA
18
20
14
15
18
19
16
18
18
NA
17
19
19
17
18
16
20
13
19
15
17
17
16
17
19
18
19
20
16
17
16
16
16
16
14
17
18
16
16
NA
16
15
19
16
17
19
17
17
15
16
16
16
17
18
18
18
19
14
13
18
16
15
18
18
16
19
17
17
19
19
20
19
18
16
16
15
20
16
16
20
20
18
15
14
16
14
18
20
20
18
20
14
20
17
20
14
16
20
19
18
17
17
19
15
18
15
16
16
20
18
20
18
17
19
18
19
17
18
17
16
19
18
17
18
16
20
14
17
13
13
17
18
16
NA
19
NA
17
16
17
17
17
20
14
20
19
16
19
17
19
20
19
19
16
18
16
17
18
16
17
15
18




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time4 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300902&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]4 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=300902&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300902&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R ServerBig Analytics Cloud Computing Center







Pearson Product Moment Correlation - Ungrouped Data
StatisticVariable XVariable Y
Mean11.854166666666717.3125
Biased Variance2.270399305555563.02734375
Biased Standard Deviation1.506784425707791.73992636338438
Covariance-0.227631578947368
Correlation-0.0859217060751645
Determination0.00738253957486695
T-Test-0.836133961224691
p-value (2 sided)0.405199994471545
p-value (1 sided)0.202599997235772
95% CI of Correlation[-0.281557514258478, 0.1165723242887]
Degrees of Freedom94
Number of Observations96

\begin{tabular}{lllllllll}
\hline
Pearson Product Moment Correlation - Ungrouped Data \tabularnewline
Statistic & Variable X & Variable Y \tabularnewline
Mean & 11.8541666666667 & 17.3125 \tabularnewline
Biased Variance & 2.27039930555556 & 3.02734375 \tabularnewline
Biased Standard Deviation & 1.50678442570779 & 1.73992636338438 \tabularnewline
Covariance & -0.227631578947368 \tabularnewline
Correlation & -0.0859217060751645 \tabularnewline
Determination & 0.00738253957486695 \tabularnewline
T-Test & -0.836133961224691 \tabularnewline
p-value (2 sided) & 0.405199994471545 \tabularnewline
p-value (1 sided) & 0.202599997235772 \tabularnewline
95% CI of Correlation & [-0.281557514258478, 0.1165723242887] \tabularnewline
Degrees of Freedom & 94 \tabularnewline
Number of Observations & 96 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300902&T=1

[TABLE]
[ROW][C]Pearson Product Moment Correlation - Ungrouped Data[/C][/ROW]
[ROW][C]Statistic[/C][C]Variable X[/C][C]Variable Y[/C][/ROW]
[ROW][C]Mean[/C][C]11.8541666666667[/C][C]17.3125[/C][/ROW]
[ROW][C]Biased Variance[/C][C]2.27039930555556[/C][C]3.02734375[/C][/ROW]
[ROW][C]Biased Standard Deviation[/C][C]1.50678442570779[/C][C]1.73992636338438[/C][/ROW]
[ROW][C]Covariance[/C][C]-0.227631578947368[/C][/ROW]
[ROW][C]Correlation[/C][C]-0.0859217060751645[/C][/ROW]
[ROW][C]Determination[/C][C]0.00738253957486695[/C][/ROW]
[ROW][C]T-Test[/C][C]-0.836133961224691[/C][/ROW]
[ROW][C]p-value (2 sided)[/C][C]0.405199994471545[/C][/ROW]
[ROW][C]p-value (1 sided)[/C][C]0.202599997235772[/C][/ROW]
[ROW][C]95% CI of Correlation[/C][C][-0.281557514258478, 0.1165723242887][/C][/ROW]
[ROW][C]Degrees of Freedom[/C][C]94[/C][/ROW]
[ROW][C]Number of Observations[/C][C]96[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300902&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300902&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Pearson Product Moment Correlation - Ungrouped Data
StatisticVariable XVariable Y
Mean11.854166666666717.3125
Biased Variance2.270399305555563.02734375
Biased Standard Deviation1.506784425707791.73992636338438
Covariance-0.227631578947368
Correlation-0.0859217060751645
Determination0.00738253957486695
T-Test-0.836133961224691
p-value (2 sided)0.405199994471545
p-value (1 sided)0.202599997235772
95% CI of Correlation[-0.281557514258478, 0.1165723242887]
Degrees of Freedom94
Number of Observations96







Normality Tests
> jarque.x
	Jarque-Bera Normality Test
data:  x
JB = 64.062, p-value = 1.232e-14
alternative hypothesis: greater
> jarque.y
	Jarque-Bera Normality Test
data:  y
JB = 3.3359, p-value = 0.1886
alternative hypothesis: greater
> ad.x
	Anderson-Darling normality test
data:  x
A = 3.9622, p-value = 6.135e-10
> ad.y
	Anderson-Darling normality test
data:  y
A = 1.8997, p-value = 6.974e-05

\begin{tabular}{lllllllll}
\hline
Normality Tests \tabularnewline
> jarque.x
	Jarque-Bera Normality Test
data:  x
JB = 64.062, p-value = 1.232e-14
alternative hypothesis: greater
\tabularnewline
> jarque.y
	Jarque-Bera Normality Test
data:  y
JB = 3.3359, p-value = 0.1886
alternative hypothesis: greater
\tabularnewline
> ad.x
	Anderson-Darling normality test
data:  x
A = 3.9622, p-value = 6.135e-10
\tabularnewline
> ad.y
	Anderson-Darling normality test
data:  y
A = 1.8997, p-value = 6.974e-05
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=300902&T=2

[TABLE]
[ROW][C]Normality Tests[/C][/ROW]
[ROW][C]
> jarque.x
	Jarque-Bera Normality Test
data:  x
JB = 64.062, p-value = 1.232e-14
alternative hypothesis: greater
[/C][/ROW] [ROW][C]
> jarque.y
	Jarque-Bera Normality Test
data:  y
JB = 3.3359, p-value = 0.1886
alternative hypothesis: greater
[/C][/ROW] [ROW][C]
> ad.x
	Anderson-Darling normality test
data:  x
A = 3.9622, p-value = 6.135e-10
[/C][/ROW] [ROW][C]
> ad.y
	Anderson-Darling normality test
data:  y
A = 1.8997, p-value = 6.974e-05
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=300902&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300902&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Normality Tests
> jarque.x
	Jarque-Bera Normality Test
data:  x
JB = 64.062, p-value = 1.232e-14
alternative hypothesis: greater
> jarque.y
	Jarque-Bera Normality Test
data:  y
JB = 3.3359, p-value = 0.1886
alternative hypothesis: greater
> ad.x
	Anderson-Darling normality test
data:  x
A = 3.9622, p-value = 6.135e-10
> ad.y
	Anderson-Darling normality test
data:  y
A = 1.8997, p-value = 6.974e-05



Parameters (Session):
Parameters (R input):
R code (references can be found in the software module):
library(psychometric)
x <- x[!is.na(y)]
y <- y[!is.na(y)]
y <- y[!is.na(x)]
x <- x[!is.na(x)]
bitmap(file='test1.png')
histx <- hist(x, plot=FALSE)
histy <- hist(y, plot=FALSE)
maxcounts <- max(c(histx$counts, histx$counts))
xrange <- c(min(x),max(x))
yrange <- c(min(y),max(y))
nf <- layout(matrix(c(2,0,1,3),2,2,byrow=TRUE), c(3,1), c(1,3), TRUE)
par(mar=c(4,4,1,1))
plot(x, y, xlim=xrange, ylim=yrange, xlab=xlab, ylab=ylab, sub=main)
par(mar=c(0,4,1,1))
barplot(histx$counts, axes=FALSE, ylim=c(0, maxcounts), space=0)
par(mar=c(4,0,1,1))
barplot(histy$counts, axes=FALSE, xlim=c(0, maxcounts), space=0, horiz=TRUE)
dev.off()
lx = length(x)
makebiased = (lx-1)/lx
varx = var(x)*makebiased
vary = var(y)*makebiased
corxy <- cor.test(x,y,method='pearson', na.rm = T)
cxy <- as.matrix(corxy$estimate)[1,1]
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Pearson Product Moment Correlation - Ungrouped Data',3,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Statistic',1,TRUE)
a<-table.element(a,'Variable X',1,TRUE)
a<-table.element(a,'Variable Y',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Mean',header=TRUE)
a<-table.element(a,mean(x))
a<-table.element(a,mean(y))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Biased Variance',header=TRUE)
a<-table.element(a,varx)
a<-table.element(a,vary)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Biased Standard Deviation',header=TRUE)
a<-table.element(a,sqrt(varx))
a<-table.element(a,sqrt(vary))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Covariance',header=TRUE)
a<-table.element(a,cov(x,y),2)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Correlation',header=TRUE)
a<-table.element(a,cxy,2)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Determination',header=TRUE)
a<-table.element(a,cxy*cxy,2)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'T-Test',header=TRUE)
a<-table.element(a,as.matrix(corxy$statistic)[1,1],2)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value (2 sided)',header=TRUE)
a<-table.element(a,(p2 <- as.matrix(corxy$p.value)[1,1]),2)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value (1 sided)',header=TRUE)
a<-table.element(a,p2/2,2)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'95% CI of Correlation',header=TRUE)
a<-table.element(a,paste('[',CIr(r=cxy, n = lx, level = .95)[1],', ', CIr(r=cxy, n = lx, level = .95)[2],']',sep=''),2)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Degrees of Freedom',header=TRUE)
a<-table.element(a,lx-2,2)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Number of Observations',header=TRUE)
a<-table.element(a,lx,2)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
library(moments)
library(nortest)
jarque.x <- jarque.test(x)
jarque.y <- jarque.test(y)
if(lx>7) {
ad.x <- ad.test(x)
ad.y <- ad.test(y)
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Normality Tests',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,paste('
',RC.texteval('jarque.x'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,paste('
',RC.texteval('jarque.y'),'
',sep=''))
a<-table.row.end(a)
if(lx>7) {
a<-table.row.start(a)
a<-table.element(a,paste('
',RC.texteval('ad.x'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,paste('
',RC.texteval('ad.y'),'
',sep=''))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')
library(car)
bitmap(file='test2.png')
qqPlot(x,main='QQplot of variable x')
dev.off()
bitmap(file='test3.png')
qqPlot(y,main='QQplot of variable y')
dev.off()