Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimabackwardselection.wasp
Title produced by softwareARIMA Backward Selection
Date of computationSat, 17 Dec 2016 16:09:26 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/17/t1481987406xe26zfmbiofjcqi.htm/, Retrieved Fri, 01 Nov 2024 03:38:46 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=300846, Retrieved Fri, 01 Nov 2024 03:38:46 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact93
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [ARIMA Backward Selection] [arima backward se...] [2016-12-17 15:09:26] [a7a7548920aea9a2d444ee0f03dc394a] [Current]
Feedback Forum

Post a new message
Dataseries X:
3800
1650
4250
3200
2050
3600
3700
6000
8550
9050
6000
8550
6700
3850
2950
2900
2200
3500
4900
6650
10050
8300
7650
5750
4600
5250
3250
1150
1950
2850
2950
4950
6000
6650
6150
4300
4450
1250
3000
2600
1200
2050
2000
5050
4050
5150
6450
3700
3300
2000
2650
900
1350
4550
1850
3650
3250
5950
4050
3250
2200
1050
2250
2650
650
1100
2900
6450
3100
6050
4200
1800
2100
1550
1050
900
1800
1700
1700
2250
4000
3500
3300
1550
2750
1900
1200
1150
1150
2200
1500
3850
2950
3750
4600
3350
2300
1400
900
1250
1650
1600
1200
2300
2950
5650
4000
3300




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time7 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time7 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300846&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]7 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=300846&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300846&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time7 seconds
R ServerBig Analytics Cloud Computing Center







ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2ar3ma1sar1sar2sma1
Estimates ( 1 )-0.1619-0.4396-0.0909-0.7769-0.03040.0127-0.9999
(p-val)(0.2261 )(2e-04 )(0.4715 )(0 )(0.8141 )(0.9226 )(0 )
Estimates ( 2 )-0.1609-0.441-0.0887-0.7773-0.03460-1.0001
(p-val)(0.2266 )(2e-04 )(0.4741 )(0 )(0.7765 )(NA )(1e-04 )
Estimates ( 3 )-0.1624-0.449-0.0903-0.777500-1
(p-val)(0.222 )(1e-04 )(0.4662 )(0 )(NA )(NA )(0 )
Estimates ( 4 )-0.1022-0.42050-0.81100-1.0001
(p-val)(0.3214 )(1e-04 )(NA )(0 )(NA )(NA )(0 )
Estimates ( 5 )0-0.39960-1.192800-1
(p-val)(NA )(1e-04 )(NA )(0 )(NA )(NA )(0 )
Estimates ( 6 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 7 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 8 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 9 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 10 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 11 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 12 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 13 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )

\begin{tabular}{lllllllll}
\hline
ARIMA Parameter Estimation and Backward Selection \tabularnewline
Iteration & ar1 & ar2 & ar3 & ma1 & sar1 & sar2 & sma1 \tabularnewline
Estimates ( 1 ) & -0.1619 & -0.4396 & -0.0909 & -0.7769 & -0.0304 & 0.0127 & -0.9999 \tabularnewline
(p-val) & (0.2261 ) & (2e-04 ) & (0.4715 ) & (0 ) & (0.8141 ) & (0.9226 ) & (0 ) \tabularnewline
Estimates ( 2 ) & -0.1609 & -0.441 & -0.0887 & -0.7773 & -0.0346 & 0 & -1.0001 \tabularnewline
(p-val) & (0.2266 ) & (2e-04 ) & (0.4741 ) & (0 ) & (0.7765 ) & (NA ) & (1e-04 ) \tabularnewline
Estimates ( 3 ) & -0.1624 & -0.449 & -0.0903 & -0.7775 & 0 & 0 & -1 \tabularnewline
(p-val) & (0.222 ) & (1e-04 ) & (0.4662 ) & (0 ) & (NA ) & (NA ) & (0 ) \tabularnewline
Estimates ( 4 ) & -0.1022 & -0.4205 & 0 & -0.811 & 0 & 0 & -1.0001 \tabularnewline
(p-val) & (0.3214 ) & (1e-04 ) & (NA ) & (0 ) & (NA ) & (NA ) & (0 ) \tabularnewline
Estimates ( 5 ) & 0 & -0.3996 & 0 & -1.1928 & 0 & 0 & -1 \tabularnewline
(p-val) & (NA ) & (1e-04 ) & (NA ) & (0 ) & (NA ) & (NA ) & (0 ) \tabularnewline
Estimates ( 6 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 7 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 8 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 9 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 10 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 11 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 12 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 13 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300846&T=1

[TABLE]
[ROW][C]ARIMA Parameter Estimation and Backward Selection[/C][/ROW]
[ROW][C]Iteration[/C][C]ar1[/C][C]ar2[/C][C]ar3[/C][C]ma1[/C][C]sar1[/C][C]sar2[/C][C]sma1[/C][/ROW]
[ROW][C]Estimates ( 1 )[/C][C]-0.1619[/C][C]-0.4396[/C][C]-0.0909[/C][C]-0.7769[/C][C]-0.0304[/C][C]0.0127[/C][C]-0.9999[/C][/ROW]
[ROW][C](p-val)[/C][C](0.2261 )[/C][C](2e-04 )[/C][C](0.4715 )[/C][C](0 )[/C][C](0.8141 )[/C][C](0.9226 )[/C][C](0 )[/C][/ROW]
[ROW][C]Estimates ( 2 )[/C][C]-0.1609[/C][C]-0.441[/C][C]-0.0887[/C][C]-0.7773[/C][C]-0.0346[/C][C]0[/C][C]-1.0001[/C][/ROW]
[ROW][C](p-val)[/C][C](0.2266 )[/C][C](2e-04 )[/C][C](0.4741 )[/C][C](0 )[/C][C](0.7765 )[/C][C](NA )[/C][C](1e-04 )[/C][/ROW]
[ROW][C]Estimates ( 3 )[/C][C]-0.1624[/C][C]-0.449[/C][C]-0.0903[/C][C]-0.7775[/C][C]0[/C][C]0[/C][C]-1[/C][/ROW]
[ROW][C](p-val)[/C][C](0.222 )[/C][C](1e-04 )[/C][C](0.4662 )[/C][C](0 )[/C][C](NA )[/C][C](NA )[/C][C](0 )[/C][/ROW]
[ROW][C]Estimates ( 4 )[/C][C]-0.1022[/C][C]-0.4205[/C][C]0[/C][C]-0.811[/C][C]0[/C][C]0[/C][C]-1.0001[/C][/ROW]
[ROW][C](p-val)[/C][C](0.3214 )[/C][C](1e-04 )[/C][C](NA )[/C][C](0 )[/C][C](NA )[/C][C](NA )[/C][C](0 )[/C][/ROW]
[ROW][C]Estimates ( 5 )[/C][C]0[/C][C]-0.3996[/C][C]0[/C][C]-1.1928[/C][C]0[/C][C]0[/C][C]-1[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](1e-04 )[/C][C](NA )[/C][C](0 )[/C][C](NA )[/C][C](NA )[/C][C](0 )[/C][/ROW]
[ROW][C]Estimates ( 6 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 7 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 8 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 9 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 10 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 11 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 12 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 13 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300846&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300846&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2ar3ma1sar1sar2sma1
Estimates ( 1 )-0.1619-0.4396-0.0909-0.7769-0.03040.0127-0.9999
(p-val)(0.2261 )(2e-04 )(0.4715 )(0 )(0.8141 )(0.9226 )(0 )
Estimates ( 2 )-0.1609-0.441-0.0887-0.7773-0.03460-1.0001
(p-val)(0.2266 )(2e-04 )(0.4741 )(0 )(0.7765 )(NA )(1e-04 )
Estimates ( 3 )-0.1624-0.449-0.0903-0.777500-1
(p-val)(0.222 )(1e-04 )(0.4662 )(0 )(NA )(NA )(0 )
Estimates ( 4 )-0.1022-0.42050-0.81100-1.0001
(p-val)(0.3214 )(1e-04 )(NA )(0 )(NA )(NA )(0 )
Estimates ( 5 )0-0.39960-1.192800-1
(p-val)(NA )(1e-04 )(NA )(0 )(NA )(NA )(0 )
Estimates ( 6 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 7 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 8 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 9 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 10 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 11 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 12 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 13 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )







Estimated ARIMA Residuals
Value
-0.0274389315152771
0.134562544299731
-0.570940137164775
-0.134070016058304
-0.291197446971244
-0.180682141295691
0.107406000347369
-0.0649885958020308
0.0988652062083333
-0.109128576987857
0.0620322579696727
-0.524376931223165
-0.14532475234095
0.368345869856625
-0.204518214585712
-0.652727835663507
-0.139665371851798
-0.4372946417921
-0.183026468083793
-0.124677208242788
-0.27220933021189
-0.0122679625754097
0.00859941791154678
-0.328345004255529
0.168164445265591
-0.708425715777678
0.239004741738765
0.209707820185015
-0.120973340582943
0.0132961993193286
-0.383672713943644
0.113838101752381
-0.369437826895404
0.0706479108852375
0.191058684769941
-0.155431344408711
0.143448250401279
0.0717926606834829
0.158158348508162
-0.456135733035285
0.152395483009737
0.57058313285327
-0.122388160911623
0.183852130667259
-0.466871911496843
0.151838698075914
-0.247342262257781
-0.0607241500702938
-0.284835981839896
-0.378138144487092
0.086783648804505
0.677166177356462
-0.379571924128942
-0.260605266857089
0.259487090819098
0.461234747597982
0.0349806759456715
0.506134766716654
-0.100516444398288
-0.511582373854692
-0.170571400971409
-0.0483561800252411
-0.526259597543882
-0.142572455767876
0.564051915923523
0.0303781648375384
0.286631598118228
-0.354931764623554
0.210369195705627
-0.245294344479185
0.0856758807725554
-0.494272593747695
0.325447155830506
0.356765666809722
-0.0444898605072551
0.279284133595911
0.149886296054624
0.390002841757475
-0.020429332668512
0.334785713950914
-0.171311716557211
0.0311290494453602
0.221837802198205
0.272829400478329
0.106636157434546
0.1316259939705
-0.557883190447498
0.128287470816318
0.341036542617944
0.0467428385393835
-0.124296175522037
-0.326293359048476
-0.159579020112215
0.341045033022306
0.174943899801614
0.450589689250787

\begin{tabular}{lllllllll}
\hline
Estimated ARIMA Residuals \tabularnewline
Value \tabularnewline
-0.0274389315152771 \tabularnewline
0.134562544299731 \tabularnewline
-0.570940137164775 \tabularnewline
-0.134070016058304 \tabularnewline
-0.291197446971244 \tabularnewline
-0.180682141295691 \tabularnewline
0.107406000347369 \tabularnewline
-0.0649885958020308 \tabularnewline
0.0988652062083333 \tabularnewline
-0.109128576987857 \tabularnewline
0.0620322579696727 \tabularnewline
-0.524376931223165 \tabularnewline
-0.14532475234095 \tabularnewline
0.368345869856625 \tabularnewline
-0.204518214585712 \tabularnewline
-0.652727835663507 \tabularnewline
-0.139665371851798 \tabularnewline
-0.4372946417921 \tabularnewline
-0.183026468083793 \tabularnewline
-0.124677208242788 \tabularnewline
-0.27220933021189 \tabularnewline
-0.0122679625754097 \tabularnewline
0.00859941791154678 \tabularnewline
-0.328345004255529 \tabularnewline
0.168164445265591 \tabularnewline
-0.708425715777678 \tabularnewline
0.239004741738765 \tabularnewline
0.209707820185015 \tabularnewline
-0.120973340582943 \tabularnewline
0.0132961993193286 \tabularnewline
-0.383672713943644 \tabularnewline
0.113838101752381 \tabularnewline
-0.369437826895404 \tabularnewline
0.0706479108852375 \tabularnewline
0.191058684769941 \tabularnewline
-0.155431344408711 \tabularnewline
0.143448250401279 \tabularnewline
0.0717926606834829 \tabularnewline
0.158158348508162 \tabularnewline
-0.456135733035285 \tabularnewline
0.152395483009737 \tabularnewline
0.57058313285327 \tabularnewline
-0.122388160911623 \tabularnewline
0.183852130667259 \tabularnewline
-0.466871911496843 \tabularnewline
0.151838698075914 \tabularnewline
-0.247342262257781 \tabularnewline
-0.0607241500702938 \tabularnewline
-0.284835981839896 \tabularnewline
-0.378138144487092 \tabularnewline
0.086783648804505 \tabularnewline
0.677166177356462 \tabularnewline
-0.379571924128942 \tabularnewline
-0.260605266857089 \tabularnewline
0.259487090819098 \tabularnewline
0.461234747597982 \tabularnewline
0.0349806759456715 \tabularnewline
0.506134766716654 \tabularnewline
-0.100516444398288 \tabularnewline
-0.511582373854692 \tabularnewline
-0.170571400971409 \tabularnewline
-0.0483561800252411 \tabularnewline
-0.526259597543882 \tabularnewline
-0.142572455767876 \tabularnewline
0.564051915923523 \tabularnewline
0.0303781648375384 \tabularnewline
0.286631598118228 \tabularnewline
-0.354931764623554 \tabularnewline
0.210369195705627 \tabularnewline
-0.245294344479185 \tabularnewline
0.0856758807725554 \tabularnewline
-0.494272593747695 \tabularnewline
0.325447155830506 \tabularnewline
0.356765666809722 \tabularnewline
-0.0444898605072551 \tabularnewline
0.279284133595911 \tabularnewline
0.149886296054624 \tabularnewline
0.390002841757475 \tabularnewline
-0.020429332668512 \tabularnewline
0.334785713950914 \tabularnewline
-0.171311716557211 \tabularnewline
0.0311290494453602 \tabularnewline
0.221837802198205 \tabularnewline
0.272829400478329 \tabularnewline
0.106636157434546 \tabularnewline
0.1316259939705 \tabularnewline
-0.557883190447498 \tabularnewline
0.128287470816318 \tabularnewline
0.341036542617944 \tabularnewline
0.0467428385393835 \tabularnewline
-0.124296175522037 \tabularnewline
-0.326293359048476 \tabularnewline
-0.159579020112215 \tabularnewline
0.341045033022306 \tabularnewline
0.174943899801614 \tabularnewline
0.450589689250787 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300846&T=2

[TABLE]
[ROW][C]Estimated ARIMA Residuals[/C][/ROW]
[ROW][C]Value[/C][/ROW]
[ROW][C]-0.0274389315152771[/C][/ROW]
[ROW][C]0.134562544299731[/C][/ROW]
[ROW][C]-0.570940137164775[/C][/ROW]
[ROW][C]-0.134070016058304[/C][/ROW]
[ROW][C]-0.291197446971244[/C][/ROW]
[ROW][C]-0.180682141295691[/C][/ROW]
[ROW][C]0.107406000347369[/C][/ROW]
[ROW][C]-0.0649885958020308[/C][/ROW]
[ROW][C]0.0988652062083333[/C][/ROW]
[ROW][C]-0.109128576987857[/C][/ROW]
[ROW][C]0.0620322579696727[/C][/ROW]
[ROW][C]-0.524376931223165[/C][/ROW]
[ROW][C]-0.14532475234095[/C][/ROW]
[ROW][C]0.368345869856625[/C][/ROW]
[ROW][C]-0.204518214585712[/C][/ROW]
[ROW][C]-0.652727835663507[/C][/ROW]
[ROW][C]-0.139665371851798[/C][/ROW]
[ROW][C]-0.4372946417921[/C][/ROW]
[ROW][C]-0.183026468083793[/C][/ROW]
[ROW][C]-0.124677208242788[/C][/ROW]
[ROW][C]-0.27220933021189[/C][/ROW]
[ROW][C]-0.0122679625754097[/C][/ROW]
[ROW][C]0.00859941791154678[/C][/ROW]
[ROW][C]-0.328345004255529[/C][/ROW]
[ROW][C]0.168164445265591[/C][/ROW]
[ROW][C]-0.708425715777678[/C][/ROW]
[ROW][C]0.239004741738765[/C][/ROW]
[ROW][C]0.209707820185015[/C][/ROW]
[ROW][C]-0.120973340582943[/C][/ROW]
[ROW][C]0.0132961993193286[/C][/ROW]
[ROW][C]-0.383672713943644[/C][/ROW]
[ROW][C]0.113838101752381[/C][/ROW]
[ROW][C]-0.369437826895404[/C][/ROW]
[ROW][C]0.0706479108852375[/C][/ROW]
[ROW][C]0.191058684769941[/C][/ROW]
[ROW][C]-0.155431344408711[/C][/ROW]
[ROW][C]0.143448250401279[/C][/ROW]
[ROW][C]0.0717926606834829[/C][/ROW]
[ROW][C]0.158158348508162[/C][/ROW]
[ROW][C]-0.456135733035285[/C][/ROW]
[ROW][C]0.152395483009737[/C][/ROW]
[ROW][C]0.57058313285327[/C][/ROW]
[ROW][C]-0.122388160911623[/C][/ROW]
[ROW][C]0.183852130667259[/C][/ROW]
[ROW][C]-0.466871911496843[/C][/ROW]
[ROW][C]0.151838698075914[/C][/ROW]
[ROW][C]-0.247342262257781[/C][/ROW]
[ROW][C]-0.0607241500702938[/C][/ROW]
[ROW][C]-0.284835981839896[/C][/ROW]
[ROW][C]-0.378138144487092[/C][/ROW]
[ROW][C]0.086783648804505[/C][/ROW]
[ROW][C]0.677166177356462[/C][/ROW]
[ROW][C]-0.379571924128942[/C][/ROW]
[ROW][C]-0.260605266857089[/C][/ROW]
[ROW][C]0.259487090819098[/C][/ROW]
[ROW][C]0.461234747597982[/C][/ROW]
[ROW][C]0.0349806759456715[/C][/ROW]
[ROW][C]0.506134766716654[/C][/ROW]
[ROW][C]-0.100516444398288[/C][/ROW]
[ROW][C]-0.511582373854692[/C][/ROW]
[ROW][C]-0.170571400971409[/C][/ROW]
[ROW][C]-0.0483561800252411[/C][/ROW]
[ROW][C]-0.526259597543882[/C][/ROW]
[ROW][C]-0.142572455767876[/C][/ROW]
[ROW][C]0.564051915923523[/C][/ROW]
[ROW][C]0.0303781648375384[/C][/ROW]
[ROW][C]0.286631598118228[/C][/ROW]
[ROW][C]-0.354931764623554[/C][/ROW]
[ROW][C]0.210369195705627[/C][/ROW]
[ROW][C]-0.245294344479185[/C][/ROW]
[ROW][C]0.0856758807725554[/C][/ROW]
[ROW][C]-0.494272593747695[/C][/ROW]
[ROW][C]0.325447155830506[/C][/ROW]
[ROW][C]0.356765666809722[/C][/ROW]
[ROW][C]-0.0444898605072551[/C][/ROW]
[ROW][C]0.279284133595911[/C][/ROW]
[ROW][C]0.149886296054624[/C][/ROW]
[ROW][C]0.390002841757475[/C][/ROW]
[ROW][C]-0.020429332668512[/C][/ROW]
[ROW][C]0.334785713950914[/C][/ROW]
[ROW][C]-0.171311716557211[/C][/ROW]
[ROW][C]0.0311290494453602[/C][/ROW]
[ROW][C]0.221837802198205[/C][/ROW]
[ROW][C]0.272829400478329[/C][/ROW]
[ROW][C]0.106636157434546[/C][/ROW]
[ROW][C]0.1316259939705[/C][/ROW]
[ROW][C]-0.557883190447498[/C][/ROW]
[ROW][C]0.128287470816318[/C][/ROW]
[ROW][C]0.341036542617944[/C][/ROW]
[ROW][C]0.0467428385393835[/C][/ROW]
[ROW][C]-0.124296175522037[/C][/ROW]
[ROW][C]-0.326293359048476[/C][/ROW]
[ROW][C]-0.159579020112215[/C][/ROW]
[ROW][C]0.341045033022306[/C][/ROW]
[ROW][C]0.174943899801614[/C][/ROW]
[ROW][C]0.450589689250787[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300846&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300846&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimated ARIMA Residuals
Value
-0.0274389315152771
0.134562544299731
-0.570940137164775
-0.134070016058304
-0.291197446971244
-0.180682141295691
0.107406000347369
-0.0649885958020308
0.0988652062083333
-0.109128576987857
0.0620322579696727
-0.524376931223165
-0.14532475234095
0.368345869856625
-0.204518214585712
-0.652727835663507
-0.139665371851798
-0.4372946417921
-0.183026468083793
-0.124677208242788
-0.27220933021189
-0.0122679625754097
0.00859941791154678
-0.328345004255529
0.168164445265591
-0.708425715777678
0.239004741738765
0.209707820185015
-0.120973340582943
0.0132961993193286
-0.383672713943644
0.113838101752381
-0.369437826895404
0.0706479108852375
0.191058684769941
-0.155431344408711
0.143448250401279
0.0717926606834829
0.158158348508162
-0.456135733035285
0.152395483009737
0.57058313285327
-0.122388160911623
0.183852130667259
-0.466871911496843
0.151838698075914
-0.247342262257781
-0.0607241500702938
-0.284835981839896
-0.378138144487092
0.086783648804505
0.677166177356462
-0.379571924128942
-0.260605266857089
0.259487090819098
0.461234747597982
0.0349806759456715
0.506134766716654
-0.100516444398288
-0.511582373854692
-0.170571400971409
-0.0483561800252411
-0.526259597543882
-0.142572455767876
0.564051915923523
0.0303781648375384
0.286631598118228
-0.354931764623554
0.210369195705627
-0.245294344479185
0.0856758807725554
-0.494272593747695
0.325447155830506
0.356765666809722
-0.0444898605072551
0.279284133595911
0.149886296054624
0.390002841757475
-0.020429332668512
0.334785713950914
-0.171311716557211
0.0311290494453602
0.221837802198205
0.272829400478329
0.106636157434546
0.1316259939705
-0.557883190447498
0.128287470816318
0.341036542617944
0.0467428385393835
-0.124296175522037
-0.326293359048476
-0.159579020112215
0.341045033022306
0.174943899801614
0.450589689250787



Parameters (Session):
par1 = FALSE ; par2 = 0.0 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = 3 ; par7 = 1 ; par8 = 2 ; par9 = 1 ;
Parameters (R input):
par1 = FALSE ; par2 = 0.0 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = 3 ; par7 = 1 ; par8 = 2 ; par9 = 1 ;
R code (references can be found in the software module):
par9 <- '1'
par8 <- '2'
par7 <- '1'
par6 <- '3'
par5 <- '12'
par4 <- '1'
par3 <- '1'
par2 <- '0.0'
par1 <- 'FALSE'
library(lattice)
if (par1 == 'TRUE') par1 <- TRUE
if (par1 == 'FALSE') par1 <- FALSE
par2 <- as.numeric(par2) #Box-Cox lambda transformation parameter
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #degree (p) of the non-seasonal AR(p) polynomial
par7 <- as.numeric(par7) #degree (q) of the non-seasonal MA(q) polynomial
par8 <- as.numeric(par8) #degree (P) of the seasonal AR(P) polynomial
par9 <- as.numeric(par9) #degree (Q) of the seasonal MA(Q) polynomial
armaGR <- function(arima.out, names, n){
try1 <- arima.out$coef
try2 <- sqrt(diag(arima.out$var.coef))
try.data.frame <- data.frame(matrix(NA,ncol=4,nrow=length(names)))
dimnames(try.data.frame) <- list(names,c('coef','std','tstat','pv'))
try.data.frame[,1] <- try1
for(i in 1:length(try2)) try.data.frame[which(rownames(try.data.frame)==names(try2)[i]),2] <- try2[i]
try.data.frame[,3] <- try.data.frame[,1] / try.data.frame[,2]
try.data.frame[,4] <- round((1-pt(abs(try.data.frame[,3]),df=n-(length(try2)+1)))*2,5)
vector <- rep(NA,length(names))
vector[is.na(try.data.frame[,4])] <- 0
maxi <- which.max(try.data.frame[,4])
continue <- max(try.data.frame[,4],na.rm=TRUE) > .05
vector[maxi] <- 0
list(summary=try.data.frame,next.vector=vector,continue=continue)
}
arimaSelect <- function(series, order=c(13,0,0), seasonal=list(order=c(2,0,0),period=12), include.mean=F){
nrc <- order[1]+order[3]+seasonal$order[1]+seasonal$order[3]
coeff <- matrix(NA, nrow=nrc*2, ncol=nrc)
pval <- matrix(NA, nrow=nrc*2, ncol=nrc)
mylist <- rep(list(NULL), nrc)
names <- NULL
if(order[1] > 0) names <- paste('ar',1:order[1],sep='')
if(order[3] > 0) names <- c( names , paste('ma',1:order[3],sep='') )
if(seasonal$order[1] > 0) names <- c(names, paste('sar',1:seasonal$order[1],sep=''))
if(seasonal$order[3] > 0) names <- c(names, paste('sma',1:seasonal$order[3],sep=''))
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML')
mylist[[1]] <- arima.out
last.arma <- armaGR(arima.out, names, length(series))
mystop <- FALSE
i <- 1
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- 2
aic <- arima.out$aic
while(!mystop){
mylist[[i]] <- arima.out
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML', fixed=last.arma$next.vector)
aic <- c(aic, arima.out$aic)
last.arma <- armaGR(arima.out, names, length(series))
mystop <- !last.arma$continue
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- i+1
}
list(coeff, pval, mylist, aic=aic)
}
arimaSelectplot <- function(arimaSelect.out,noms,choix){
noms <- names(arimaSelect.out[[3]][[1]]$coef)
coeff <- arimaSelect.out[[1]]
k <- min(which(is.na(coeff[,1])))-1
coeff <- coeff[1:k,]
pval <- arimaSelect.out[[2]][1:k,]
aic <- arimaSelect.out$aic[1:k]
coeff[coeff==0] <- NA
n <- ncol(coeff)
if(missing(choix)) choix <- k
layout(matrix(c(1,1,1,2,
3,3,3,2,
3,3,3,4,
5,6,7,7),nr=4),
widths=c(10,35,45,15),
heights=c(30,30,15,15))
couleurs <- rainbow(75)[1:50]#(50)
ticks <- pretty(coeff)
par(mar=c(1,1,3,1))
plot(aic,k:1-.5,type='o',pch=21,bg='blue',cex=2,axes=F,lty=2,xpd=NA)
points(aic[choix],k-choix+.5,pch=21,cex=4,bg=2,xpd=NA)
title('aic',line=2)
par(mar=c(3,0,0,0))
plot(0,axes=F,xlab='',ylab='',xlim=range(ticks),ylim=c(.1,1))
rect(xleft = min(ticks) + (0:49)/50*(max(ticks)-min(ticks)),
xright = min(ticks) + (1:50)/50*(max(ticks)-min(ticks)),
ytop = rep(1,50),
ybottom= rep(0,50),col=couleurs,border=NA)
axis(1,ticks)
rect(xleft=min(ticks),xright=max(ticks),ytop=1,ybottom=0)
text(mean(coeff,na.rm=T),.5,'coefficients',cex=2,font=2)
par(mar=c(1,1,3,1))
image(1:n,1:k,t(coeff[k:1,]),axes=F,col=couleurs,zlim=range(ticks))
for(i in 1:n) for(j in 1:k) if(!is.na(coeff[j,i])) {
if(pval[j,i]<.01) symb = 'green'
else if( (pval[j,i]<.05) & (pval[j,i]>=.01)) symb = 'orange'
else if( (pval[j,i]<.1) & (pval[j,i]>=.05)) symb = 'red'
else symb = 'black'
polygon(c(i+.5 ,i+.2 ,i+.5 ,i+.5),
c(k-j+0.5,k-j+0.5,k-j+0.8,k-j+0.5),
col=symb)
if(j==choix) {
rect(xleft=i-.5,
xright=i+.5,
ybottom=k-j+1.5,
ytop=k-j+.5,
lwd=4)
text(i,
k-j+1,
round(coeff[j,i],2),
cex=1.2,
font=2)
}
else{
rect(xleft=i-.5,xright=i+.5,ybottom=k-j+1.5,ytop=k-j+.5)
text(i,k-j+1,round(coeff[j,i],2),cex=1.2,font=1)
}
}
axis(3,1:n,noms)
par(mar=c(0.5,0,0,0.5))
plot(0,axes=F,xlab='',ylab='',type='n',xlim=c(0,8),ylim=c(-.2,.8))
cols <- c('green','orange','red','black')
niv <- c('0','0.01','0.05','0.1')
for(i in 0:3){
polygon(c(1+2*i ,1+2*i ,1+2*i-.5 ,1+2*i),
c(.4 ,.7 , .4 , .4),
col=cols[i+1])
text(2*i,0.5,niv[i+1],cex=1.5)
}
text(8,.5,1,cex=1.5)
text(4,0,'p-value',cex=2)
box()
residus <- arimaSelect.out[[3]][[choix]]$res
par(mar=c(1,2,4,1))
acf(residus,main='')
title('acf',line=.5)
par(mar=c(1,2,4,1))
pacf(residus,main='')
title('pacf',line=.5)
par(mar=c(2,2,4,1))
qqnorm(residus,main='')
title('qq-norm',line=.5)
qqline(residus)
residus
}
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
(selection <- arimaSelect(x, order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5)))
bitmap(file='test1.png')
resid <- arimaSelectplot(selection)
dev.off()
resid
bitmap(file='test2.png')
acf(resid,length(resid)/2, main='Residual Autocorrelation Function')
dev.off()
bitmap(file='test3.png')
pacf(resid,length(resid)/2, main='Residual Partial Autocorrelation Function')
dev.off()
bitmap(file='test4.png')
cpgram(resid, main='Residual Cumulative Periodogram')
dev.off()
bitmap(file='test5.png')
hist(resid, main='Residual Histogram', xlab='values of Residuals')
dev.off()
bitmap(file='test6.png')
densityplot(~resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test7.png')
qqnorm(resid, main='Residual Normal Q-Q Plot')
qqline(resid)
dev.off()
ncols <- length(selection[[1]][1,])
nrows <- length(selection[[2]][,1])-1
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ARIMA Parameter Estimation and Backward Selection', ncols+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Iteration', header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,names(selection[[3]][[1]]$coef)[i],header=TRUE)
}
a<-table.row.end(a)
for (j in 1:nrows) {
a<-table.row.start(a)
mydum <- 'Estimates ('
mydum <- paste(mydum,j)
mydum <- paste(mydum,')')
a<-table.element(a,mydum, header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,round(selection[[1]][j,i],4))
}
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'(p-val)', header=TRUE)
for (i in 1:ncols) {
mydum <- '('
mydum <- paste(mydum,round(selection[[2]][j,i],4),sep='')
mydum <- paste(mydum,')')
a<-table.element(a,mydum)
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimated ARIMA Residuals', 1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Value', 1,TRUE)
a<-table.row.end(a)
for (i in (par4*par5+par3):length(resid)) {
a<-table.row.start(a)
a<-table.element(a,resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')