Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimaforecasting.wasp
Title produced by softwareARIMA Forecasting
Date of computationSat, 17 Dec 2016 14:58:05 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/17/t1481983234l3v10klyqpc1wt9.htm/, Retrieved Fri, 01 Nov 2024 03:35:32 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=300795, Retrieved Fri, 01 Nov 2024 03:35:32 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact127
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Univariate Data Series] [data set] [2008-12-01 19:54:57] [b98453cac15ba1066b407e146608df68]
- RMP   [Standard Deviation-Mean Plot] [Unemployment] [2010-11-29 10:34:47] [b98453cac15ba1066b407e146608df68]
- RMPD    [Standard Deviation-Mean Plot] [F1:N1809] [2016-12-11 14:01:05] [a4c5732063e280fade3b47e7f5057d96]
- RM D      [(Partial) Autocorrelation Function] [F1:N224] [2016-12-11 15:22:31] [a4c5732063e280fade3b47e7f5057d96]
- RMP           [ARIMA Forecasting] [F1:N224] [2016-12-17 13:58:05] [8d7b5e4c30a3b8052caee801f90adcea] [Current]
Feedback Forum

Post a new message
Dataseries X:
3104.8
2598.8
2644.4
2620.6
2375.8
2633
3525.8
3695.2
3811.2
4037.2
3890.8
3528.4
3491.6
3878.8
3993.6
4067.8
4332.4
5026.6
5322.8
5463.8
5556
5918.4
6107.2
6158.6
6283.8
6453.4
6104.2
6663.8
7380.8
7798.4
7743.4
7389.6
6300.8
6328.4
6563.8
6781.4
6963.2
7176
6953
7182.6
6893.6




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300795&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=300795&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300795&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[22])
104037.2-------
113890.8-------
123528.4-------
133491.6-------
143878.8-------
153993.6-------
164067.8-------
174332.4-------
185026.6-------
195322.8-------
205463.8-------
215556-------
225918.4-------
236107.25941.58485539.72466343.44510.20960.54510.545
246158.66006.39365325.21126687.5760.33070.385910.5999
256283.86497.43615591.46817403.40410.3220.768210.8948
266453.47024.11646113.49097934.74190.10970.944510.9913
276104.26984.70566068.03277901.37850.02990.87210.9887
286663.87010.88566089.04317932.7280.23030.973110.9899
297380.87269.53316342.41538196.65080.4070.899810.9979
307798.47051.86116117.80697985.91530.05860.24510.9913
317743.46177.33965236.26517118.4146e-044e-040.96240.7052
327389.66014.87575068.13826961.61320.00222e-040.8730.5792
336300.85905.3294952.68256857.97550.20790.00110.76380.4893
346328.45700.69764740.99186660.40340.09990.11020.32830.3283
356563.85846.80854866.23386827.38310.07590.16790.30140.4431
366781.46210.84265208.62777213.05760.13220.2450.54070.7163
376963.26275.46665253.88297297.05040.09350.16590.49360.7533
3871765918.85024891.51126946.18910.00820.02320.15390.5003
3969535801.15014768.96946833.33080.01440.00450.28250.4119
407182.65728.46124692.33196764.59040.0030.01030.03840.3597
416893.65480.08734439.16576521.00890.00397e-042e-040.2046

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast \tabularnewline
time & Y[t] & F[t] & 95% LB & 95% UB & p-value(H0: Y[t] = F[t]) & P(F[t]>Y[t-1]) & P(F[t]>Y[t-s]) & P(F[t]>Y[22]) \tabularnewline
10 & 4037.2 & - & - & - & - & - & - & - \tabularnewline
11 & 3890.8 & - & - & - & - & - & - & - \tabularnewline
12 & 3528.4 & - & - & - & - & - & - & - \tabularnewline
13 & 3491.6 & - & - & - & - & - & - & - \tabularnewline
14 & 3878.8 & - & - & - & - & - & - & - \tabularnewline
15 & 3993.6 & - & - & - & - & - & - & - \tabularnewline
16 & 4067.8 & - & - & - & - & - & - & - \tabularnewline
17 & 4332.4 & - & - & - & - & - & - & - \tabularnewline
18 & 5026.6 & - & - & - & - & - & - & - \tabularnewline
19 & 5322.8 & - & - & - & - & - & - & - \tabularnewline
20 & 5463.8 & - & - & - & - & - & - & - \tabularnewline
21 & 5556 & - & - & - & - & - & - & - \tabularnewline
22 & 5918.4 & - & - & - & - & - & - & - \tabularnewline
23 & 6107.2 & 5941.5848 & 5539.7246 & 6343.4451 & 0.2096 & 0.545 & 1 & 0.545 \tabularnewline
24 & 6158.6 & 6006.3936 & 5325.2112 & 6687.576 & 0.3307 & 0.3859 & 1 & 0.5999 \tabularnewline
25 & 6283.8 & 6497.4361 & 5591.4681 & 7403.4041 & 0.322 & 0.7682 & 1 & 0.8948 \tabularnewline
26 & 6453.4 & 7024.1164 & 6113.4909 & 7934.7419 & 0.1097 & 0.9445 & 1 & 0.9913 \tabularnewline
27 & 6104.2 & 6984.7056 & 6068.0327 & 7901.3785 & 0.0299 & 0.872 & 1 & 0.9887 \tabularnewline
28 & 6663.8 & 7010.8856 & 6089.0431 & 7932.728 & 0.2303 & 0.9731 & 1 & 0.9899 \tabularnewline
29 & 7380.8 & 7269.5331 & 6342.4153 & 8196.6508 & 0.407 & 0.8998 & 1 & 0.9979 \tabularnewline
30 & 7798.4 & 7051.8611 & 6117.8069 & 7985.9153 & 0.0586 & 0.245 & 1 & 0.9913 \tabularnewline
31 & 7743.4 & 6177.3396 & 5236.2651 & 7118.414 & 6e-04 & 4e-04 & 0.9624 & 0.7052 \tabularnewline
32 & 7389.6 & 6014.8757 & 5068.1382 & 6961.6132 & 0.0022 & 2e-04 & 0.873 & 0.5792 \tabularnewline
33 & 6300.8 & 5905.329 & 4952.6825 & 6857.9755 & 0.2079 & 0.0011 & 0.7638 & 0.4893 \tabularnewline
34 & 6328.4 & 5700.6976 & 4740.9918 & 6660.4034 & 0.0999 & 0.1102 & 0.3283 & 0.3283 \tabularnewline
35 & 6563.8 & 5846.8085 & 4866.2338 & 6827.3831 & 0.0759 & 0.1679 & 0.3014 & 0.4431 \tabularnewline
36 & 6781.4 & 6210.8426 & 5208.6277 & 7213.0576 & 0.1322 & 0.245 & 0.5407 & 0.7163 \tabularnewline
37 & 6963.2 & 6275.4666 & 5253.8829 & 7297.0504 & 0.0935 & 0.1659 & 0.4936 & 0.7533 \tabularnewline
38 & 7176 & 5918.8502 & 4891.5112 & 6946.1891 & 0.0082 & 0.0232 & 0.1539 & 0.5003 \tabularnewline
39 & 6953 & 5801.1501 & 4768.9694 & 6833.3308 & 0.0144 & 0.0045 & 0.2825 & 0.4119 \tabularnewline
40 & 7182.6 & 5728.4612 & 4692.3319 & 6764.5904 & 0.003 & 0.0103 & 0.0384 & 0.3597 \tabularnewline
41 & 6893.6 & 5480.0873 & 4439.1657 & 6521.0089 & 0.0039 & 7e-04 & 2e-04 & 0.2046 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300795&T=1

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast[/C][/ROW]
[ROW][C]time[/C][C]Y[t][/C][C]F[t][/C][C]95% LB[/C][C]95% UB[/C][C]p-value(H0: Y[t] = F[t])[/C][C]P(F[t]>Y[t-1])[/C][C]P(F[t]>Y[t-s])[/C][C]P(F[t]>Y[22])[/C][/ROW]
[ROW][C]10[/C][C]4037.2[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]11[/C][C]3890.8[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]12[/C][C]3528.4[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]13[/C][C]3491.6[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]14[/C][C]3878.8[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]15[/C][C]3993.6[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]16[/C][C]4067.8[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]17[/C][C]4332.4[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]18[/C][C]5026.6[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]19[/C][C]5322.8[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]20[/C][C]5463.8[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]21[/C][C]5556[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]22[/C][C]5918.4[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]23[/C][C]6107.2[/C][C]5941.5848[/C][C]5539.7246[/C][C]6343.4451[/C][C]0.2096[/C][C]0.545[/C][C]1[/C][C]0.545[/C][/ROW]
[ROW][C]24[/C][C]6158.6[/C][C]6006.3936[/C][C]5325.2112[/C][C]6687.576[/C][C]0.3307[/C][C]0.3859[/C][C]1[/C][C]0.5999[/C][/ROW]
[ROW][C]25[/C][C]6283.8[/C][C]6497.4361[/C][C]5591.4681[/C][C]7403.4041[/C][C]0.322[/C][C]0.7682[/C][C]1[/C][C]0.8948[/C][/ROW]
[ROW][C]26[/C][C]6453.4[/C][C]7024.1164[/C][C]6113.4909[/C][C]7934.7419[/C][C]0.1097[/C][C]0.9445[/C][C]1[/C][C]0.9913[/C][/ROW]
[ROW][C]27[/C][C]6104.2[/C][C]6984.7056[/C][C]6068.0327[/C][C]7901.3785[/C][C]0.0299[/C][C]0.872[/C][C]1[/C][C]0.9887[/C][/ROW]
[ROW][C]28[/C][C]6663.8[/C][C]7010.8856[/C][C]6089.0431[/C][C]7932.728[/C][C]0.2303[/C][C]0.9731[/C][C]1[/C][C]0.9899[/C][/ROW]
[ROW][C]29[/C][C]7380.8[/C][C]7269.5331[/C][C]6342.4153[/C][C]8196.6508[/C][C]0.407[/C][C]0.8998[/C][C]1[/C][C]0.9979[/C][/ROW]
[ROW][C]30[/C][C]7798.4[/C][C]7051.8611[/C][C]6117.8069[/C][C]7985.9153[/C][C]0.0586[/C][C]0.245[/C][C]1[/C][C]0.9913[/C][/ROW]
[ROW][C]31[/C][C]7743.4[/C][C]6177.3396[/C][C]5236.2651[/C][C]7118.414[/C][C]6e-04[/C][C]4e-04[/C][C]0.9624[/C][C]0.7052[/C][/ROW]
[ROW][C]32[/C][C]7389.6[/C][C]6014.8757[/C][C]5068.1382[/C][C]6961.6132[/C][C]0.0022[/C][C]2e-04[/C][C]0.873[/C][C]0.5792[/C][/ROW]
[ROW][C]33[/C][C]6300.8[/C][C]5905.329[/C][C]4952.6825[/C][C]6857.9755[/C][C]0.2079[/C][C]0.0011[/C][C]0.7638[/C][C]0.4893[/C][/ROW]
[ROW][C]34[/C][C]6328.4[/C][C]5700.6976[/C][C]4740.9918[/C][C]6660.4034[/C][C]0.0999[/C][C]0.1102[/C][C]0.3283[/C][C]0.3283[/C][/ROW]
[ROW][C]35[/C][C]6563.8[/C][C]5846.8085[/C][C]4866.2338[/C][C]6827.3831[/C][C]0.0759[/C][C]0.1679[/C][C]0.3014[/C][C]0.4431[/C][/ROW]
[ROW][C]36[/C][C]6781.4[/C][C]6210.8426[/C][C]5208.6277[/C][C]7213.0576[/C][C]0.1322[/C][C]0.245[/C][C]0.5407[/C][C]0.7163[/C][/ROW]
[ROW][C]37[/C][C]6963.2[/C][C]6275.4666[/C][C]5253.8829[/C][C]7297.0504[/C][C]0.0935[/C][C]0.1659[/C][C]0.4936[/C][C]0.7533[/C][/ROW]
[ROW][C]38[/C][C]7176[/C][C]5918.8502[/C][C]4891.5112[/C][C]6946.1891[/C][C]0.0082[/C][C]0.0232[/C][C]0.1539[/C][C]0.5003[/C][/ROW]
[ROW][C]39[/C][C]6953[/C][C]5801.1501[/C][C]4768.9694[/C][C]6833.3308[/C][C]0.0144[/C][C]0.0045[/C][C]0.2825[/C][C]0.4119[/C][/ROW]
[ROW][C]40[/C][C]7182.6[/C][C]5728.4612[/C][C]4692.3319[/C][C]6764.5904[/C][C]0.003[/C][C]0.0103[/C][C]0.0384[/C][C]0.3597[/C][/ROW]
[ROW][C]41[/C][C]6893.6[/C][C]5480.0873[/C][C]4439.1657[/C][C]6521.0089[/C][C]0.0039[/C][C]7e-04[/C][C]2e-04[/C][C]0.2046[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300795&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300795&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[22])
104037.2-------
113890.8-------
123528.4-------
133491.6-------
143878.8-------
153993.6-------
164067.8-------
174332.4-------
185026.6-------
195322.8-------
205463.8-------
215556-------
225918.4-------
236107.25941.58485539.72466343.44510.20960.54510.545
246158.66006.39365325.21126687.5760.33070.385910.5999
256283.86497.43615591.46817403.40410.3220.768210.8948
266453.47024.11646113.49097934.74190.10970.944510.9913
276104.26984.70566068.03277901.37850.02990.87210.9887
286663.87010.88566089.04317932.7280.23030.973110.9899
297380.87269.53316342.41538196.65080.4070.899810.9979
307798.47051.86116117.80697985.91530.05860.24510.9913
317743.46177.33965236.26517118.4146e-044e-040.96240.7052
327389.66014.87575068.13826961.61320.00222e-040.8730.5792
336300.85905.3294952.68256857.97550.20790.00110.76380.4893
346328.45700.69764740.99186660.40340.09990.11020.32830.3283
356563.85846.80854866.23386827.38310.07590.16790.30140.4431
366781.46210.84265208.62777213.05760.13220.2450.54070.7163
376963.26275.46665253.88297297.05040.09350.16590.49360.7533
3871765918.85024891.51126946.18910.00820.02320.15390.5003
3969535801.15014768.96946833.33080.01440.00450.28250.4119
407182.65728.46124692.33196764.59040.0030.01030.03840.3597
416893.65480.08734439.16576521.00890.00397e-042e-040.2046







Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
230.03450.02710.02710.027527428.3789000.54160.5416
240.05790.02470.02590.026323166.779825297.5793159.05210.49780.5197
250.0711-0.0340.02860.028645640.392432078.517179.1048-0.69870.5794
260.0661-0.08840.04360.0427325717.2327105488.196324.7895-1.86640.9011
270.067-0.14420.06370.061775290.1706239448.5909489.3348-2.87961.2968
280.0671-0.05210.06180.0593120468.385219618.5566468.6348-1.13511.2699
290.06510.01510.05510.05312380.3341190013.0962435.90490.36391.1404
300.06760.09570.06020.059557320.3749235926.5061485.72272.44141.3031
310.07770.20220.0760.07742452545.3106482217.4843694.41885.12161.7273
320.08030.1860.0870.09021889867.0033622982.4362789.29244.49582.0042
330.08230.06280.08480.0879156397.3167580565.6072761.94861.29331.9396
340.08590.09920.0860.0892394010.2672565019.3289751.67772.05281.949
350.08560.10920.08780.0913514076.8812561100.679749.06652.34481.9794
360.08230.08410.08750.091325535.7043544274.6094737.74971.86591.9713
370.08310.09880.08830.0919472977.1792539521.4474734.52122.24911.9899
380.08860.17520.09370.09811580425.7337604577.9653777.54614.11132.1224
390.09080.16570.09790.1031326758.1985647059.1555804.39993.7672.2192
400.09230.20250.10370.10982114519.7879728584.7462853.57184.75552.3601
410.09690.2050.10910.1161998018.0463795397.0251891.85034.62272.4792

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast Performance \tabularnewline
time & % S.E. & PE & MAPE & sMAPE & Sq.E & MSE & RMSE & ScaledE & MASE \tabularnewline
23 & 0.0345 & 0.0271 & 0.0271 & 0.0275 & 27428.3789 & 0 & 0 & 0.5416 & 0.5416 \tabularnewline
24 & 0.0579 & 0.0247 & 0.0259 & 0.0263 & 23166.7798 & 25297.5793 & 159.0521 & 0.4978 & 0.5197 \tabularnewline
25 & 0.0711 & -0.034 & 0.0286 & 0.0286 & 45640.3924 & 32078.517 & 179.1048 & -0.6987 & 0.5794 \tabularnewline
26 & 0.0661 & -0.0884 & 0.0436 & 0.0427 & 325717.2327 & 105488.196 & 324.7895 & -1.8664 & 0.9011 \tabularnewline
27 & 0.067 & -0.1442 & 0.0637 & 0.061 & 775290.1706 & 239448.5909 & 489.3348 & -2.8796 & 1.2968 \tabularnewline
28 & 0.0671 & -0.0521 & 0.0618 & 0.0593 & 120468.385 & 219618.5566 & 468.6348 & -1.1351 & 1.2699 \tabularnewline
29 & 0.0651 & 0.0151 & 0.0551 & 0.053 & 12380.3341 & 190013.0962 & 435.9049 & 0.3639 & 1.1404 \tabularnewline
30 & 0.0676 & 0.0957 & 0.0602 & 0.059 & 557320.3749 & 235926.5061 & 485.7227 & 2.4414 & 1.3031 \tabularnewline
31 & 0.0777 & 0.2022 & 0.076 & 0.0774 & 2452545.3106 & 482217.4843 & 694.4188 & 5.1216 & 1.7273 \tabularnewline
32 & 0.0803 & 0.186 & 0.087 & 0.0902 & 1889867.0033 & 622982.4362 & 789.2924 & 4.4958 & 2.0042 \tabularnewline
33 & 0.0823 & 0.0628 & 0.0848 & 0.0879 & 156397.3167 & 580565.6072 & 761.9486 & 1.2933 & 1.9396 \tabularnewline
34 & 0.0859 & 0.0992 & 0.086 & 0.0892 & 394010.2672 & 565019.3289 & 751.6777 & 2.0528 & 1.949 \tabularnewline
35 & 0.0856 & 0.1092 & 0.0878 & 0.0913 & 514076.8812 & 561100.679 & 749.0665 & 2.3448 & 1.9794 \tabularnewline
36 & 0.0823 & 0.0841 & 0.0875 & 0.091 & 325535.7043 & 544274.6094 & 737.7497 & 1.8659 & 1.9713 \tabularnewline
37 & 0.0831 & 0.0988 & 0.0883 & 0.0919 & 472977.1792 & 539521.4474 & 734.5212 & 2.2491 & 1.9899 \tabularnewline
38 & 0.0886 & 0.1752 & 0.0937 & 0.0981 & 1580425.7337 & 604577.9653 & 777.5461 & 4.1113 & 2.1224 \tabularnewline
39 & 0.0908 & 0.1657 & 0.0979 & 0.103 & 1326758.1985 & 647059.1555 & 804.3999 & 3.767 & 2.2192 \tabularnewline
40 & 0.0923 & 0.2025 & 0.1037 & 0.1098 & 2114519.7879 & 728584.7462 & 853.5718 & 4.7555 & 2.3601 \tabularnewline
41 & 0.0969 & 0.205 & 0.1091 & 0.116 & 1998018.0463 & 795397.0251 & 891.8503 & 4.6227 & 2.4792 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300795&T=2

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast Performance[/C][/ROW]
[ROW][C]time[/C][C]% S.E.[/C][C]PE[/C][C]MAPE[/C][C]sMAPE[/C][C]Sq.E[/C][C]MSE[/C][C]RMSE[/C][C]ScaledE[/C][C]MASE[/C][/ROW]
[ROW][C]23[/C][C]0.0345[/C][C]0.0271[/C][C]0.0271[/C][C]0.0275[/C][C]27428.3789[/C][C]0[/C][C]0[/C][C]0.5416[/C][C]0.5416[/C][/ROW]
[ROW][C]24[/C][C]0.0579[/C][C]0.0247[/C][C]0.0259[/C][C]0.0263[/C][C]23166.7798[/C][C]25297.5793[/C][C]159.0521[/C][C]0.4978[/C][C]0.5197[/C][/ROW]
[ROW][C]25[/C][C]0.0711[/C][C]-0.034[/C][C]0.0286[/C][C]0.0286[/C][C]45640.3924[/C][C]32078.517[/C][C]179.1048[/C][C]-0.6987[/C][C]0.5794[/C][/ROW]
[ROW][C]26[/C][C]0.0661[/C][C]-0.0884[/C][C]0.0436[/C][C]0.0427[/C][C]325717.2327[/C][C]105488.196[/C][C]324.7895[/C][C]-1.8664[/C][C]0.9011[/C][/ROW]
[ROW][C]27[/C][C]0.067[/C][C]-0.1442[/C][C]0.0637[/C][C]0.061[/C][C]775290.1706[/C][C]239448.5909[/C][C]489.3348[/C][C]-2.8796[/C][C]1.2968[/C][/ROW]
[ROW][C]28[/C][C]0.0671[/C][C]-0.0521[/C][C]0.0618[/C][C]0.0593[/C][C]120468.385[/C][C]219618.5566[/C][C]468.6348[/C][C]-1.1351[/C][C]1.2699[/C][/ROW]
[ROW][C]29[/C][C]0.0651[/C][C]0.0151[/C][C]0.0551[/C][C]0.053[/C][C]12380.3341[/C][C]190013.0962[/C][C]435.9049[/C][C]0.3639[/C][C]1.1404[/C][/ROW]
[ROW][C]30[/C][C]0.0676[/C][C]0.0957[/C][C]0.0602[/C][C]0.059[/C][C]557320.3749[/C][C]235926.5061[/C][C]485.7227[/C][C]2.4414[/C][C]1.3031[/C][/ROW]
[ROW][C]31[/C][C]0.0777[/C][C]0.2022[/C][C]0.076[/C][C]0.0774[/C][C]2452545.3106[/C][C]482217.4843[/C][C]694.4188[/C][C]5.1216[/C][C]1.7273[/C][/ROW]
[ROW][C]32[/C][C]0.0803[/C][C]0.186[/C][C]0.087[/C][C]0.0902[/C][C]1889867.0033[/C][C]622982.4362[/C][C]789.2924[/C][C]4.4958[/C][C]2.0042[/C][/ROW]
[ROW][C]33[/C][C]0.0823[/C][C]0.0628[/C][C]0.0848[/C][C]0.0879[/C][C]156397.3167[/C][C]580565.6072[/C][C]761.9486[/C][C]1.2933[/C][C]1.9396[/C][/ROW]
[ROW][C]34[/C][C]0.0859[/C][C]0.0992[/C][C]0.086[/C][C]0.0892[/C][C]394010.2672[/C][C]565019.3289[/C][C]751.6777[/C][C]2.0528[/C][C]1.949[/C][/ROW]
[ROW][C]35[/C][C]0.0856[/C][C]0.1092[/C][C]0.0878[/C][C]0.0913[/C][C]514076.8812[/C][C]561100.679[/C][C]749.0665[/C][C]2.3448[/C][C]1.9794[/C][/ROW]
[ROW][C]36[/C][C]0.0823[/C][C]0.0841[/C][C]0.0875[/C][C]0.091[/C][C]325535.7043[/C][C]544274.6094[/C][C]737.7497[/C][C]1.8659[/C][C]1.9713[/C][/ROW]
[ROW][C]37[/C][C]0.0831[/C][C]0.0988[/C][C]0.0883[/C][C]0.0919[/C][C]472977.1792[/C][C]539521.4474[/C][C]734.5212[/C][C]2.2491[/C][C]1.9899[/C][/ROW]
[ROW][C]38[/C][C]0.0886[/C][C]0.1752[/C][C]0.0937[/C][C]0.0981[/C][C]1580425.7337[/C][C]604577.9653[/C][C]777.5461[/C][C]4.1113[/C][C]2.1224[/C][/ROW]
[ROW][C]39[/C][C]0.0908[/C][C]0.1657[/C][C]0.0979[/C][C]0.103[/C][C]1326758.1985[/C][C]647059.1555[/C][C]804.3999[/C][C]3.767[/C][C]2.2192[/C][/ROW]
[ROW][C]40[/C][C]0.0923[/C][C]0.2025[/C][C]0.1037[/C][C]0.1098[/C][C]2114519.7879[/C][C]728584.7462[/C][C]853.5718[/C][C]4.7555[/C][C]2.3601[/C][/ROW]
[ROW][C]41[/C][C]0.0969[/C][C]0.205[/C][C]0.1091[/C][C]0.116[/C][C]1998018.0463[/C][C]795397.0251[/C][C]891.8503[/C][C]4.6227[/C][C]2.4792[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300795&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300795&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
230.03450.02710.02710.027527428.3789000.54160.5416
240.05790.02470.02590.026323166.779825297.5793159.05210.49780.5197
250.0711-0.0340.02860.028645640.392432078.517179.1048-0.69870.5794
260.0661-0.08840.04360.0427325717.2327105488.196324.7895-1.86640.9011
270.067-0.14420.06370.061775290.1706239448.5909489.3348-2.87961.2968
280.0671-0.05210.06180.0593120468.385219618.5566468.6348-1.13511.2699
290.06510.01510.05510.05312380.3341190013.0962435.90490.36391.1404
300.06760.09570.06020.059557320.3749235926.5061485.72272.44141.3031
310.07770.20220.0760.07742452545.3106482217.4843694.41885.12161.7273
320.08030.1860.0870.09021889867.0033622982.4362789.29244.49582.0042
330.08230.06280.08480.0879156397.3167580565.6072761.94861.29331.9396
340.08590.09920.0860.0892394010.2672565019.3289751.67772.05281.949
350.08560.10920.08780.0913514076.8812561100.679749.06652.34481.9794
360.08230.08410.08750.091325535.7043544274.6094737.74971.86591.9713
370.08310.09880.08830.0919472977.1792539521.4474734.52122.24911.9899
380.08860.17520.09370.09811580425.7337604577.9653777.54614.11132.1224
390.09080.16570.09790.1031326758.1985647059.1555804.39993.7672.2192
400.09230.20250.10370.10982114519.7879728584.7462853.57184.75552.3601
410.09690.2050.10910.1161998018.0463795397.0251891.85034.62272.4792



Parameters (Session):
par1 = 12 ; par2 = Triple ; par3 = additive ; par4 = 12 ;
Parameters (R input):
par1 = 19 ; par2 = 1.0 ; par3 = 1 ; par4 = 0 ; par5 = 12 ; par6 = 3 ; par7 = 2 ; par8 = 2 ; par9 = 1 ; par10 = FALSE ;
R code (references can be found in the software module):
par1 <- as.numeric(par1) #cut off periods
par2 <- as.numeric(par2) #lambda
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #p
par7 <- as.numeric(par7) #q
par8 <- as.numeric(par8) #P
par9 <- as.numeric(par9) #Q
if (par10 == 'TRUE') par10 <- TRUE
if (par10 == 'FALSE') par10 <- FALSE
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
lx <- length(x)
first <- lx - 2*par1
nx <- lx - par1
nx1 <- nx + 1
fx <- lx - nx
if (fx < 1) {
fx <- par5*2
nx1 <- lx + fx - 1
first <- lx - 2*fx
}
first <- 1
if (fx < 3) fx <- round(lx/10,0)
(arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML'))
(forecast <- predict(arima.out,fx))
(lb <- forecast$pred - 1.96 * forecast$se)
(ub <- forecast$pred + 1.96 * forecast$se)
if (par2 == 0) {
x <- exp(x)
forecast$pred <- exp(forecast$pred)
lb <- exp(lb)
ub <- exp(ub)
}
if (par2 != 0) {
x <- x^(1/par2)
forecast$pred <- forecast$pred^(1/par2)
lb <- lb^(1/par2)
ub <- ub^(1/par2)
}
if (par2 < 0) {
olb <- lb
lb <- ub
ub <- olb
}
(actandfor <- c(x[1:nx], forecast$pred))
(perc.se <- (ub-forecast$pred)/1.96/forecast$pred)
bitmap(file='test1.png')
opar <- par(mar=c(4,4,2,2),las=1)
ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub))
plot(x,ylim=ylim,type='n',xlim=c(first,lx))
usr <- par('usr')
rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon')
rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender')
abline(h= (-3:3)*2 , col ='gray', lty =3)
polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA)
lines(nx1:lx, lb , lty=2)
lines(nx1:lx, ub , lty=2)
lines(x, lwd=2)
lines(nx1:lx, forecast$pred , lwd=2 , col ='white')
box()
par(opar)
dev.off()
prob.dec <- array(NA, dim=fx)
prob.sdec <- array(NA, dim=fx)
prob.ldec <- array(NA, dim=fx)
prob.pval <- array(NA, dim=fx)
perf.pe <- array(0, dim=fx)
perf.spe <- array(0, dim=fx)
perf.scalederr <- array(0, dim=fx)
perf.mase <- array(0, dim=fx)
perf.mase1 <- array(0, dim=fx)
perf.mape <- array(0, dim=fx)
perf.smape <- array(0, dim=fx)
perf.mape1 <- array(0, dim=fx)
perf.smape1 <- array(0,dim=fx)
perf.se <- array(0, dim=fx)
perf.mse <- array(0, dim=fx)
perf.mse1 <- array(0, dim=fx)
perf.rmse <- array(0, dim=fx)
perf.scaleddenom <- 0
for (i in 2:fx) {
perf.scaleddenom = perf.scaleddenom + abs(x[nx+i] - x[nx+i-1])
}
perf.scaleddenom = perf.scaleddenom / (fx-1)
for (i in 1:fx) {
locSD <- (ub[i] - forecast$pred[i]) / 1.96
perf.scalederr[i] = (x[nx+i] - forecast$pred[i]) / perf.scaleddenom
perf.pe[i] = (x[nx+i] - forecast$pred[i]) / x[nx+i]
perf.spe[i] = 2*(x[nx+i] - forecast$pred[i]) / (x[nx+i] + forecast$pred[i])
perf.se[i] = (x[nx+i] - forecast$pred[i])^2
prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD)
prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD)
prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD)
prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD)
}
perf.mape[1] = abs(perf.pe[1])
perf.smape[1] = abs(perf.spe[1])
perf.mape1[1] = perf.mape[1]
perf.smape1[1] = perf.smape[1]
perf.mse[1] = perf.se[1]
perf.mase[1] = abs(perf.scalederr[1])
perf.mase1[1] = perf.mase[1]
for (i in 2:fx) {
perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i])
perf.mape1[i] = perf.mape[i] / i
perf.smape[i] = perf.smape[i-1] + abs(perf.spe[i])
perf.smape1[i] = perf.smape[i] / i
perf.mse[i] = perf.mse[i-1] + perf.se[i]
perf.mse1[i] = perf.mse[i] / i
perf.mase[i] = perf.mase[i-1] + abs(perf.scalederr[i])
perf.mase1[i] = perf.mase[i] / i
}
perf.rmse = sqrt(perf.mse1)
bitmap(file='test2.png')
plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub)))
dum <- forecast$pred
dum[1:par1] <- x[(nx+1):lx]
lines(dum, lty=1)
lines(ub,lty=3)
lines(lb,lty=3)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'Y[t]',1,header=TRUE)
a<-table.element(a,'F[t]',1,header=TRUE)
a<-table.element(a,'95% LB',1,header=TRUE)
a<-table.element(a,'95% UB',1,header=TRUE)
a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE)
mylab <- paste('P(F[t]>Y[',nx,sep='')
mylab <- paste(mylab,'])',sep='')
a<-table.element(a,mylab,1,header=TRUE)
a<-table.row.end(a)
for (i in (nx-par5):nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.row.end(a)
}
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(x[nx+i],4))
a<-table.element(a,round(forecast$pred[i],4))
a<-table.element(a,round(lb[i],4))
a<-table.element(a,round(ub[i],4))
a<-table.element(a,round((1-prob.pval[i]),4))
a<-table.element(a,round((1-prob.dec[i]),4))
a<-table.element(a,round((1-prob.sdec[i]),4))
a<-table.element(a,round((1-prob.ldec[i]),4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',10,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'% S.E.',1,header=TRUE)
a<-table.element(a,'PE',1,header=TRUE)
a<-table.element(a,'MAPE',1,header=TRUE)
a<-table.element(a,'sMAPE',1,header=TRUE)
a<-table.element(a,'Sq.E',1,header=TRUE)
a<-table.element(a,'MSE',1,header=TRUE)
a<-table.element(a,'RMSE',1,header=TRUE)
a<-table.element(a,'ScaledE',1,header=TRUE)
a<-table.element(a,'MASE',1,header=TRUE)
a<-table.row.end(a)
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(perc.se[i],4))
a<-table.element(a,round(perf.pe[i],4))
a<-table.element(a,round(perf.mape1[i],4))
a<-table.element(a,round(perf.smape1[i],4))
a<-table.element(a,round(perf.se[i],4))
a<-table.element(a,round(perf.mse1[i],4))
a<-table.element(a,round(perf.rmse[i],4))
a<-table.element(a,round(perf.scalederr[i],4))
a<-table.element(a,round(perf.mase1[i],4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')