Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_structuraltimeseries.wasp
Title produced by softwareStructural Time Series Models
Date of computationSat, 17 Dec 2016 10:30:20 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/17/t14819670477wljfh9maxb8r82.htm/, Retrieved Fri, 01 Nov 2024 03:30:23 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=300634, Retrieved Fri, 01 Nov 2024 03:30:23 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact93
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Structural Time Series Models] [] [2016-12-17 09:30:20] [349958aef20b862f8399a5ba04d6f6e3] [Current]
Feedback Forum

Post a new message
Dataseries X:
990
1384
1350
716
2068
1392
734
758
558
1620
3132
1392
918
776
1348
502
1274
1638
912
1250
1614
2840
1150
1652
1526
1412
882
848
820
1226
1212
2110
1178
2548
1568
2088
2178
3016
5514
1358
3604
1962
2036
2246
3434
4316
3032
5296
3850
2098
3992
4860
7336
9614
2988
2756
3540
2710
3730
3508
2640
2788
3502
3700
3250
4866
2836
3498
3468
3924
5738
7028
5608
6030
11976
7774
7906
10940
7626
5930
6286
6788
6932
6660
4910
4182
3550
3184
3872
3226
2504
3648
4448
2954
3842
3982
4864
6796
5844
5656
6118
7068
7696
7016
5820
4904
3860
7222
7738
7142
13804
7964
9716
8462
6884
8072
7320
11700
10792
10930
7112
8196
16818
10524
14878
13696




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time4 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300634&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]4 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=300634&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300634&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R ServerBig Analytics Cloud Computing Center







Structural Time Series Model -- Interpolation
tObservedLevelSlopeSeasonalStand. Residuals
1990990000
213841238.0123880328518.359609775788725.21256052186450.214587824198621
313501300.6689947345720.443268157462319.03432256033230.0483307816996961
4716985.87967423764610.2534544034881-14.9747183637655-0.392470001377837
520681555.648752780122.917197540761673.14204767136330.668770356619645
613921476.0185011056320.964666654901-2.60119119777305-0.123459600182757
77341080.3315497428613.7540142733231-14.0046253138826-0.503055337241064
8758902.51899495086110.61247356694668.59134387233087-0.231580478468978
9558716.6393061537257.49559245218829-1.43402051434204-0.237673790832223
1016201191.1654902556914.731852046400854.9750108028830.565084218217771
1131322224.4763422483630.218510716521191.85813508112751.23265251340179
1213921797.963681519923.3891568959511-40.1224187234088-0.552790415202634
139181591.1609642135542.4493410933888-473.12077421478-0.356979899220323
147761110.0550164929925.8852889049258-9.94415791927278-0.534243228311181
1513481214.5267430109127.720201734992177.21593218301080.0894120107674033
16502871.93463431467622.0490356865733-87.0982142116109-0.44050004332729
1712741041.7670488010323.724191375502117.1461097525320.178078111962359
1816381354.7494207069226.478331751785356.53291191655120.350009338101885
199121141.2279310883424.3928703524859-40.6592028439615-0.290853291138777
2012501184.2490840753424.547331778611751.0996943908160.0225897128660594
2116141422.6242381283926.276791607968723.12171222973340.259373647234084
2228402169.1814217097732.0212407226026103.9230210475240.87383118824713
2311501617.5878742463427.4280039637738-8.17590098928233-0.708099551302126
2416521643.2168558108227.416434151439810.2011390003394-0.00218275436966331
2515261730.2644301514525.2371167881499-253.3494316846640.0815157327829096
2614121580.6333648092421.9455454221958-48.9565475411162-0.193157345419883
278821165.004691688914.74392762430333.8799436623809-0.507021092405505
288481050.4416549650913.3029755489143-104.507802272255-0.154624486916429
29820893.48689914997311.913278033991857.4213483826636-0.205657020892201
3012261028.6303225702712.7482959833856102.143607573680.149334682896462
3112121158.6415236258313.4704339316494-37.42324065687940.142268427549871
3221101644.15977113216.2472808578714100.1247870077010.572973286102359
3311781460.4367587626715.09545433426-127.4622584667-0.242774916343677
3425481943.3157539035117.7635562971901242.0998339328140.5679824274856
3515681787.2493638212416.8031900339613-84.4791603592539-0.211080641002646
3620881943.7283809542417.253533319045735.76558200510710.169644691908764
3721782139.8126160971213.415640722223-105.1498329942710.233241716776879
3830162610.9712334010819.151346633835578.90896513778690.524310146492024
3955144101.5947735287538.280235549247343.3441325644781.7208731841554
4013582815.5342812977426.0074732979809-462.515556231201-1.58694627157632
4136043149.7646727496128.0963524457961219.57385990640.372659799292014
4219622522.4261968790724.4599277653226-59.1412135844643-0.794796434896375
4320362305.4338476787423.2521774913237-84.4650342689748-0.293092935741195
4422462209.7100183725822.6842965762297127.490868700605-0.144479242888729
4534342918.3442552516725.8983519250416-10.29374638819020.833136233456891
4643163521.7436519229828.5736657604458351.3910712890290.701495361256212
4730323357.3871885258627.7465417975785-177.380037014772-0.23436518097314
4852964337.3981001003929.2443301688185226.3828338837891.15749583960819
4938504300.1764966282530.1672741926072-397.825091699453-0.0845734578607546
5020983245.1413017401120.5027414579028-358.478012526007-1.26805471006939
5139923335.2591629551721.2534625229574606.0342989993890.0819249728242963
5248604363.5604878811229.4821528166762-256.012503550831.20803478434759
5373365744.8733773121337.6418609839441568.839852683431.63509031247384
5496147756.4860577126847.2864076100148358.1433744667682.39445766334932
5529885506.9182413746537.2701744749459-771.504291962535-2.78891740960739
5627564048.3873397316731.0645736071555-153.726852941609-1.81693620063325
5735403781.5110452893529.8511482052699-14.6526448243624-0.361967658804136
5827103056.8117726719826.8433393166928227.824240009737-0.916796564402675
5937303528.8358981837828.3835799758055-138.0362339492120.540909361010021
6035083417.7146213309928.2893703920889196.834134731065-0.16967695681323
6126403157.1091267799830.9979512691151-292.353295906145-0.362163390659045
6227883168.462707388930.8672674312695-366.029375606907-0.0232291007841911
6335023128.9081466103130.2210991089567424.533704099403-0.0832749565989178
6437003679.6622284116634.0732991701328-367.2857331159340.624876540716417
6532503359.000242133232.0959408651276158.069286484686-0.429131430525359
6648663764.6060674971733.7714650159418818.9564571046520.453145581979061
6728363606.917699359233.0126426236557-625.904921128473-0.232519738697051
6834983611.328323390932.9053671011574-91.6518545787715-0.0347492922063867
6934683508.5392390738532.407825026078962.3247271722326-0.164886758443523
7039243642.3161614017332.7650032501953204.8231185949830.123187607990576
7157384758.2780749635835.8502257699542157.9484758558011.31630365280031
7270285830.6670842010236.063515294145409.1021208762141.26127351220754
7356085939.5104536142635.5942723824212-387.627806983920.0903641247595519
7460306201.593909141736.7694343457979-339.0768758928890.269823145446703
75119768958.4579082591858.34774252146811024.54950075343.22919557297756
7677748649.9554732489255.8573658778547-603.280745289709-0.440662995787246
7779068246.7300475219353.44974446737663.89375972971644-0.555389093387965
78109409159.0248075025357.07542307582581133.454118260881.04203019878347
7976268747.3953645125555.3424441805097-767.418297960567-0.56928994695559
8059307383.3904568119150.4134769969482-380.771132884958-1.72464947200534
8162866780.4209529541848.2149223057748-0.511287026349521-0.794065955911325
8267886751.8541602329547.972572021004694.202460133371-0.093319662999023
8369326847.4621220103348.086001510123348.49825900643550.057892481086924
8466606588.1399018303248.0892972274005304.958398779155-0.37415256298213
8549106048.8848273656850.7015438162966-688.978584612298-0.724546542855576
8641825504.6107344233748.1976541927109-880.891009532575-0.712252311751832
8735503978.7661532805437.2722926343291727.887182971369-1.87472727524684
8831843826.3641295576536.0833693843459-501.502770646612-0.227976872873775
8938723921.9447162289736.3797130950415-94.52256437018110.0719792177364927
9032262993.1183265164832.4887678502819959.150985232064-1.17109734074139
9125043005.293463282132.4175155225284-485.981411504336-0.0246749028126361
9236483481.4946545074933.8660381951932-168.2472281165210.539302389734876
9344483998.5787427674335.374631539432984.80455853449540.587331173080229
9429543486.4049891690933.8140733018385-119.127041805641-0.665542640035038
9538423616.43874752634.008684001975152.894246337930.116947503198375
9639823605.0634854844434.0122284579486411.282400756394-0.0552429956382041
9748644475.286498374631.4734980939837-248.7023406446731.02694509547436
9867965982.1104169773636.6906312072515-284.2212475118841.77189766356942
9958445613.1922089221734.2023161893385529.652828740815-0.484401969290309
10056565890.0466239994935.6122838019535-414.2100572566020.291832198048104
10161186001.2824350266835.97167852797760.12848693144650.0914894040816358
10270686079.7915946638636.1368055850177956.2449055897420.0516107259650713
10376967175.8719884285539.7018351981425-277.7976321182951.28757361161086
10470167264.2387994419239.8525882948312-284.9021018622770.0591446437010138
10558206489.0400251565237.4753268473834-54.7688192717329-0.990750723358095
10649045758.7048487927435.4868059693722-275.859106034335-0.933327621954238
10738604736.6030508957733.637775679733-78.8501558044603-1.28549968060718
10872225815.0974047402933.575158970365617.2850053333121.27181219048989
10977387037.9165556469331.1773833663434-203.1242106743831.4559112622564
11071427258.9564153658131.7593908139261-258.5090707250820.228535604479706
1111380410311.833079335248.29111953516551261.067243455953.61617686421148
11279649495.1083364524643.6182744074744-888.759092783434-1.04097907840243
11397169606.6546566707143.926978019044558.55644149946880.0821813617258141
11484628680.5582165617440.2841316880367509.629001404608-1.17690128714923
11568847908.6281185930937.6471118588444-413.754670159812-0.986671233049097
11680728031.2670033199237.8985920877993-23.24362398409460.103300956490258
11773207638.5316445033636.71924039139065.75656027807628-0.523500525375718
118117009702.2670657925741.5191432985229470.8098194243792.4640856944211
1191079210463.590883668442.6278348013015-214.0944950809770.87496846896069
1201093010558.505894925842.6280857829737332.0218930481450.0636383804798302
12171129078.5362321517544.5563195227774-813.349037319555-1.85982411727876
12281968983.4334251165344.1751970109496-683.191621072365-0.168373147217053
1231681812196.008913909259.77237493595642277.416981583583.79967057808747
1241052411925.165889872158.1078067215836-1155.56437079089-0.398114303946988
1251487813290.09318342463.7928085209803611.3225546646471.58110340680332
1261369613240.580303135863.3802161613813540.417439775611-0.137466750569664

\begin{tabular}{lllllllll}
\hline
Structural Time Series Model -- Interpolation \tabularnewline
t & Observed & Level & Slope & Seasonal & Stand. Residuals \tabularnewline
1 & 990 & 990 & 0 & 0 & 0 \tabularnewline
2 & 1384 & 1238.01238803285 & 18.3596097757887 & 25.2125605218645 & 0.214587824198621 \tabularnewline
3 & 1350 & 1300.66899473457 & 20.4432681574623 & 19.0343225603323 & 0.0483307816996961 \tabularnewline
4 & 716 & 985.879674237646 & 10.2534544034881 & -14.9747183637655 & -0.392470001377837 \tabularnewline
5 & 2068 & 1555.6487527801 & 22.9171975407616 & 73.1420476713633 & 0.668770356619645 \tabularnewline
6 & 1392 & 1476.01850110563 & 20.964666654901 & -2.60119119777305 & -0.123459600182757 \tabularnewline
7 & 734 & 1080.33154974286 & 13.7540142733231 & -14.0046253138826 & -0.503055337241064 \tabularnewline
8 & 758 & 902.518994950861 & 10.6124735669466 & 8.59134387233087 & -0.231580478468978 \tabularnewline
9 & 558 & 716.639306153725 & 7.49559245218829 & -1.43402051434204 & -0.237673790832223 \tabularnewline
10 & 1620 & 1191.16549025569 & 14.7318520464008 & 54.975010802883 & 0.565084218217771 \tabularnewline
11 & 3132 & 2224.47634224836 & 30.2185107165211 & 91.8581350811275 & 1.23265251340179 \tabularnewline
12 & 1392 & 1797.9636815199 & 23.3891568959511 & -40.1224187234088 & -0.552790415202634 \tabularnewline
13 & 918 & 1591.16096421355 & 42.4493410933888 & -473.12077421478 & -0.356979899220323 \tabularnewline
14 & 776 & 1110.05501649299 & 25.8852889049258 & -9.94415791927278 & -0.534243228311181 \tabularnewline
15 & 1348 & 1214.52674301091 & 27.7202017349921 & 77.2159321830108 & 0.0894120107674033 \tabularnewline
16 & 502 & 871.934634314676 & 22.0490356865733 & -87.0982142116109 & -0.44050004332729 \tabularnewline
17 & 1274 & 1041.76704880103 & 23.724191375502 & 117.146109752532 & 0.178078111962359 \tabularnewline
18 & 1638 & 1354.74942070692 & 26.4783317517853 & 56.5329119165512 & 0.350009338101885 \tabularnewline
19 & 912 & 1141.22793108834 & 24.3928703524859 & -40.6592028439615 & -0.290853291138777 \tabularnewline
20 & 1250 & 1184.24908407534 & 24.5473317786117 & 51.099694390816 & 0.0225897128660594 \tabularnewline
21 & 1614 & 1422.62423812839 & 26.2767916079687 & 23.1217122297334 & 0.259373647234084 \tabularnewline
22 & 2840 & 2169.18142170977 & 32.0212407226026 & 103.923021047524 & 0.87383118824713 \tabularnewline
23 & 1150 & 1617.58787424634 & 27.4280039637738 & -8.17590098928233 & -0.708099551302126 \tabularnewline
24 & 1652 & 1643.21685581082 & 27.4164341514398 & 10.2011390003394 & -0.00218275436966331 \tabularnewline
25 & 1526 & 1730.26443015145 & 25.2371167881499 & -253.349431684664 & 0.0815157327829096 \tabularnewline
26 & 1412 & 1580.63336480924 & 21.9455454221958 & -48.9565475411162 & -0.193157345419883 \tabularnewline
27 & 882 & 1165.0046916889 & 14.743927624303 & 33.8799436623809 & -0.507021092405505 \tabularnewline
28 & 848 & 1050.44165496509 & 13.3029755489143 & -104.507802272255 & -0.154624486916429 \tabularnewline
29 & 820 & 893.486899149973 & 11.9132780339918 & 57.4213483826636 & -0.205657020892201 \tabularnewline
30 & 1226 & 1028.63032257027 & 12.7482959833856 & 102.14360757368 & 0.149334682896462 \tabularnewline
31 & 1212 & 1158.64152362583 & 13.4704339316494 & -37.4232406568794 & 0.142268427549871 \tabularnewline
32 & 2110 & 1644.159771132 & 16.2472808578714 & 100.124787007701 & 0.572973286102359 \tabularnewline
33 & 1178 & 1460.43675876267 & 15.09545433426 & -127.4622584667 & -0.242774916343677 \tabularnewline
34 & 2548 & 1943.31575390351 & 17.7635562971901 & 242.099833932814 & 0.5679824274856 \tabularnewline
35 & 1568 & 1787.24936382124 & 16.8031900339613 & -84.4791603592539 & -0.211080641002646 \tabularnewline
36 & 2088 & 1943.72838095424 & 17.2535333190457 & 35.7655820051071 & 0.169644691908764 \tabularnewline
37 & 2178 & 2139.81261609712 & 13.415640722223 & -105.149832994271 & 0.233241716776879 \tabularnewline
38 & 3016 & 2610.97123340108 & 19.1513466338355 & 78.9089651377869 & 0.524310146492024 \tabularnewline
39 & 5514 & 4101.59477352875 & 38.280235549247 & 343.344132564478 & 1.7208731841554 \tabularnewline
40 & 1358 & 2815.53428129774 & 26.0074732979809 & -462.515556231201 & -1.58694627157632 \tabularnewline
41 & 3604 & 3149.76467274961 & 28.0963524457961 & 219.5738599064 & 0.372659799292014 \tabularnewline
42 & 1962 & 2522.42619687907 & 24.4599277653226 & -59.1412135844643 & -0.794796434896375 \tabularnewline
43 & 2036 & 2305.43384767874 & 23.2521774913237 & -84.4650342689748 & -0.293092935741195 \tabularnewline
44 & 2246 & 2209.71001837258 & 22.6842965762297 & 127.490868700605 & -0.144479242888729 \tabularnewline
45 & 3434 & 2918.34425525167 & 25.8983519250416 & -10.2937463881902 & 0.833136233456891 \tabularnewline
46 & 4316 & 3521.74365192298 & 28.5736657604458 & 351.391071289029 & 0.701495361256212 \tabularnewline
47 & 3032 & 3357.38718852586 & 27.7465417975785 & -177.380037014772 & -0.23436518097314 \tabularnewline
48 & 5296 & 4337.39810010039 & 29.2443301688185 & 226.382833883789 & 1.15749583960819 \tabularnewline
49 & 3850 & 4300.17649662825 & 30.1672741926072 & -397.825091699453 & -0.0845734578607546 \tabularnewline
50 & 2098 & 3245.14130174011 & 20.5027414579028 & -358.478012526007 & -1.26805471006939 \tabularnewline
51 & 3992 & 3335.25916295517 & 21.2534625229574 & 606.034298999389 & 0.0819249728242963 \tabularnewline
52 & 4860 & 4363.56048788112 & 29.4821528166762 & -256.01250355083 & 1.20803478434759 \tabularnewline
53 & 7336 & 5744.87337731213 & 37.6418609839441 & 568.83985268343 & 1.63509031247384 \tabularnewline
54 & 9614 & 7756.48605771268 & 47.2864076100148 & 358.143374466768 & 2.39445766334932 \tabularnewline
55 & 2988 & 5506.91824137465 & 37.2701744749459 & -771.504291962535 & -2.78891740960739 \tabularnewline
56 & 2756 & 4048.38733973167 & 31.0645736071555 & -153.726852941609 & -1.81693620063325 \tabularnewline
57 & 3540 & 3781.51104528935 & 29.8511482052699 & -14.6526448243624 & -0.361967658804136 \tabularnewline
58 & 2710 & 3056.81177267198 & 26.8433393166928 & 227.824240009737 & -0.916796564402675 \tabularnewline
59 & 3730 & 3528.83589818378 & 28.3835799758055 & -138.036233949212 & 0.540909361010021 \tabularnewline
60 & 3508 & 3417.71462133099 & 28.2893703920889 & 196.834134731065 & -0.16967695681323 \tabularnewline
61 & 2640 & 3157.10912677998 & 30.9979512691151 & -292.353295906145 & -0.362163390659045 \tabularnewline
62 & 2788 & 3168.4627073889 & 30.8672674312695 & -366.029375606907 & -0.0232291007841911 \tabularnewline
63 & 3502 & 3128.90814661031 & 30.2210991089567 & 424.533704099403 & -0.0832749565989178 \tabularnewline
64 & 3700 & 3679.66222841166 & 34.0732991701328 & -367.285733115934 & 0.624876540716417 \tabularnewline
65 & 3250 & 3359.0002421332 & 32.0959408651276 & 158.069286484686 & -0.429131430525359 \tabularnewline
66 & 4866 & 3764.60606749717 & 33.7714650159418 & 818.956457104652 & 0.453145581979061 \tabularnewline
67 & 2836 & 3606.9176993592 & 33.0126426236557 & -625.904921128473 & -0.232519738697051 \tabularnewline
68 & 3498 & 3611.3283233909 & 32.9053671011574 & -91.6518545787715 & -0.0347492922063867 \tabularnewline
69 & 3468 & 3508.53923907385 & 32.4078250260789 & 62.3247271722326 & -0.164886758443523 \tabularnewline
70 & 3924 & 3642.31616140173 & 32.7650032501953 & 204.823118594983 & 0.123187607990576 \tabularnewline
71 & 5738 & 4758.27807496358 & 35.8502257699542 & 157.948475855801 & 1.31630365280031 \tabularnewline
72 & 7028 & 5830.66708420102 & 36.063515294145 & 409.102120876214 & 1.26127351220754 \tabularnewline
73 & 5608 & 5939.51045361426 & 35.5942723824212 & -387.62780698392 & 0.0903641247595519 \tabularnewline
74 & 6030 & 6201.5939091417 & 36.7694343457979 & -339.076875892889 & 0.269823145446703 \tabularnewline
75 & 11976 & 8958.45790825918 & 58.3477425214681 & 1024.5495007534 & 3.22919557297756 \tabularnewline
76 & 7774 & 8649.95547324892 & 55.8573658778547 & -603.280745289709 & -0.440662995787246 \tabularnewline
77 & 7906 & 8246.73004752193 & 53.4497444673766 & 3.89375972971644 & -0.555389093387965 \tabularnewline
78 & 10940 & 9159.02480750253 & 57.0754230758258 & 1133.45411826088 & 1.04203019878347 \tabularnewline
79 & 7626 & 8747.39536451255 & 55.3424441805097 & -767.418297960567 & -0.56928994695559 \tabularnewline
80 & 5930 & 7383.39045681191 & 50.4134769969482 & -380.771132884958 & -1.72464947200534 \tabularnewline
81 & 6286 & 6780.42095295418 & 48.2149223057748 & -0.511287026349521 & -0.794065955911325 \tabularnewline
82 & 6788 & 6751.85416023295 & 47.9725720210046 & 94.202460133371 & -0.093319662999023 \tabularnewline
83 & 6932 & 6847.46212201033 & 48.0860015101233 & 48.4982590064355 & 0.057892481086924 \tabularnewline
84 & 6660 & 6588.13990183032 & 48.0892972274005 & 304.958398779155 & -0.37415256298213 \tabularnewline
85 & 4910 & 6048.88482736568 & 50.7015438162966 & -688.978584612298 & -0.724546542855576 \tabularnewline
86 & 4182 & 5504.61073442337 & 48.1976541927109 & -880.891009532575 & -0.712252311751832 \tabularnewline
87 & 3550 & 3978.76615328054 & 37.2722926343291 & 727.887182971369 & -1.87472727524684 \tabularnewline
88 & 3184 & 3826.36412955765 & 36.0833693843459 & -501.502770646612 & -0.227976872873775 \tabularnewline
89 & 3872 & 3921.94471622897 & 36.3797130950415 & -94.5225643701811 & 0.0719792177364927 \tabularnewline
90 & 3226 & 2993.11832651648 & 32.4887678502819 & 959.150985232064 & -1.17109734074139 \tabularnewline
91 & 2504 & 3005.2934632821 & 32.4175155225284 & -485.981411504336 & -0.0246749028126361 \tabularnewline
92 & 3648 & 3481.49465450749 & 33.8660381951932 & -168.247228116521 & 0.539302389734876 \tabularnewline
93 & 4448 & 3998.57874276743 & 35.3746315394329 & 84.8045585344954 & 0.587331173080229 \tabularnewline
94 & 2954 & 3486.40498916909 & 33.8140733018385 & -119.127041805641 & -0.665542640035038 \tabularnewline
95 & 3842 & 3616.438747526 & 34.008684001975 & 152.89424633793 & 0.116947503198375 \tabularnewline
96 & 3982 & 3605.06348548444 & 34.0122284579486 & 411.282400756394 & -0.0552429956382041 \tabularnewline
97 & 4864 & 4475.2864983746 & 31.4734980939837 & -248.702340644673 & 1.02694509547436 \tabularnewline
98 & 6796 & 5982.11041697736 & 36.6906312072515 & -284.221247511884 & 1.77189766356942 \tabularnewline
99 & 5844 & 5613.19220892217 & 34.2023161893385 & 529.652828740815 & -0.484401969290309 \tabularnewline
100 & 5656 & 5890.04662399949 & 35.6122838019535 & -414.210057256602 & 0.291832198048104 \tabularnewline
101 & 6118 & 6001.28243502668 & 35.971678527977 & 60.1284869314465 & 0.0914894040816358 \tabularnewline
102 & 7068 & 6079.79159466386 & 36.1368055850177 & 956.244905589742 & 0.0516107259650713 \tabularnewline
103 & 7696 & 7175.87198842855 & 39.7018351981425 & -277.797632118295 & 1.28757361161086 \tabularnewline
104 & 7016 & 7264.23879944192 & 39.8525882948312 & -284.902101862277 & 0.0591446437010138 \tabularnewline
105 & 5820 & 6489.04002515652 & 37.4753268473834 & -54.7688192717329 & -0.990750723358095 \tabularnewline
106 & 4904 & 5758.70484879274 & 35.4868059693722 & -275.859106034335 & -0.933327621954238 \tabularnewline
107 & 3860 & 4736.60305089577 & 33.637775679733 & -78.8501558044603 & -1.28549968060718 \tabularnewline
108 & 7222 & 5815.09740474029 & 33.575158970365 & 617.285005333312 & 1.27181219048989 \tabularnewline
109 & 7738 & 7037.91655564693 & 31.1773833663434 & -203.124210674383 & 1.4559112622564 \tabularnewline
110 & 7142 & 7258.95641536581 & 31.7593908139261 & -258.509070725082 & 0.228535604479706 \tabularnewline
111 & 13804 & 10311.8330793352 & 48.2911195351655 & 1261.06724345595 & 3.61617686421148 \tabularnewline
112 & 7964 & 9495.10833645246 & 43.6182744074744 & -888.759092783434 & -1.04097907840243 \tabularnewline
113 & 9716 & 9606.65465667071 & 43.9269780190445 & 58.5564414994688 & 0.0821813617258141 \tabularnewline
114 & 8462 & 8680.55821656174 & 40.2841316880367 & 509.629001404608 & -1.17690128714923 \tabularnewline
115 & 6884 & 7908.62811859309 & 37.6471118588444 & -413.754670159812 & -0.986671233049097 \tabularnewline
116 & 8072 & 8031.26700331992 & 37.8985920877993 & -23.2436239840946 & 0.103300956490258 \tabularnewline
117 & 7320 & 7638.53164450336 & 36.7192403913906 & 5.75656027807628 & -0.523500525375718 \tabularnewline
118 & 11700 & 9702.26706579257 & 41.5191432985229 & 470.809819424379 & 2.4640856944211 \tabularnewline
119 & 10792 & 10463.5908836684 & 42.6278348013015 & -214.094495080977 & 0.87496846896069 \tabularnewline
120 & 10930 & 10558.5058949258 & 42.6280857829737 & 332.021893048145 & 0.0636383804798302 \tabularnewline
121 & 7112 & 9078.53623215175 & 44.5563195227774 & -813.349037319555 & -1.85982411727876 \tabularnewline
122 & 8196 & 8983.43342511653 & 44.1751970109496 & -683.191621072365 & -0.168373147217053 \tabularnewline
123 & 16818 & 12196.0089139092 & 59.7723749359564 & 2277.41698158358 & 3.79967057808747 \tabularnewline
124 & 10524 & 11925.1658898721 & 58.1078067215836 & -1155.56437079089 & -0.398114303946988 \tabularnewline
125 & 14878 & 13290.093183424 & 63.7928085209803 & 611.322554664647 & 1.58110340680332 \tabularnewline
126 & 13696 & 13240.5803031358 & 63.3802161613813 & 540.417439775611 & -0.137466750569664 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300634&T=1

[TABLE]
[ROW][C]Structural Time Series Model -- Interpolation[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Level[/C][C]Slope[/C][C]Seasonal[/C][C]Stand. Residuals[/C][/ROW]
[ROW][C]1[/C][C]990[/C][C]990[/C][C]0[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]1384[/C][C]1238.01238803285[/C][C]18.3596097757887[/C][C]25.2125605218645[/C][C]0.214587824198621[/C][/ROW]
[ROW][C]3[/C][C]1350[/C][C]1300.66899473457[/C][C]20.4432681574623[/C][C]19.0343225603323[/C][C]0.0483307816996961[/C][/ROW]
[ROW][C]4[/C][C]716[/C][C]985.879674237646[/C][C]10.2534544034881[/C][C]-14.9747183637655[/C][C]-0.392470001377837[/C][/ROW]
[ROW][C]5[/C][C]2068[/C][C]1555.6487527801[/C][C]22.9171975407616[/C][C]73.1420476713633[/C][C]0.668770356619645[/C][/ROW]
[ROW][C]6[/C][C]1392[/C][C]1476.01850110563[/C][C]20.964666654901[/C][C]-2.60119119777305[/C][C]-0.123459600182757[/C][/ROW]
[ROW][C]7[/C][C]734[/C][C]1080.33154974286[/C][C]13.7540142733231[/C][C]-14.0046253138826[/C][C]-0.503055337241064[/C][/ROW]
[ROW][C]8[/C][C]758[/C][C]902.518994950861[/C][C]10.6124735669466[/C][C]8.59134387233087[/C][C]-0.231580478468978[/C][/ROW]
[ROW][C]9[/C][C]558[/C][C]716.639306153725[/C][C]7.49559245218829[/C][C]-1.43402051434204[/C][C]-0.237673790832223[/C][/ROW]
[ROW][C]10[/C][C]1620[/C][C]1191.16549025569[/C][C]14.7318520464008[/C][C]54.975010802883[/C][C]0.565084218217771[/C][/ROW]
[ROW][C]11[/C][C]3132[/C][C]2224.47634224836[/C][C]30.2185107165211[/C][C]91.8581350811275[/C][C]1.23265251340179[/C][/ROW]
[ROW][C]12[/C][C]1392[/C][C]1797.9636815199[/C][C]23.3891568959511[/C][C]-40.1224187234088[/C][C]-0.552790415202634[/C][/ROW]
[ROW][C]13[/C][C]918[/C][C]1591.16096421355[/C][C]42.4493410933888[/C][C]-473.12077421478[/C][C]-0.356979899220323[/C][/ROW]
[ROW][C]14[/C][C]776[/C][C]1110.05501649299[/C][C]25.8852889049258[/C][C]-9.94415791927278[/C][C]-0.534243228311181[/C][/ROW]
[ROW][C]15[/C][C]1348[/C][C]1214.52674301091[/C][C]27.7202017349921[/C][C]77.2159321830108[/C][C]0.0894120107674033[/C][/ROW]
[ROW][C]16[/C][C]502[/C][C]871.934634314676[/C][C]22.0490356865733[/C][C]-87.0982142116109[/C][C]-0.44050004332729[/C][/ROW]
[ROW][C]17[/C][C]1274[/C][C]1041.76704880103[/C][C]23.724191375502[/C][C]117.146109752532[/C][C]0.178078111962359[/C][/ROW]
[ROW][C]18[/C][C]1638[/C][C]1354.74942070692[/C][C]26.4783317517853[/C][C]56.5329119165512[/C][C]0.350009338101885[/C][/ROW]
[ROW][C]19[/C][C]912[/C][C]1141.22793108834[/C][C]24.3928703524859[/C][C]-40.6592028439615[/C][C]-0.290853291138777[/C][/ROW]
[ROW][C]20[/C][C]1250[/C][C]1184.24908407534[/C][C]24.5473317786117[/C][C]51.099694390816[/C][C]0.0225897128660594[/C][/ROW]
[ROW][C]21[/C][C]1614[/C][C]1422.62423812839[/C][C]26.2767916079687[/C][C]23.1217122297334[/C][C]0.259373647234084[/C][/ROW]
[ROW][C]22[/C][C]2840[/C][C]2169.18142170977[/C][C]32.0212407226026[/C][C]103.923021047524[/C][C]0.87383118824713[/C][/ROW]
[ROW][C]23[/C][C]1150[/C][C]1617.58787424634[/C][C]27.4280039637738[/C][C]-8.17590098928233[/C][C]-0.708099551302126[/C][/ROW]
[ROW][C]24[/C][C]1652[/C][C]1643.21685581082[/C][C]27.4164341514398[/C][C]10.2011390003394[/C][C]-0.00218275436966331[/C][/ROW]
[ROW][C]25[/C][C]1526[/C][C]1730.26443015145[/C][C]25.2371167881499[/C][C]-253.349431684664[/C][C]0.0815157327829096[/C][/ROW]
[ROW][C]26[/C][C]1412[/C][C]1580.63336480924[/C][C]21.9455454221958[/C][C]-48.9565475411162[/C][C]-0.193157345419883[/C][/ROW]
[ROW][C]27[/C][C]882[/C][C]1165.0046916889[/C][C]14.743927624303[/C][C]33.8799436623809[/C][C]-0.507021092405505[/C][/ROW]
[ROW][C]28[/C][C]848[/C][C]1050.44165496509[/C][C]13.3029755489143[/C][C]-104.507802272255[/C][C]-0.154624486916429[/C][/ROW]
[ROW][C]29[/C][C]820[/C][C]893.486899149973[/C][C]11.9132780339918[/C][C]57.4213483826636[/C][C]-0.205657020892201[/C][/ROW]
[ROW][C]30[/C][C]1226[/C][C]1028.63032257027[/C][C]12.7482959833856[/C][C]102.14360757368[/C][C]0.149334682896462[/C][/ROW]
[ROW][C]31[/C][C]1212[/C][C]1158.64152362583[/C][C]13.4704339316494[/C][C]-37.4232406568794[/C][C]0.142268427549871[/C][/ROW]
[ROW][C]32[/C][C]2110[/C][C]1644.159771132[/C][C]16.2472808578714[/C][C]100.124787007701[/C][C]0.572973286102359[/C][/ROW]
[ROW][C]33[/C][C]1178[/C][C]1460.43675876267[/C][C]15.09545433426[/C][C]-127.4622584667[/C][C]-0.242774916343677[/C][/ROW]
[ROW][C]34[/C][C]2548[/C][C]1943.31575390351[/C][C]17.7635562971901[/C][C]242.099833932814[/C][C]0.5679824274856[/C][/ROW]
[ROW][C]35[/C][C]1568[/C][C]1787.24936382124[/C][C]16.8031900339613[/C][C]-84.4791603592539[/C][C]-0.211080641002646[/C][/ROW]
[ROW][C]36[/C][C]2088[/C][C]1943.72838095424[/C][C]17.2535333190457[/C][C]35.7655820051071[/C][C]0.169644691908764[/C][/ROW]
[ROW][C]37[/C][C]2178[/C][C]2139.81261609712[/C][C]13.415640722223[/C][C]-105.149832994271[/C][C]0.233241716776879[/C][/ROW]
[ROW][C]38[/C][C]3016[/C][C]2610.97123340108[/C][C]19.1513466338355[/C][C]78.9089651377869[/C][C]0.524310146492024[/C][/ROW]
[ROW][C]39[/C][C]5514[/C][C]4101.59477352875[/C][C]38.280235549247[/C][C]343.344132564478[/C][C]1.7208731841554[/C][/ROW]
[ROW][C]40[/C][C]1358[/C][C]2815.53428129774[/C][C]26.0074732979809[/C][C]-462.515556231201[/C][C]-1.58694627157632[/C][/ROW]
[ROW][C]41[/C][C]3604[/C][C]3149.76467274961[/C][C]28.0963524457961[/C][C]219.5738599064[/C][C]0.372659799292014[/C][/ROW]
[ROW][C]42[/C][C]1962[/C][C]2522.42619687907[/C][C]24.4599277653226[/C][C]-59.1412135844643[/C][C]-0.794796434896375[/C][/ROW]
[ROW][C]43[/C][C]2036[/C][C]2305.43384767874[/C][C]23.2521774913237[/C][C]-84.4650342689748[/C][C]-0.293092935741195[/C][/ROW]
[ROW][C]44[/C][C]2246[/C][C]2209.71001837258[/C][C]22.6842965762297[/C][C]127.490868700605[/C][C]-0.144479242888729[/C][/ROW]
[ROW][C]45[/C][C]3434[/C][C]2918.34425525167[/C][C]25.8983519250416[/C][C]-10.2937463881902[/C][C]0.833136233456891[/C][/ROW]
[ROW][C]46[/C][C]4316[/C][C]3521.74365192298[/C][C]28.5736657604458[/C][C]351.391071289029[/C][C]0.701495361256212[/C][/ROW]
[ROW][C]47[/C][C]3032[/C][C]3357.38718852586[/C][C]27.7465417975785[/C][C]-177.380037014772[/C][C]-0.23436518097314[/C][/ROW]
[ROW][C]48[/C][C]5296[/C][C]4337.39810010039[/C][C]29.2443301688185[/C][C]226.382833883789[/C][C]1.15749583960819[/C][/ROW]
[ROW][C]49[/C][C]3850[/C][C]4300.17649662825[/C][C]30.1672741926072[/C][C]-397.825091699453[/C][C]-0.0845734578607546[/C][/ROW]
[ROW][C]50[/C][C]2098[/C][C]3245.14130174011[/C][C]20.5027414579028[/C][C]-358.478012526007[/C][C]-1.26805471006939[/C][/ROW]
[ROW][C]51[/C][C]3992[/C][C]3335.25916295517[/C][C]21.2534625229574[/C][C]606.034298999389[/C][C]0.0819249728242963[/C][/ROW]
[ROW][C]52[/C][C]4860[/C][C]4363.56048788112[/C][C]29.4821528166762[/C][C]-256.01250355083[/C][C]1.20803478434759[/C][/ROW]
[ROW][C]53[/C][C]7336[/C][C]5744.87337731213[/C][C]37.6418609839441[/C][C]568.83985268343[/C][C]1.63509031247384[/C][/ROW]
[ROW][C]54[/C][C]9614[/C][C]7756.48605771268[/C][C]47.2864076100148[/C][C]358.143374466768[/C][C]2.39445766334932[/C][/ROW]
[ROW][C]55[/C][C]2988[/C][C]5506.91824137465[/C][C]37.2701744749459[/C][C]-771.504291962535[/C][C]-2.78891740960739[/C][/ROW]
[ROW][C]56[/C][C]2756[/C][C]4048.38733973167[/C][C]31.0645736071555[/C][C]-153.726852941609[/C][C]-1.81693620063325[/C][/ROW]
[ROW][C]57[/C][C]3540[/C][C]3781.51104528935[/C][C]29.8511482052699[/C][C]-14.6526448243624[/C][C]-0.361967658804136[/C][/ROW]
[ROW][C]58[/C][C]2710[/C][C]3056.81177267198[/C][C]26.8433393166928[/C][C]227.824240009737[/C][C]-0.916796564402675[/C][/ROW]
[ROW][C]59[/C][C]3730[/C][C]3528.83589818378[/C][C]28.3835799758055[/C][C]-138.036233949212[/C][C]0.540909361010021[/C][/ROW]
[ROW][C]60[/C][C]3508[/C][C]3417.71462133099[/C][C]28.2893703920889[/C][C]196.834134731065[/C][C]-0.16967695681323[/C][/ROW]
[ROW][C]61[/C][C]2640[/C][C]3157.10912677998[/C][C]30.9979512691151[/C][C]-292.353295906145[/C][C]-0.362163390659045[/C][/ROW]
[ROW][C]62[/C][C]2788[/C][C]3168.4627073889[/C][C]30.8672674312695[/C][C]-366.029375606907[/C][C]-0.0232291007841911[/C][/ROW]
[ROW][C]63[/C][C]3502[/C][C]3128.90814661031[/C][C]30.2210991089567[/C][C]424.533704099403[/C][C]-0.0832749565989178[/C][/ROW]
[ROW][C]64[/C][C]3700[/C][C]3679.66222841166[/C][C]34.0732991701328[/C][C]-367.285733115934[/C][C]0.624876540716417[/C][/ROW]
[ROW][C]65[/C][C]3250[/C][C]3359.0002421332[/C][C]32.0959408651276[/C][C]158.069286484686[/C][C]-0.429131430525359[/C][/ROW]
[ROW][C]66[/C][C]4866[/C][C]3764.60606749717[/C][C]33.7714650159418[/C][C]818.956457104652[/C][C]0.453145581979061[/C][/ROW]
[ROW][C]67[/C][C]2836[/C][C]3606.9176993592[/C][C]33.0126426236557[/C][C]-625.904921128473[/C][C]-0.232519738697051[/C][/ROW]
[ROW][C]68[/C][C]3498[/C][C]3611.3283233909[/C][C]32.9053671011574[/C][C]-91.6518545787715[/C][C]-0.0347492922063867[/C][/ROW]
[ROW][C]69[/C][C]3468[/C][C]3508.53923907385[/C][C]32.4078250260789[/C][C]62.3247271722326[/C][C]-0.164886758443523[/C][/ROW]
[ROW][C]70[/C][C]3924[/C][C]3642.31616140173[/C][C]32.7650032501953[/C][C]204.823118594983[/C][C]0.123187607990576[/C][/ROW]
[ROW][C]71[/C][C]5738[/C][C]4758.27807496358[/C][C]35.8502257699542[/C][C]157.948475855801[/C][C]1.31630365280031[/C][/ROW]
[ROW][C]72[/C][C]7028[/C][C]5830.66708420102[/C][C]36.063515294145[/C][C]409.102120876214[/C][C]1.26127351220754[/C][/ROW]
[ROW][C]73[/C][C]5608[/C][C]5939.51045361426[/C][C]35.5942723824212[/C][C]-387.62780698392[/C][C]0.0903641247595519[/C][/ROW]
[ROW][C]74[/C][C]6030[/C][C]6201.5939091417[/C][C]36.7694343457979[/C][C]-339.076875892889[/C][C]0.269823145446703[/C][/ROW]
[ROW][C]75[/C][C]11976[/C][C]8958.45790825918[/C][C]58.3477425214681[/C][C]1024.5495007534[/C][C]3.22919557297756[/C][/ROW]
[ROW][C]76[/C][C]7774[/C][C]8649.95547324892[/C][C]55.8573658778547[/C][C]-603.280745289709[/C][C]-0.440662995787246[/C][/ROW]
[ROW][C]77[/C][C]7906[/C][C]8246.73004752193[/C][C]53.4497444673766[/C][C]3.89375972971644[/C][C]-0.555389093387965[/C][/ROW]
[ROW][C]78[/C][C]10940[/C][C]9159.02480750253[/C][C]57.0754230758258[/C][C]1133.45411826088[/C][C]1.04203019878347[/C][/ROW]
[ROW][C]79[/C][C]7626[/C][C]8747.39536451255[/C][C]55.3424441805097[/C][C]-767.418297960567[/C][C]-0.56928994695559[/C][/ROW]
[ROW][C]80[/C][C]5930[/C][C]7383.39045681191[/C][C]50.4134769969482[/C][C]-380.771132884958[/C][C]-1.72464947200534[/C][/ROW]
[ROW][C]81[/C][C]6286[/C][C]6780.42095295418[/C][C]48.2149223057748[/C][C]-0.511287026349521[/C][C]-0.794065955911325[/C][/ROW]
[ROW][C]82[/C][C]6788[/C][C]6751.85416023295[/C][C]47.9725720210046[/C][C]94.202460133371[/C][C]-0.093319662999023[/C][/ROW]
[ROW][C]83[/C][C]6932[/C][C]6847.46212201033[/C][C]48.0860015101233[/C][C]48.4982590064355[/C][C]0.057892481086924[/C][/ROW]
[ROW][C]84[/C][C]6660[/C][C]6588.13990183032[/C][C]48.0892972274005[/C][C]304.958398779155[/C][C]-0.37415256298213[/C][/ROW]
[ROW][C]85[/C][C]4910[/C][C]6048.88482736568[/C][C]50.7015438162966[/C][C]-688.978584612298[/C][C]-0.724546542855576[/C][/ROW]
[ROW][C]86[/C][C]4182[/C][C]5504.61073442337[/C][C]48.1976541927109[/C][C]-880.891009532575[/C][C]-0.712252311751832[/C][/ROW]
[ROW][C]87[/C][C]3550[/C][C]3978.76615328054[/C][C]37.2722926343291[/C][C]727.887182971369[/C][C]-1.87472727524684[/C][/ROW]
[ROW][C]88[/C][C]3184[/C][C]3826.36412955765[/C][C]36.0833693843459[/C][C]-501.502770646612[/C][C]-0.227976872873775[/C][/ROW]
[ROW][C]89[/C][C]3872[/C][C]3921.94471622897[/C][C]36.3797130950415[/C][C]-94.5225643701811[/C][C]0.0719792177364927[/C][/ROW]
[ROW][C]90[/C][C]3226[/C][C]2993.11832651648[/C][C]32.4887678502819[/C][C]959.150985232064[/C][C]-1.17109734074139[/C][/ROW]
[ROW][C]91[/C][C]2504[/C][C]3005.2934632821[/C][C]32.4175155225284[/C][C]-485.981411504336[/C][C]-0.0246749028126361[/C][/ROW]
[ROW][C]92[/C][C]3648[/C][C]3481.49465450749[/C][C]33.8660381951932[/C][C]-168.247228116521[/C][C]0.539302389734876[/C][/ROW]
[ROW][C]93[/C][C]4448[/C][C]3998.57874276743[/C][C]35.3746315394329[/C][C]84.8045585344954[/C][C]0.587331173080229[/C][/ROW]
[ROW][C]94[/C][C]2954[/C][C]3486.40498916909[/C][C]33.8140733018385[/C][C]-119.127041805641[/C][C]-0.665542640035038[/C][/ROW]
[ROW][C]95[/C][C]3842[/C][C]3616.438747526[/C][C]34.008684001975[/C][C]152.89424633793[/C][C]0.116947503198375[/C][/ROW]
[ROW][C]96[/C][C]3982[/C][C]3605.06348548444[/C][C]34.0122284579486[/C][C]411.282400756394[/C][C]-0.0552429956382041[/C][/ROW]
[ROW][C]97[/C][C]4864[/C][C]4475.2864983746[/C][C]31.4734980939837[/C][C]-248.702340644673[/C][C]1.02694509547436[/C][/ROW]
[ROW][C]98[/C][C]6796[/C][C]5982.11041697736[/C][C]36.6906312072515[/C][C]-284.221247511884[/C][C]1.77189766356942[/C][/ROW]
[ROW][C]99[/C][C]5844[/C][C]5613.19220892217[/C][C]34.2023161893385[/C][C]529.652828740815[/C][C]-0.484401969290309[/C][/ROW]
[ROW][C]100[/C][C]5656[/C][C]5890.04662399949[/C][C]35.6122838019535[/C][C]-414.210057256602[/C][C]0.291832198048104[/C][/ROW]
[ROW][C]101[/C][C]6118[/C][C]6001.28243502668[/C][C]35.971678527977[/C][C]60.1284869314465[/C][C]0.0914894040816358[/C][/ROW]
[ROW][C]102[/C][C]7068[/C][C]6079.79159466386[/C][C]36.1368055850177[/C][C]956.244905589742[/C][C]0.0516107259650713[/C][/ROW]
[ROW][C]103[/C][C]7696[/C][C]7175.87198842855[/C][C]39.7018351981425[/C][C]-277.797632118295[/C][C]1.28757361161086[/C][/ROW]
[ROW][C]104[/C][C]7016[/C][C]7264.23879944192[/C][C]39.8525882948312[/C][C]-284.902101862277[/C][C]0.0591446437010138[/C][/ROW]
[ROW][C]105[/C][C]5820[/C][C]6489.04002515652[/C][C]37.4753268473834[/C][C]-54.7688192717329[/C][C]-0.990750723358095[/C][/ROW]
[ROW][C]106[/C][C]4904[/C][C]5758.70484879274[/C][C]35.4868059693722[/C][C]-275.859106034335[/C][C]-0.933327621954238[/C][/ROW]
[ROW][C]107[/C][C]3860[/C][C]4736.60305089577[/C][C]33.637775679733[/C][C]-78.8501558044603[/C][C]-1.28549968060718[/C][/ROW]
[ROW][C]108[/C][C]7222[/C][C]5815.09740474029[/C][C]33.575158970365[/C][C]617.285005333312[/C][C]1.27181219048989[/C][/ROW]
[ROW][C]109[/C][C]7738[/C][C]7037.91655564693[/C][C]31.1773833663434[/C][C]-203.124210674383[/C][C]1.4559112622564[/C][/ROW]
[ROW][C]110[/C][C]7142[/C][C]7258.95641536581[/C][C]31.7593908139261[/C][C]-258.509070725082[/C][C]0.228535604479706[/C][/ROW]
[ROW][C]111[/C][C]13804[/C][C]10311.8330793352[/C][C]48.2911195351655[/C][C]1261.06724345595[/C][C]3.61617686421148[/C][/ROW]
[ROW][C]112[/C][C]7964[/C][C]9495.10833645246[/C][C]43.6182744074744[/C][C]-888.759092783434[/C][C]-1.04097907840243[/C][/ROW]
[ROW][C]113[/C][C]9716[/C][C]9606.65465667071[/C][C]43.9269780190445[/C][C]58.5564414994688[/C][C]0.0821813617258141[/C][/ROW]
[ROW][C]114[/C][C]8462[/C][C]8680.55821656174[/C][C]40.2841316880367[/C][C]509.629001404608[/C][C]-1.17690128714923[/C][/ROW]
[ROW][C]115[/C][C]6884[/C][C]7908.62811859309[/C][C]37.6471118588444[/C][C]-413.754670159812[/C][C]-0.986671233049097[/C][/ROW]
[ROW][C]116[/C][C]8072[/C][C]8031.26700331992[/C][C]37.8985920877993[/C][C]-23.2436239840946[/C][C]0.103300956490258[/C][/ROW]
[ROW][C]117[/C][C]7320[/C][C]7638.53164450336[/C][C]36.7192403913906[/C][C]5.75656027807628[/C][C]-0.523500525375718[/C][/ROW]
[ROW][C]118[/C][C]11700[/C][C]9702.26706579257[/C][C]41.5191432985229[/C][C]470.809819424379[/C][C]2.4640856944211[/C][/ROW]
[ROW][C]119[/C][C]10792[/C][C]10463.5908836684[/C][C]42.6278348013015[/C][C]-214.094495080977[/C][C]0.87496846896069[/C][/ROW]
[ROW][C]120[/C][C]10930[/C][C]10558.5058949258[/C][C]42.6280857829737[/C][C]332.021893048145[/C][C]0.0636383804798302[/C][/ROW]
[ROW][C]121[/C][C]7112[/C][C]9078.53623215175[/C][C]44.5563195227774[/C][C]-813.349037319555[/C][C]-1.85982411727876[/C][/ROW]
[ROW][C]122[/C][C]8196[/C][C]8983.43342511653[/C][C]44.1751970109496[/C][C]-683.191621072365[/C][C]-0.168373147217053[/C][/ROW]
[ROW][C]123[/C][C]16818[/C][C]12196.0089139092[/C][C]59.7723749359564[/C][C]2277.41698158358[/C][C]3.79967057808747[/C][/ROW]
[ROW][C]124[/C][C]10524[/C][C]11925.1658898721[/C][C]58.1078067215836[/C][C]-1155.56437079089[/C][C]-0.398114303946988[/C][/ROW]
[ROW][C]125[/C][C]14878[/C][C]13290.093183424[/C][C]63.7928085209803[/C][C]611.322554664647[/C][C]1.58110340680332[/C][/ROW]
[ROW][C]126[/C][C]13696[/C][C]13240.5803031358[/C][C]63.3802161613813[/C][C]540.417439775611[/C][C]-0.137466750569664[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300634&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300634&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Structural Time Series Model -- Interpolation
tObservedLevelSlopeSeasonalStand. Residuals
1990990000
213841238.0123880328518.359609775788725.21256052186450.214587824198621
313501300.6689947345720.443268157462319.03432256033230.0483307816996961
4716985.87967423764610.2534544034881-14.9747183637655-0.392470001377837
520681555.648752780122.917197540761673.14204767136330.668770356619645
613921476.0185011056320.964666654901-2.60119119777305-0.123459600182757
77341080.3315497428613.7540142733231-14.0046253138826-0.503055337241064
8758902.51899495086110.61247356694668.59134387233087-0.231580478468978
9558716.6393061537257.49559245218829-1.43402051434204-0.237673790832223
1016201191.1654902556914.731852046400854.9750108028830.565084218217771
1131322224.4763422483630.218510716521191.85813508112751.23265251340179
1213921797.963681519923.3891568959511-40.1224187234088-0.552790415202634
139181591.1609642135542.4493410933888-473.12077421478-0.356979899220323
147761110.0550164929925.8852889049258-9.94415791927278-0.534243228311181
1513481214.5267430109127.720201734992177.21593218301080.0894120107674033
16502871.93463431467622.0490356865733-87.0982142116109-0.44050004332729
1712741041.7670488010323.724191375502117.1461097525320.178078111962359
1816381354.7494207069226.478331751785356.53291191655120.350009338101885
199121141.2279310883424.3928703524859-40.6592028439615-0.290853291138777
2012501184.2490840753424.547331778611751.0996943908160.0225897128660594
2116141422.6242381283926.276791607968723.12171222973340.259373647234084
2228402169.1814217097732.0212407226026103.9230210475240.87383118824713
2311501617.5878742463427.4280039637738-8.17590098928233-0.708099551302126
2416521643.2168558108227.416434151439810.2011390003394-0.00218275436966331
2515261730.2644301514525.2371167881499-253.3494316846640.0815157327829096
2614121580.6333648092421.9455454221958-48.9565475411162-0.193157345419883
278821165.004691688914.74392762430333.8799436623809-0.507021092405505
288481050.4416549650913.3029755489143-104.507802272255-0.154624486916429
29820893.48689914997311.913278033991857.4213483826636-0.205657020892201
3012261028.6303225702712.7482959833856102.143607573680.149334682896462
3112121158.6415236258313.4704339316494-37.42324065687940.142268427549871
3221101644.15977113216.2472808578714100.1247870077010.572973286102359
3311781460.4367587626715.09545433426-127.4622584667-0.242774916343677
3425481943.3157539035117.7635562971901242.0998339328140.5679824274856
3515681787.2493638212416.8031900339613-84.4791603592539-0.211080641002646
3620881943.7283809542417.253533319045735.76558200510710.169644691908764
3721782139.8126160971213.415640722223-105.1498329942710.233241716776879
3830162610.9712334010819.151346633835578.90896513778690.524310146492024
3955144101.5947735287538.280235549247343.3441325644781.7208731841554
4013582815.5342812977426.0074732979809-462.515556231201-1.58694627157632
4136043149.7646727496128.0963524457961219.57385990640.372659799292014
4219622522.4261968790724.4599277653226-59.1412135844643-0.794796434896375
4320362305.4338476787423.2521774913237-84.4650342689748-0.293092935741195
4422462209.7100183725822.6842965762297127.490868700605-0.144479242888729
4534342918.3442552516725.8983519250416-10.29374638819020.833136233456891
4643163521.7436519229828.5736657604458351.3910712890290.701495361256212
4730323357.3871885258627.7465417975785-177.380037014772-0.23436518097314
4852964337.3981001003929.2443301688185226.3828338837891.15749583960819
4938504300.1764966282530.1672741926072-397.825091699453-0.0845734578607546
5020983245.1413017401120.5027414579028-358.478012526007-1.26805471006939
5139923335.2591629551721.2534625229574606.0342989993890.0819249728242963
5248604363.5604878811229.4821528166762-256.012503550831.20803478434759
5373365744.8733773121337.6418609839441568.839852683431.63509031247384
5496147756.4860577126847.2864076100148358.1433744667682.39445766334932
5529885506.9182413746537.2701744749459-771.504291962535-2.78891740960739
5627564048.3873397316731.0645736071555-153.726852941609-1.81693620063325
5735403781.5110452893529.8511482052699-14.6526448243624-0.361967658804136
5827103056.8117726719826.8433393166928227.824240009737-0.916796564402675
5937303528.8358981837828.3835799758055-138.0362339492120.540909361010021
6035083417.7146213309928.2893703920889196.834134731065-0.16967695681323
6126403157.1091267799830.9979512691151-292.353295906145-0.362163390659045
6227883168.462707388930.8672674312695-366.029375606907-0.0232291007841911
6335023128.9081466103130.2210991089567424.533704099403-0.0832749565989178
6437003679.6622284116634.0732991701328-367.2857331159340.624876540716417
6532503359.000242133232.0959408651276158.069286484686-0.429131430525359
6648663764.6060674971733.7714650159418818.9564571046520.453145581979061
6728363606.917699359233.0126426236557-625.904921128473-0.232519738697051
6834983611.328323390932.9053671011574-91.6518545787715-0.0347492922063867
6934683508.5392390738532.407825026078962.3247271722326-0.164886758443523
7039243642.3161614017332.7650032501953204.8231185949830.123187607990576
7157384758.2780749635835.8502257699542157.9484758558011.31630365280031
7270285830.6670842010236.063515294145409.1021208762141.26127351220754
7356085939.5104536142635.5942723824212-387.627806983920.0903641247595519
7460306201.593909141736.7694343457979-339.0768758928890.269823145446703
75119768958.4579082591858.34774252146811024.54950075343.22919557297756
7677748649.9554732489255.8573658778547-603.280745289709-0.440662995787246
7779068246.7300475219353.44974446737663.89375972971644-0.555389093387965
78109409159.0248075025357.07542307582581133.454118260881.04203019878347
7976268747.3953645125555.3424441805097-767.418297960567-0.56928994695559
8059307383.3904568119150.4134769969482-380.771132884958-1.72464947200534
8162866780.4209529541848.2149223057748-0.511287026349521-0.794065955911325
8267886751.8541602329547.972572021004694.202460133371-0.093319662999023
8369326847.4621220103348.086001510123348.49825900643550.057892481086924
8466606588.1399018303248.0892972274005304.958398779155-0.37415256298213
8549106048.8848273656850.7015438162966-688.978584612298-0.724546542855576
8641825504.6107344233748.1976541927109-880.891009532575-0.712252311751832
8735503978.7661532805437.2722926343291727.887182971369-1.87472727524684
8831843826.3641295576536.0833693843459-501.502770646612-0.227976872873775
8938723921.9447162289736.3797130950415-94.52256437018110.0719792177364927
9032262993.1183265164832.4887678502819959.150985232064-1.17109734074139
9125043005.293463282132.4175155225284-485.981411504336-0.0246749028126361
9236483481.4946545074933.8660381951932-168.2472281165210.539302389734876
9344483998.5787427674335.374631539432984.80455853449540.587331173080229
9429543486.4049891690933.8140733018385-119.127041805641-0.665542640035038
9538423616.43874752634.008684001975152.894246337930.116947503198375
9639823605.0634854844434.0122284579486411.282400756394-0.0552429956382041
9748644475.286498374631.4734980939837-248.7023406446731.02694509547436
9867965982.1104169773636.6906312072515-284.2212475118841.77189766356942
9958445613.1922089221734.2023161893385529.652828740815-0.484401969290309
10056565890.0466239994935.6122838019535-414.2100572566020.291832198048104
10161186001.2824350266835.97167852797760.12848693144650.0914894040816358
10270686079.7915946638636.1368055850177956.2449055897420.0516107259650713
10376967175.8719884285539.7018351981425-277.7976321182951.28757361161086
10470167264.2387994419239.8525882948312-284.9021018622770.0591446437010138
10558206489.0400251565237.4753268473834-54.7688192717329-0.990750723358095
10649045758.7048487927435.4868059693722-275.859106034335-0.933327621954238
10738604736.6030508957733.637775679733-78.8501558044603-1.28549968060718
10872225815.0974047402933.575158970365617.2850053333121.27181219048989
10977387037.9165556469331.1773833663434-203.1242106743831.4559112622564
11071427258.9564153658131.7593908139261-258.5090707250820.228535604479706
1111380410311.833079335248.29111953516551261.067243455953.61617686421148
11279649495.1083364524643.6182744074744-888.759092783434-1.04097907840243
11397169606.6546566707143.926978019044558.55644149946880.0821813617258141
11484628680.5582165617440.2841316880367509.629001404608-1.17690128714923
11568847908.6281185930937.6471118588444-413.754670159812-0.986671233049097
11680728031.2670033199237.8985920877993-23.24362398409460.103300956490258
11773207638.5316445033636.71924039139065.75656027807628-0.523500525375718
118117009702.2670657925741.5191432985229470.8098194243792.4640856944211
1191079210463.590883668442.6278348013015-214.0944950809770.87496846896069
1201093010558.505894925842.6280857829737332.0218930481450.0636383804798302
12171129078.5362321517544.5563195227774-813.349037319555-1.85982411727876
12281968983.4334251165344.1751970109496-683.191621072365-0.168373147217053
1231681812196.008913909259.77237493595642277.416981583583.79967057808747
1241052411925.165889872158.1078067215836-1155.56437079089-0.398114303946988
1251487813290.09318342463.7928085209803611.3225546646471.58110340680332
1261369613240.580303135863.3802161613813540.417439775611-0.137466750569664







Structural Time Series Model -- Extrapolation
tObservedLevelSeasonal
112513.876397858913114.3266316027-600.450233743805
212789.457620813208.8180965601-419.360475760095
312490.462454452813303.3095615175-812.847107064697
413521.907018865913397.801026475124.105992390939
513179.627237502413492.2924914324-312.665253930015
614158.881338061813586.7839563899572.097381671928
712812.502541397413681.2754213473-868.772879949861
812694.963515078613775.7668863047-1080.80337122612
916632.959456731213870.25835126222762.70110546905
1012861.164636455113964.7498162196-1103.58517976448
1115075.497713260914059.24128117711016.25643208381
1214877.056335957814153.7327461345723.32358982335
1313647.773977348114248.2242110919-600.450233743805
1413923.355200289314342.7156760494-419.360475760095
1513624.360033942114437.2071410068-812.847107064697
1614655.804598355214531.6986059642124.105992390938
1714313.524816991714626.1900709217-312.665253930014
1815292.77891755114720.6815358791572.097381671928

\begin{tabular}{lllllllll}
\hline
Structural Time Series Model -- Extrapolation \tabularnewline
t & Observed & Level & Seasonal \tabularnewline
1 & 12513.8763978589 & 13114.3266316027 & -600.450233743805 \tabularnewline
2 & 12789.4576208 & 13208.8180965601 & -419.360475760095 \tabularnewline
3 & 12490.4624544528 & 13303.3095615175 & -812.847107064697 \tabularnewline
4 & 13521.9070188659 & 13397.801026475 & 124.105992390939 \tabularnewline
5 & 13179.6272375024 & 13492.2924914324 & -312.665253930015 \tabularnewline
6 & 14158.8813380618 & 13586.7839563899 & 572.097381671928 \tabularnewline
7 & 12812.5025413974 & 13681.2754213473 & -868.772879949861 \tabularnewline
8 & 12694.9635150786 & 13775.7668863047 & -1080.80337122612 \tabularnewline
9 & 16632.9594567312 & 13870.2583512622 & 2762.70110546905 \tabularnewline
10 & 12861.1646364551 & 13964.7498162196 & -1103.58517976448 \tabularnewline
11 & 15075.4977132609 & 14059.2412811771 & 1016.25643208381 \tabularnewline
12 & 14877.0563359578 & 14153.7327461345 & 723.32358982335 \tabularnewline
13 & 13647.7739773481 & 14248.2242110919 & -600.450233743805 \tabularnewline
14 & 13923.3552002893 & 14342.7156760494 & -419.360475760095 \tabularnewline
15 & 13624.3600339421 & 14437.2071410068 & -812.847107064697 \tabularnewline
16 & 14655.8045983552 & 14531.6986059642 & 124.105992390938 \tabularnewline
17 & 14313.5248169917 & 14626.1900709217 & -312.665253930014 \tabularnewline
18 & 15292.778917551 & 14720.6815358791 & 572.097381671928 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300634&T=2

[TABLE]
[ROW][C]Structural Time Series Model -- Extrapolation[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Level[/C][C]Seasonal[/C][/ROW]
[ROW][C]1[/C][C]12513.8763978589[/C][C]13114.3266316027[/C][C]-600.450233743805[/C][/ROW]
[ROW][C]2[/C][C]12789.4576208[/C][C]13208.8180965601[/C][C]-419.360475760095[/C][/ROW]
[ROW][C]3[/C][C]12490.4624544528[/C][C]13303.3095615175[/C][C]-812.847107064697[/C][/ROW]
[ROW][C]4[/C][C]13521.9070188659[/C][C]13397.801026475[/C][C]124.105992390939[/C][/ROW]
[ROW][C]5[/C][C]13179.6272375024[/C][C]13492.2924914324[/C][C]-312.665253930015[/C][/ROW]
[ROW][C]6[/C][C]14158.8813380618[/C][C]13586.7839563899[/C][C]572.097381671928[/C][/ROW]
[ROW][C]7[/C][C]12812.5025413974[/C][C]13681.2754213473[/C][C]-868.772879949861[/C][/ROW]
[ROW][C]8[/C][C]12694.9635150786[/C][C]13775.7668863047[/C][C]-1080.80337122612[/C][/ROW]
[ROW][C]9[/C][C]16632.9594567312[/C][C]13870.2583512622[/C][C]2762.70110546905[/C][/ROW]
[ROW][C]10[/C][C]12861.1646364551[/C][C]13964.7498162196[/C][C]-1103.58517976448[/C][/ROW]
[ROW][C]11[/C][C]15075.4977132609[/C][C]14059.2412811771[/C][C]1016.25643208381[/C][/ROW]
[ROW][C]12[/C][C]14877.0563359578[/C][C]14153.7327461345[/C][C]723.32358982335[/C][/ROW]
[ROW][C]13[/C][C]13647.7739773481[/C][C]14248.2242110919[/C][C]-600.450233743805[/C][/ROW]
[ROW][C]14[/C][C]13923.3552002893[/C][C]14342.7156760494[/C][C]-419.360475760095[/C][/ROW]
[ROW][C]15[/C][C]13624.3600339421[/C][C]14437.2071410068[/C][C]-812.847107064697[/C][/ROW]
[ROW][C]16[/C][C]14655.8045983552[/C][C]14531.6986059642[/C][C]124.105992390938[/C][/ROW]
[ROW][C]17[/C][C]14313.5248169917[/C][C]14626.1900709217[/C][C]-312.665253930014[/C][/ROW]
[ROW][C]18[/C][C]15292.778917551[/C][C]14720.6815358791[/C][C]572.097381671928[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300634&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300634&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Structural Time Series Model -- Extrapolation
tObservedLevelSeasonal
112513.876397858913114.3266316027-600.450233743805
212789.457620813208.8180965601-419.360475760095
312490.462454452813303.3095615175-812.847107064697
413521.907018865913397.801026475124.105992390939
513179.627237502413492.2924914324-312.665253930015
614158.881338061813586.7839563899572.097381671928
712812.502541397413681.2754213473-868.772879949861
812694.963515078613775.7668863047-1080.80337122612
916632.959456731213870.25835126222762.70110546905
1012861.164636455113964.7498162196-1103.58517976448
1115075.497713260914059.24128117711016.25643208381
1214877.056335957814153.7327461345723.32358982335
1313647.773977348114248.2242110919-600.450233743805
1413923.355200289314342.7156760494-419.360475760095
1513624.360033942114437.2071410068-812.847107064697
1614655.804598355214531.6986059642124.105992390938
1714313.524816991714626.1900709217-312.665253930014
1815292.77891755114720.6815358791572.097381671928



Parameters (Session):
par1 = 12 ; par2 = 18 ; par3 = BFGS ;
Parameters (R input):
par1 = 12 ; par2 = 18 ; par3 = BFGS ;
R code (references can be found in the software module):
par3 <- 'BFGS'
par2 <- '18'
par1 <- '12'
require('stsm')
require('stsm.class')
require('KFKSDS')
par1 <- as.numeric(par1)
par2 <- as.numeric(par2)
nx <- length(x)
x <- ts(x,frequency=par1)
m <- StructTS(x,type='BSM')
print(m$coef)
print(m$fitted)
print(m$resid)
mylevel <- as.numeric(m$fitted[,'level'])
myslope <- as.numeric(m$fitted[,'slope'])
myseas <- as.numeric(m$fitted[,'sea'])
myresid <- as.numeric(m$resid)
myfit <- mylevel+myseas
mm <- stsm.model(model = 'BSM', y = x, transPars = 'StructTS')
fit2 <- stsmFit(mm, stsm.method = 'maxlik.td.optim', method = par3, KF.args = list(P0cov = TRUE))
(fit2.comps <- tsSmooth(fit2, P0cov = FALSE)$states)
m2 <- set.pars(mm, pmax(fit2$par, .Machine$double.eps))
(ss <- char2numeric(m2))
(pred <- predict(ss, x, n.ahead = par2))
mylagmax <- nx/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(mylevel,na.action=na.pass,lag.max = mylagmax,main='Level')
acf(myseas,na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(myresid,na.action=na.pass,lag.max = mylagmax,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(mylevel,main='Level')
spectrum(myseas,main='Seasonal')
spectrum(myresid,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(mylevel,main='Level')
cpgram(myseas,main='Seasonal')
cpgram(myresid,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test1.png')
plot(as.numeric(m$resid),main='Standardized Residuals',ylab='Residuals',xlab='time',type='b')
grid()
dev.off()
bitmap(file='test5.png')
op <- par(mfrow = c(2,2))
hist(m$resid,main='Residual Histogram')
plot(density(m$resid),main='Residual Kernel Density')
qqnorm(m$resid,main='Residual Normal QQ Plot')
qqline(m$resid)
plot(m$resid^2, myfit^2,main='Sq.Resid vs. Sq.Fit',xlab='Squared residuals',ylab='Squared Fit')
par(op)
dev.off()
bitmap(file='test6.png')
par(mfrow = c(3,1), mar = c(3,3,3,3))
plot(cbind(x, pred$pred), type = 'n', plot.type = 'single', ylab = '')
lines(x)
polygon(c(time(pred$pred), rev(time(pred$pred))), c(pred$pred + 2 * pred$se, rev(pred$pred)), col = 'gray85', border = NA)
polygon(c(time(pred$pred), rev(time(pred$pred))), c(pred$pred - 2 * pred$se, rev(pred$pred)), col = ' gray85', border = NA)
lines(pred$pred, col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the observed series', side = 3, adj = 0)
plot(cbind(x, pred$a[,1]), type = 'n', plot.type = 'single', ylab = '')
lines(x)
polygon(c(time(pred$a[,1]), rev(time(pred$a[,1]))), c(pred$a[,1] + 2 * sqrt(pred$P[,1]), rev(pred$a[,1])), col = 'gray85', border = NA)
polygon(c(time(pred$a[,1]), rev(time(pred$a[,1]))), c(pred$a[,1] - 2 * sqrt(pred$P[,1]), rev(pred$a[,1])), col = ' gray85', border = NA)
lines(pred$a[,1], col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the level component', side = 3, adj = 0)
plot(cbind(fit2.comps[,3], pred$a[,3]), type = 'n', plot.type = 'single', ylab = '')
lines(fit2.comps[,3])
polygon(c(time(pred$a[,3]), rev(time(pred$a[,3]))), c(pred$a[,3] + 2 * sqrt(pred$P[,3]), rev(pred$a[,3])), col = 'gray85', border = NA)
polygon(c(time(pred$a[,3]), rev(time(pred$a[,3]))), c(pred$a[,3] - 2 * sqrt(pred$P[,3]), rev(pred$a[,3])), col = ' gray85', border = NA)
lines(pred$a[,3], col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the seasonal component', side = 3, adj = 0)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Structural Time Series Model -- Interpolation',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Level',header=TRUE)
a<-table.element(a,'Slope',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Stand. Residuals',header=TRUE)
a<-table.row.end(a)
for (i in 1:nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,mylevel[i])
a<-table.element(a,myslope[i])
a<-table.element(a,myseas[i])
a<-table.element(a,myresid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Structural Time Series Model -- Extrapolation',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Level',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.row.end(a)
for (i in 1:par2) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,pred$pred[i])
a<-table.element(a,pred$a[i,1])
a<-table.element(a,pred$a[i,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')