Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimaforecasting.wasp
Title produced by softwareARIMA Forecasting
Date of computationFri, 16 Dec 2016 19:48:27 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/16/t1481914527kwflq6ucq7qbxdo.htm/, Retrieved Fri, 01 Nov 2024 03:38:16 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=300484, Retrieved Fri, 01 Nov 2024 03:38:16 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact68
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [ARIMA Forecasting] [] [2016-12-16 18:48:27] [037fdaa34a77b5f63489b3bcd360a80c] [Current]
Feedback Forum

Post a new message
Dataseries X:
3455
3585
3675
3680
3735
3860
3765
3905
4110
4170
4110
4025
4145
4285
4370
4355
4385
4525
4375
4525
4610
4595
4500
4370
4390
4530
4590
4580
4595
4685
4490
4635
4710
4655
4665
4550
4590
4675
4645
4665
4635
4720
4565
4720
4830
4830
4765
4705
4675
4900
4945
4905
4955
5120
4860
5040
5140
5240
5145
5070
5085
5215
5255
5275
5315
5450
5205
5370
5500
5490
5440
5360
5380
5460
5450
5520
5475
5600
5250
5465
5515
5425
5325
5275
5160
5360
5435
5285
5415
5575
5265
5480
5565
5500
5280
5135
5050
5100
5070
5115
5140
5330
5080
5285
5405
5385
5255
5100
5040
5235
5310
5265
5380
5465
5225
5445




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time4 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300484&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]4 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=300484&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300484&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R ServerBig Analytics Cloud Computing Center







Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[116])
1045285-------
1055405-------
1065385-------
1075255-------
1085100-------
1095040-------
1105235-------
1115310-------
1125265-------
1135380-------
1145465-------
1155225-------
1165445-------
117NA5511.31285412.44335608.4396NA0.90960.9840.9096
118NA5472.9475342.97435599.9039NANA0.91270.6669
119NA5323.13915154.17955486.8983NANA0.79260.0723
120NA5196.78164974.34365410.0817NANA0.81310.0113
121NA5104.54974835.91235359.7395NANA0.690.0045
122NA5263.67954969.15815542.5726NANA0.57990.1013
123NA5311.04684985.49355617.7658NANA0.50270.196
124NA5249.32614887.35695587.8968NANA0.46390.1287
125NA5355.53234972.46525712.9714NANA0.44660.3119
126NA5496.74465097.76975868.658NANA0.56640.6075
127NA5245.84944799.39885657.1762NANA0.53960.1713
128NA5455.41345003.36735872.7665NANA0.51950.5195
129NA5550.02195069.04025992.5219NANANA0.6791
130NA5514.89554997.75435987.5368NANANA0.614
131NA5347.85884778.00735862.5791NANANA0.3557
132NA5199.29964571.99465758.6716NANANA0.1946
133NA5127.86144452.4815724.1015NANANA0.1486
134NA5254.21124562.36595865.0053NANANA0.2702
135NA5279.98924557.60885914.7929NANANA0.3052
136NA5274.69824517.91715935.7652NANANA0.3068
137NA5347.86384571.40636025.0758NANANA0.3893
138NA5480.97564696.58266166.3846NANANA0.541
139NA5239.44744381.30255975.601NANANA0.2921
140NA5449.06844601.35486181.6039NANANA0.5043

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast \tabularnewline
time & Y[t] & F[t] & 95% LB & 95% UB & p-value(H0: Y[t] = F[t]) & P(F[t]>Y[t-1]) & P(F[t]>Y[t-s]) & P(F[t]>Y[116]) \tabularnewline
104 & 5285 & - & - & - & - & - & - & - \tabularnewline
105 & 5405 & - & - & - & - & - & - & - \tabularnewline
106 & 5385 & - & - & - & - & - & - & - \tabularnewline
107 & 5255 & - & - & - & - & - & - & - \tabularnewline
108 & 5100 & - & - & - & - & - & - & - \tabularnewline
109 & 5040 & - & - & - & - & - & - & - \tabularnewline
110 & 5235 & - & - & - & - & - & - & - \tabularnewline
111 & 5310 & - & - & - & - & - & - & - \tabularnewline
112 & 5265 & - & - & - & - & - & - & - \tabularnewline
113 & 5380 & - & - & - & - & - & - & - \tabularnewline
114 & 5465 & - & - & - & - & - & - & - \tabularnewline
115 & 5225 & - & - & - & - & - & - & - \tabularnewline
116 & 5445 & - & - & - & - & - & - & - \tabularnewline
117 & NA & 5511.3128 & 5412.4433 & 5608.4396 & NA & 0.9096 & 0.984 & 0.9096 \tabularnewline
118 & NA & 5472.947 & 5342.9743 & 5599.9039 & NA & NA & 0.9127 & 0.6669 \tabularnewline
119 & NA & 5323.1391 & 5154.1795 & 5486.8983 & NA & NA & 0.7926 & 0.0723 \tabularnewline
120 & NA & 5196.7816 & 4974.3436 & 5410.0817 & NA & NA & 0.8131 & 0.0113 \tabularnewline
121 & NA & 5104.5497 & 4835.9123 & 5359.7395 & NA & NA & 0.69 & 0.0045 \tabularnewline
122 & NA & 5263.6795 & 4969.1581 & 5542.5726 & NA & NA & 0.5799 & 0.1013 \tabularnewline
123 & NA & 5311.0468 & 4985.4935 & 5617.7658 & NA & NA & 0.5027 & 0.196 \tabularnewline
124 & NA & 5249.3261 & 4887.3569 & 5587.8968 & NA & NA & 0.4639 & 0.1287 \tabularnewline
125 & NA & 5355.5323 & 4972.4652 & 5712.9714 & NA & NA & 0.4466 & 0.3119 \tabularnewline
126 & NA & 5496.7446 & 5097.7697 & 5868.658 & NA & NA & 0.5664 & 0.6075 \tabularnewline
127 & NA & 5245.8494 & 4799.3988 & 5657.1762 & NA & NA & 0.5396 & 0.1713 \tabularnewline
128 & NA & 5455.4134 & 5003.3673 & 5872.7665 & NA & NA & 0.5195 & 0.5195 \tabularnewline
129 & NA & 5550.0219 & 5069.0402 & 5992.5219 & NA & NA & NA & 0.6791 \tabularnewline
130 & NA & 5514.8955 & 4997.7543 & 5987.5368 & NA & NA & NA & 0.614 \tabularnewline
131 & NA & 5347.8588 & 4778.0073 & 5862.5791 & NA & NA & NA & 0.3557 \tabularnewline
132 & NA & 5199.2996 & 4571.9946 & 5758.6716 & NA & NA & NA & 0.1946 \tabularnewline
133 & NA & 5127.8614 & 4452.481 & 5724.1015 & NA & NA & NA & 0.1486 \tabularnewline
134 & NA & 5254.2112 & 4562.3659 & 5865.0053 & NA & NA & NA & 0.2702 \tabularnewline
135 & NA & 5279.9892 & 4557.6088 & 5914.7929 & NA & NA & NA & 0.3052 \tabularnewline
136 & NA & 5274.6982 & 4517.9171 & 5935.7652 & NA & NA & NA & 0.3068 \tabularnewline
137 & NA & 5347.8638 & 4571.4063 & 6025.0758 & NA & NA & NA & 0.3893 \tabularnewline
138 & NA & 5480.9756 & 4696.5826 & 6166.3846 & NA & NA & NA & 0.541 \tabularnewline
139 & NA & 5239.4474 & 4381.3025 & 5975.601 & NA & NA & NA & 0.2921 \tabularnewline
140 & NA & 5449.0684 & 4601.3548 & 6181.6039 & NA & NA & NA & 0.5043 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300484&T=1

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast[/C][/ROW]
[ROW][C]time[/C][C]Y[t][/C][C]F[t][/C][C]95% LB[/C][C]95% UB[/C][C]p-value(H0: Y[t] = F[t])[/C][C]P(F[t]>Y[t-1])[/C][C]P(F[t]>Y[t-s])[/C][C]P(F[t]>Y[116])[/C][/ROW]
[ROW][C]104[/C][C]5285[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]105[/C][C]5405[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]106[/C][C]5385[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]107[/C][C]5255[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]108[/C][C]5100[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]109[/C][C]5040[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]110[/C][C]5235[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]111[/C][C]5310[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]112[/C][C]5265[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]113[/C][C]5380[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]114[/C][C]5465[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]115[/C][C]5225[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]116[/C][C]5445[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]117[/C][C]NA[/C][C]5511.3128[/C][C]5412.4433[/C][C]5608.4396[/C][C]NA[/C][C]0.9096[/C][C]0.984[/C][C]0.9096[/C][/ROW]
[ROW][C]118[/C][C]NA[/C][C]5472.947[/C][C]5342.9743[/C][C]5599.9039[/C][C]NA[/C][C]NA[/C][C]0.9127[/C][C]0.6669[/C][/ROW]
[ROW][C]119[/C][C]NA[/C][C]5323.1391[/C][C]5154.1795[/C][C]5486.8983[/C][C]NA[/C][C]NA[/C][C]0.7926[/C][C]0.0723[/C][/ROW]
[ROW][C]120[/C][C]NA[/C][C]5196.7816[/C][C]4974.3436[/C][C]5410.0817[/C][C]NA[/C][C]NA[/C][C]0.8131[/C][C]0.0113[/C][/ROW]
[ROW][C]121[/C][C]NA[/C][C]5104.5497[/C][C]4835.9123[/C][C]5359.7395[/C][C]NA[/C][C]NA[/C][C]0.69[/C][C]0.0045[/C][/ROW]
[ROW][C]122[/C][C]NA[/C][C]5263.6795[/C][C]4969.1581[/C][C]5542.5726[/C][C]NA[/C][C]NA[/C][C]0.5799[/C][C]0.1013[/C][/ROW]
[ROW][C]123[/C][C]NA[/C][C]5311.0468[/C][C]4985.4935[/C][C]5617.7658[/C][C]NA[/C][C]NA[/C][C]0.5027[/C][C]0.196[/C][/ROW]
[ROW][C]124[/C][C]NA[/C][C]5249.3261[/C][C]4887.3569[/C][C]5587.8968[/C][C]NA[/C][C]NA[/C][C]0.4639[/C][C]0.1287[/C][/ROW]
[ROW][C]125[/C][C]NA[/C][C]5355.5323[/C][C]4972.4652[/C][C]5712.9714[/C][C]NA[/C][C]NA[/C][C]0.4466[/C][C]0.3119[/C][/ROW]
[ROW][C]126[/C][C]NA[/C][C]5496.7446[/C][C]5097.7697[/C][C]5868.658[/C][C]NA[/C][C]NA[/C][C]0.5664[/C][C]0.6075[/C][/ROW]
[ROW][C]127[/C][C]NA[/C][C]5245.8494[/C][C]4799.3988[/C][C]5657.1762[/C][C]NA[/C][C]NA[/C][C]0.5396[/C][C]0.1713[/C][/ROW]
[ROW][C]128[/C][C]NA[/C][C]5455.4134[/C][C]5003.3673[/C][C]5872.7665[/C][C]NA[/C][C]NA[/C][C]0.5195[/C][C]0.5195[/C][/ROW]
[ROW][C]129[/C][C]NA[/C][C]5550.0219[/C][C]5069.0402[/C][C]5992.5219[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.6791[/C][/ROW]
[ROW][C]130[/C][C]NA[/C][C]5514.8955[/C][C]4997.7543[/C][C]5987.5368[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.614[/C][/ROW]
[ROW][C]131[/C][C]NA[/C][C]5347.8588[/C][C]4778.0073[/C][C]5862.5791[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.3557[/C][/ROW]
[ROW][C]132[/C][C]NA[/C][C]5199.2996[/C][C]4571.9946[/C][C]5758.6716[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.1946[/C][/ROW]
[ROW][C]133[/C][C]NA[/C][C]5127.8614[/C][C]4452.481[/C][C]5724.1015[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.1486[/C][/ROW]
[ROW][C]134[/C][C]NA[/C][C]5254.2112[/C][C]4562.3659[/C][C]5865.0053[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.2702[/C][/ROW]
[ROW][C]135[/C][C]NA[/C][C]5279.9892[/C][C]4557.6088[/C][C]5914.7929[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.3052[/C][/ROW]
[ROW][C]136[/C][C]NA[/C][C]5274.6982[/C][C]4517.9171[/C][C]5935.7652[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.3068[/C][/ROW]
[ROW][C]137[/C][C]NA[/C][C]5347.8638[/C][C]4571.4063[/C][C]6025.0758[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.3893[/C][/ROW]
[ROW][C]138[/C][C]NA[/C][C]5480.9756[/C][C]4696.5826[/C][C]6166.3846[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.541[/C][/ROW]
[ROW][C]139[/C][C]NA[/C][C]5239.4474[/C][C]4381.3025[/C][C]5975.601[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.2921[/C][/ROW]
[ROW][C]140[/C][C]NA[/C][C]5449.0684[/C][C]4601.3548[/C][C]6181.6039[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.5043[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300484&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300484&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[116])
1045285-------
1055405-------
1065385-------
1075255-------
1085100-------
1095040-------
1105235-------
1115310-------
1125265-------
1135380-------
1145465-------
1155225-------
1165445-------
117NA5511.31285412.44335608.4396NA0.90960.9840.9096
118NA5472.9475342.97435599.9039NANA0.91270.6669
119NA5323.13915154.17955486.8983NANA0.79260.0723
120NA5196.78164974.34365410.0817NANA0.81310.0113
121NA5104.54974835.91235359.7395NANA0.690.0045
122NA5263.67954969.15815542.5726NANA0.57990.1013
123NA5311.04684985.49355617.7658NANA0.50270.196
124NA5249.32614887.35695587.8968NANA0.46390.1287
125NA5355.53234972.46525712.9714NANA0.44660.3119
126NA5496.74465097.76975868.658NANA0.56640.6075
127NA5245.84944799.39885657.1762NANA0.53960.1713
128NA5455.41345003.36735872.7665NANA0.51950.5195
129NA5550.02195069.04025992.5219NANANA0.6791
130NA5514.89554997.75435987.5368NANANA0.614
131NA5347.85884778.00735862.5791NANANA0.3557
132NA5199.29964571.99465758.6716NANANA0.1946
133NA5127.86144452.4815724.1015NANANA0.1486
134NA5254.21124562.36595865.0053NANANA0.2702
135NA5279.98924557.60885914.7929NANANA0.3052
136NA5274.69824517.91715935.7652NANANA0.3068
137NA5347.86384571.40636025.0758NANANA0.3893
138NA5480.97564696.58266166.3846NANANA0.541
139NA5239.44744381.30255975.601NANANA0.2921
140NA5449.06844601.35486181.6039NANANA0.5043







Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
1170.009NANANANA00NANA
1180.0118NANANANANANANANA
1190.0157NANANANANANANANA
1200.0209NANANANANANANANA
1210.0255NANANANANANANANA
1220.027NANANANANANANANA
1230.0295NANANANANANANANA
1240.0329NANANANANANANANA
1250.0341NANANANANANANANA
1260.0345NANANANANANANANA
1270.04NANANANANANANANA
1280.039NANANANANANANANA
1290.0407NANANANANANANANA
1300.0437NANANANANANANANA
1310.0491NANANANANANANANA
1320.0549NANANANANANANANA
1330.0593NANANANANANANANA
1340.0593NANANANANANANANA
1350.0613NANANANANANANANA
1360.0639NANANANANANANANA
1370.0646NANANANANANANANA
1380.0638NANANANANANANANA
1390.0717NANANANANANANANA
1400.0686NANANANANANANANA

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast Performance \tabularnewline
time & % S.E. & PE & MAPE & sMAPE & Sq.E & MSE & RMSE & ScaledE & MASE \tabularnewline
117 & 0.009 & NA & NA & NA & NA & 0 & 0 & NA & NA \tabularnewline
118 & 0.0118 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
119 & 0.0157 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
120 & 0.0209 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
121 & 0.0255 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
122 & 0.027 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
123 & 0.0295 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
124 & 0.0329 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
125 & 0.0341 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
126 & 0.0345 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
127 & 0.04 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
128 & 0.039 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
129 & 0.0407 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
130 & 0.0437 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
131 & 0.0491 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
132 & 0.0549 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
133 & 0.0593 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
134 & 0.0593 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
135 & 0.0613 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
136 & 0.0639 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
137 & 0.0646 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
138 & 0.0638 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
139 & 0.0717 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
140 & 0.0686 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300484&T=2

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast Performance[/C][/ROW]
[ROW][C]time[/C][C]% S.E.[/C][C]PE[/C][C]MAPE[/C][C]sMAPE[/C][C]Sq.E[/C][C]MSE[/C][C]RMSE[/C][C]ScaledE[/C][C]MASE[/C][/ROW]
[ROW][C]117[/C][C]0.009[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0[/C][C]0[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]118[/C][C]0.0118[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]119[/C][C]0.0157[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]120[/C][C]0.0209[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]121[/C][C]0.0255[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]122[/C][C]0.027[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]123[/C][C]0.0295[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]124[/C][C]0.0329[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]125[/C][C]0.0341[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]126[/C][C]0.0345[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]127[/C][C]0.04[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]128[/C][C]0.039[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]129[/C][C]0.0407[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]130[/C][C]0.0437[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]131[/C][C]0.0491[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]132[/C][C]0.0549[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]133[/C][C]0.0593[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]134[/C][C]0.0593[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]135[/C][C]0.0613[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]136[/C][C]0.0639[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]137[/C][C]0.0646[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]138[/C][C]0.0638[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]139[/C][C]0.0717[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]140[/C][C]0.0686[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300484&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300484&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
1170.009NANANANA00NANA
1180.0118NANANANANANANANA
1190.0157NANANANANANANANA
1200.0209NANANANANANANANA
1210.0255NANANANANANANANA
1220.027NANANANANANANANA
1230.0295NANANANANANANANA
1240.0329NANANANANANANANA
1250.0341NANANANANANANANA
1260.0345NANANANANANANANA
1270.04NANANANANANANANA
1280.039NANANANANANANANA
1290.0407NANANANANANANANA
1300.0437NANANANANANANANA
1310.0491NANANANANANANANA
1320.0549NANANANANANANANA
1330.0593NANANANANANANANA
1340.0593NANANANANANANANA
1350.0613NANANANANANANANA
1360.0639NANANANANANANANA
1370.0646NANANANANANANANA
1380.0638NANANANANANANANA
1390.0717NANANANANANANANA
1400.0686NANANANANANANANA



Parameters (Session):
par1 = 0 ; par2 = 2.0 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = 3 ; par7 = 2 ; par8 = 2 ; par9 = 1 ; par10 = FALSE ;
Parameters (R input):
par1 = 0 ; par2 = 2.0 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = 3 ; par7 = 2 ; par8 = 2 ; par9 = 1 ; par10 = FALSE ;
R code (references can be found in the software module):
par1 <- as.numeric(par1) #cut off periods
par2 <- as.numeric(par2) #lambda
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #p
par7 <- as.numeric(par7) #q
par8 <- as.numeric(par8) #P
par9 <- as.numeric(par9) #Q
if (par10 == 'TRUE') par10 <- TRUE
if (par10 == 'FALSE') par10 <- FALSE
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
lx <- length(x)
first <- lx - 2*par1
nx <- lx - par1
nx1 <- nx + 1
fx <- lx - nx
if (fx < 1) {
fx <- par5*2
nx1 <- lx + fx - 1
first <- lx - 2*fx
}
first <- 1
if (fx < 3) fx <- round(lx/10,0)
(arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML'))
(forecast <- predict(arima.out,fx))
(lb <- forecast$pred - 1.96 * forecast$se)
(ub <- forecast$pred + 1.96 * forecast$se)
if (par2 == 0) {
x <- exp(x)
forecast$pred <- exp(forecast$pred)
lb <- exp(lb)
ub <- exp(ub)
}
if (par2 != 0) {
x <- x^(1/par2)
forecast$pred <- forecast$pred^(1/par2)
lb <- lb^(1/par2)
ub <- ub^(1/par2)
}
if (par2 < 0) {
olb <- lb
lb <- ub
ub <- olb
}
(actandfor <- c(x[1:nx], forecast$pred))
(perc.se <- (ub-forecast$pred)/1.96/forecast$pred)
bitmap(file='test1.png')
opar <- par(mar=c(4,4,2,2),las=1)
ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub))
plot(x,ylim=ylim,type='n',xlim=c(first,lx))
usr <- par('usr')
rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon')
rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender')
abline(h= (-3:3)*2 , col ='gray', lty =3)
polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA)
lines(nx1:lx, lb , lty=2)
lines(nx1:lx, ub , lty=2)
lines(x, lwd=2)
lines(nx1:lx, forecast$pred , lwd=2 , col ='white')
box()
par(opar)
dev.off()
prob.dec <- array(NA, dim=fx)
prob.sdec <- array(NA, dim=fx)
prob.ldec <- array(NA, dim=fx)
prob.pval <- array(NA, dim=fx)
perf.pe <- array(0, dim=fx)
perf.spe <- array(0, dim=fx)
perf.scalederr <- array(0, dim=fx)
perf.mase <- array(0, dim=fx)
perf.mase1 <- array(0, dim=fx)
perf.mape <- array(0, dim=fx)
perf.smape <- array(0, dim=fx)
perf.mape1 <- array(0, dim=fx)
perf.smape1 <- array(0,dim=fx)
perf.se <- array(0, dim=fx)
perf.mse <- array(0, dim=fx)
perf.mse1 <- array(0, dim=fx)
perf.rmse <- array(0, dim=fx)
perf.scaleddenom <- 0
for (i in 2:fx) {
perf.scaleddenom = perf.scaleddenom + abs(x[nx+i] - x[nx+i-1])
}
perf.scaleddenom = perf.scaleddenom / (fx-1)
for (i in 1:fx) {
locSD <- (ub[i] - forecast$pred[i]) / 1.96
perf.scalederr[i] = (x[nx+i] - forecast$pred[i]) / perf.scaleddenom
perf.pe[i] = (x[nx+i] - forecast$pred[i]) / x[nx+i]
perf.spe[i] = 2*(x[nx+i] - forecast$pred[i]) / (x[nx+i] + forecast$pred[i])
perf.se[i] = (x[nx+i] - forecast$pred[i])^2
prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD)
prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD)
prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD)
prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD)
}
perf.mape[1] = abs(perf.pe[1])
perf.smape[1] = abs(perf.spe[1])
perf.mape1[1] = perf.mape[1]
perf.smape1[1] = perf.smape[1]
perf.mse[1] = perf.se[1]
perf.mase[1] = abs(perf.scalederr[1])
perf.mase1[1] = perf.mase[1]
for (i in 2:fx) {
perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i])
perf.mape1[i] = perf.mape[i] / i
perf.smape[i] = perf.smape[i-1] + abs(perf.spe[i])
perf.smape1[i] = perf.smape[i] / i
perf.mse[i] = perf.mse[i-1] + perf.se[i]
perf.mse1[i] = perf.mse[i] / i
perf.mase[i] = perf.mase[i-1] + abs(perf.scalederr[i])
perf.mase1[i] = perf.mase[i] / i
}
perf.rmse = sqrt(perf.mse1)
bitmap(file='test2.png')
plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub)))
dum <- forecast$pred
dum[1:par1] <- x[(nx+1):lx]
lines(dum, lty=1)
lines(ub,lty=3)
lines(lb,lty=3)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'Y[t]',1,header=TRUE)
a<-table.element(a,'F[t]',1,header=TRUE)
a<-table.element(a,'95% LB',1,header=TRUE)
a<-table.element(a,'95% UB',1,header=TRUE)
a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE)
mylab <- paste('P(F[t]>Y[',nx,sep='')
mylab <- paste(mylab,'])',sep='')
a<-table.element(a,mylab,1,header=TRUE)
a<-table.row.end(a)
for (i in (nx-par5):nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.row.end(a)
}
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(x[nx+i],4))
a<-table.element(a,round(forecast$pred[i],4))
a<-table.element(a,round(lb[i],4))
a<-table.element(a,round(ub[i],4))
a<-table.element(a,round((1-prob.pval[i]),4))
a<-table.element(a,round((1-prob.dec[i]),4))
a<-table.element(a,round((1-prob.sdec[i]),4))
a<-table.element(a,round((1-prob.ldec[i]),4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',10,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'% S.E.',1,header=TRUE)
a<-table.element(a,'PE',1,header=TRUE)
a<-table.element(a,'MAPE',1,header=TRUE)
a<-table.element(a,'sMAPE',1,header=TRUE)
a<-table.element(a,'Sq.E',1,header=TRUE)
a<-table.element(a,'MSE',1,header=TRUE)
a<-table.element(a,'RMSE',1,header=TRUE)
a<-table.element(a,'ScaledE',1,header=TRUE)
a<-table.element(a,'MASE',1,header=TRUE)
a<-table.row.end(a)
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(perc.se[i],4))
a<-table.element(a,round(perf.pe[i],4))
a<-table.element(a,round(perf.mape1[i],4))
a<-table.element(a,round(perf.smape1[i],4))
a<-table.element(a,round(perf.se[i],4))
a<-table.element(a,round(perf.mse1[i],4))
a<-table.element(a,round(perf.rmse[i],4))
a<-table.element(a,round(perf.scalederr[i],4))
a<-table.element(a,round(perf.mase1[i],4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')