Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimabackwardselection.wasp
Title produced by softwareARIMA Backward Selection
Date of computationFri, 16 Dec 2016 19:42:20 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/16/t1481913879z44fdp6vf4ubsq9.htm/, Retrieved Fri, 01 Nov 2024 03:36:29 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=300481, Retrieved Fri, 01 Nov 2024 03:36:29 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact90
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [ARIMA Backward Selection] [] [2016-12-16 18:42:20] [037fdaa34a77b5f63489b3bcd360a80c] [Current]
Feedback Forum

Post a new message
Dataseries X:
3455
3585
3675
3680
3735
3860
3765
3905
4110
4170
4110
4025
4145
4285
4370
4355
4385
4525
4375
4525
4610
4595
4500
4370
4390
4530
4590
4580
4595
4685
4490
4635
4710
4655
4665
4550
4590
4675
4645
4665
4635
4720
4565
4720
4830
4830
4765
4705
4675
4900
4945
4905
4955
5120
4860
5040
5140
5240
5145
5070
5085
5215
5255
5275
5315
5450
5205
5370
5500
5490
5440
5360
5380
5460
5450
5520
5475
5600
5250
5465
5515
5425
5325
5275
5160
5360
5435
5285
5415
5575
5265
5480
5565
5500
5280
5135
5050
5100
5070
5115
5140
5330
5080
5285
5405
5385
5255
5100
5040
5235
5310
5265
5380
5465
5225
5445




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time8 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300481&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]8 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=300481&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300481&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R ServerBig Analytics Cloud Computing Center







ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2ar3ma1sar1sar2sma1
Estimates ( 1 )0.0750.13780.2897-0.2318-0.9821-0.46870.3834
(p-val)(0.7395 )(0.1656 )(0.0057 )(0.3025 )(0.0068 )(0.0111 )(0.3535 )
Estimates ( 2 )00.13170.2999-0.1637-0.9726-0.4640.3753
(p-val)(NA )(0.1766 )(0.0022 )(0.0961 )(0.0087 )(0.0132 )(0.3751 )
Estimates ( 3 )00.12830.3005-0.1724-0.6393-0.29340
(p-val)(NA )(0.1854 )(0.0021 )(0.0779 )(0 )(0.0066 )(NA )
Estimates ( 4 )000.3102-0.1531-0.6318-0.26590
(p-val)(NA )(NA )(0.0018 )(0.0844 )(0 )(0.0123 )(NA )
Estimates ( 5 )000.2840-0.6649-0.26610
(p-val)(NA )(NA )(0.0043 )(NA )(0 )(0.0119 )(NA )
Estimates ( 6 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 7 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 8 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 9 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 10 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 11 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 12 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 13 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )

\begin{tabular}{lllllllll}
\hline
ARIMA Parameter Estimation and Backward Selection \tabularnewline
Iteration & ar1 & ar2 & ar3 & ma1 & sar1 & sar2 & sma1 \tabularnewline
Estimates ( 1 ) & 0.075 & 0.1378 & 0.2897 & -0.2318 & -0.9821 & -0.4687 & 0.3834 \tabularnewline
(p-val) & (0.7395 ) & (0.1656 ) & (0.0057 ) & (0.3025 ) & (0.0068 ) & (0.0111 ) & (0.3535 ) \tabularnewline
Estimates ( 2 ) & 0 & 0.1317 & 0.2999 & -0.1637 & -0.9726 & -0.464 & 0.3753 \tabularnewline
(p-val) & (NA ) & (0.1766 ) & (0.0022 ) & (0.0961 ) & (0.0087 ) & (0.0132 ) & (0.3751 ) \tabularnewline
Estimates ( 3 ) & 0 & 0.1283 & 0.3005 & -0.1724 & -0.6393 & -0.2934 & 0 \tabularnewline
(p-val) & (NA ) & (0.1854 ) & (0.0021 ) & (0.0779 ) & (0 ) & (0.0066 ) & (NA ) \tabularnewline
Estimates ( 4 ) & 0 & 0 & 0.3102 & -0.1531 & -0.6318 & -0.2659 & 0 \tabularnewline
(p-val) & (NA ) & (NA ) & (0.0018 ) & (0.0844 ) & (0 ) & (0.0123 ) & (NA ) \tabularnewline
Estimates ( 5 ) & 0 & 0 & 0.284 & 0 & -0.6649 & -0.2661 & 0 \tabularnewline
(p-val) & (NA ) & (NA ) & (0.0043 ) & (NA ) & (0 ) & (0.0119 ) & (NA ) \tabularnewline
Estimates ( 6 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 7 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 8 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 9 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 10 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 11 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 12 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 13 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300481&T=1

[TABLE]
[ROW][C]ARIMA Parameter Estimation and Backward Selection[/C][/ROW]
[ROW][C]Iteration[/C][C]ar1[/C][C]ar2[/C][C]ar3[/C][C]ma1[/C][C]sar1[/C][C]sar2[/C][C]sma1[/C][/ROW]
[ROW][C]Estimates ( 1 )[/C][C]0.075[/C][C]0.1378[/C][C]0.2897[/C][C]-0.2318[/C][C]-0.9821[/C][C]-0.4687[/C][C]0.3834[/C][/ROW]
[ROW][C](p-val)[/C][C](0.7395 )[/C][C](0.1656 )[/C][C](0.0057 )[/C][C](0.3025 )[/C][C](0.0068 )[/C][C](0.0111 )[/C][C](0.3535 )[/C][/ROW]
[ROW][C]Estimates ( 2 )[/C][C]0[/C][C]0.1317[/C][C]0.2999[/C][C]-0.1637[/C][C]-0.9726[/C][C]-0.464[/C][C]0.3753[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](0.1766 )[/C][C](0.0022 )[/C][C](0.0961 )[/C][C](0.0087 )[/C][C](0.0132 )[/C][C](0.3751 )[/C][/ROW]
[ROW][C]Estimates ( 3 )[/C][C]0[/C][C]0.1283[/C][C]0.3005[/C][C]-0.1724[/C][C]-0.6393[/C][C]-0.2934[/C][C]0[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](0.1854 )[/C][C](0.0021 )[/C][C](0.0779 )[/C][C](0 )[/C][C](0.0066 )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 4 )[/C][C]0[/C][C]0[/C][C]0.3102[/C][C]-0.1531[/C][C]-0.6318[/C][C]-0.2659[/C][C]0[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](0.0018 )[/C][C](0.0844 )[/C][C](0 )[/C][C](0.0123 )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 5 )[/C][C]0[/C][C]0[/C][C]0.284[/C][C]0[/C][C]-0.6649[/C][C]-0.2661[/C][C]0[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](0.0043 )[/C][C](NA )[/C][C](0 )[/C][C](0.0119 )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 6 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 7 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 8 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 9 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 10 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 11 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 12 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 13 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300481&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300481&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2ar3ma1sar1sar2sma1
Estimates ( 1 )0.0750.13780.2897-0.2318-0.9821-0.46870.3834
(p-val)(0.7395 )(0.1656 )(0.0057 )(0.3025 )(0.0068 )(0.0111 )(0.3535 )
Estimates ( 2 )00.13170.2999-0.1637-0.9726-0.4640.3753
(p-val)(NA )(0.1766 )(0.0022 )(0.0961 )(0.0087 )(0.0132 )(0.3751 )
Estimates ( 3 )00.12830.3005-0.1724-0.6393-0.29340
(p-val)(NA )(0.1854 )(0.0021 )(0.0779 )(0 )(0.0066 )(NA )
Estimates ( 4 )000.3102-0.1531-0.6318-0.26590
(p-val)(NA )(NA )(0.0018 )(0.0844 )(0 )(0.0123 )(NA )
Estimates ( 5 )000.2840-0.6649-0.26610
(p-val)(NA )(NA )(0.0043 )(NA )(0 )(0.0119 )(NA )
Estimates ( 6 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 7 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 8 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 9 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 10 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 11 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 12 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 13 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )







Estimated ARIMA Residuals
Value
-31494.0291833927
208983.139458225
97257.2253134032
-109027.309635051
-203134.683668735
197483.50362414
-440115.515248709
198417.88286197
-768496.433168524
-502401.906067031
-421715.84064483
-222602.467096033
-587550.999147453
185688.477463427
-10131.6603335983
151396.629800418
-225181.399188869
-244456.350646102
-757963.664403267
63876.3511068483
-401702.896450117
-511012.271562809
656566.95638772
118628.371625182
-5031.61253759941
-577651.389136718
-969280.467429781
176298.255459809
-399337.742499038
4324.29795966404
-178767.190248112
316329.221197914
188443.659755667
167712.720262834
-239290.583859669
368974.551004307
-717870.39078984
1048821.83419365
177966.910985378
-137120.038645502
115357.825855501
703379.694746327
-825318.232673824
139085.473400101
-37593.7053410709
1584807.64797741
-446780.392416447
16856.6812452972
-313728.529716197
51656.0071882494
177725.362446856
315684.847084154
378989.770010043
320276.858816761
-700496.771304954
7687.12619743124
366912.77324757
-96409.8590789027
-59876.1591821164
-246425.824472699
236882.553638942
-593451.321610149
-413271.169143945
670715.965667732
-460816.158046141
67968.3949120864
-1737388.67101728
595415.459600676
-541146.528920323
-940088.694066625
-685259.209782146
307929.586126283
-802139.962811969
706704.839693975
618826.916853089
-1377364.36696056
852265.48467901
225808.103573367
295476.225985434
-4388.77075152472
-137008.753890075
-515168.664463192
-1700828.60001331
-1039709.9723306
-518337.790516704
-550350.14609253
-512205.985652604
803434.753702816
227395.596889015
693003.505994923
603160.01116572
117817.265245054
239247.274103426
252230.934736985
77370.9470127188
-725308.247928463
-154785.29376515
783762.466882825
949975.7510405
-143704.224648975
477172.195202615
-946376.692531675
567941.847622343
-39302.695428133

\begin{tabular}{lllllllll}
\hline
Estimated ARIMA Residuals \tabularnewline
Value \tabularnewline
-31494.0291833927 \tabularnewline
208983.139458225 \tabularnewline
97257.2253134032 \tabularnewline
-109027.309635051 \tabularnewline
-203134.683668735 \tabularnewline
197483.50362414 \tabularnewline
-440115.515248709 \tabularnewline
198417.88286197 \tabularnewline
-768496.433168524 \tabularnewline
-502401.906067031 \tabularnewline
-421715.84064483 \tabularnewline
-222602.467096033 \tabularnewline
-587550.999147453 \tabularnewline
185688.477463427 \tabularnewline
-10131.6603335983 \tabularnewline
151396.629800418 \tabularnewline
-225181.399188869 \tabularnewline
-244456.350646102 \tabularnewline
-757963.664403267 \tabularnewline
63876.3511068483 \tabularnewline
-401702.896450117 \tabularnewline
-511012.271562809 \tabularnewline
656566.95638772 \tabularnewline
118628.371625182 \tabularnewline
-5031.61253759941 \tabularnewline
-577651.389136718 \tabularnewline
-969280.467429781 \tabularnewline
176298.255459809 \tabularnewline
-399337.742499038 \tabularnewline
4324.29795966404 \tabularnewline
-178767.190248112 \tabularnewline
316329.221197914 \tabularnewline
188443.659755667 \tabularnewline
167712.720262834 \tabularnewline
-239290.583859669 \tabularnewline
368974.551004307 \tabularnewline
-717870.39078984 \tabularnewline
1048821.83419365 \tabularnewline
177966.910985378 \tabularnewline
-137120.038645502 \tabularnewline
115357.825855501 \tabularnewline
703379.694746327 \tabularnewline
-825318.232673824 \tabularnewline
139085.473400101 \tabularnewline
-37593.7053410709 \tabularnewline
1584807.64797741 \tabularnewline
-446780.392416447 \tabularnewline
16856.6812452972 \tabularnewline
-313728.529716197 \tabularnewline
51656.0071882494 \tabularnewline
177725.362446856 \tabularnewline
315684.847084154 \tabularnewline
378989.770010043 \tabularnewline
320276.858816761 \tabularnewline
-700496.771304954 \tabularnewline
7687.12619743124 \tabularnewline
366912.77324757 \tabularnewline
-96409.8590789027 \tabularnewline
-59876.1591821164 \tabularnewline
-246425.824472699 \tabularnewline
236882.553638942 \tabularnewline
-593451.321610149 \tabularnewline
-413271.169143945 \tabularnewline
670715.965667732 \tabularnewline
-460816.158046141 \tabularnewline
67968.3949120864 \tabularnewline
-1737388.67101728 \tabularnewline
595415.459600676 \tabularnewline
-541146.528920323 \tabularnewline
-940088.694066625 \tabularnewline
-685259.209782146 \tabularnewline
307929.586126283 \tabularnewline
-802139.962811969 \tabularnewline
706704.839693975 \tabularnewline
618826.916853089 \tabularnewline
-1377364.36696056 \tabularnewline
852265.48467901 \tabularnewline
225808.103573367 \tabularnewline
295476.225985434 \tabularnewline
-4388.77075152472 \tabularnewline
-137008.753890075 \tabularnewline
-515168.664463192 \tabularnewline
-1700828.60001331 \tabularnewline
-1039709.9723306 \tabularnewline
-518337.790516704 \tabularnewline
-550350.14609253 \tabularnewline
-512205.985652604 \tabularnewline
803434.753702816 \tabularnewline
227395.596889015 \tabularnewline
693003.505994923 \tabularnewline
603160.01116572 \tabularnewline
117817.265245054 \tabularnewline
239247.274103426 \tabularnewline
252230.934736985 \tabularnewline
77370.9470127188 \tabularnewline
-725308.247928463 \tabularnewline
-154785.29376515 \tabularnewline
783762.466882825 \tabularnewline
949975.7510405 \tabularnewline
-143704.224648975 \tabularnewline
477172.195202615 \tabularnewline
-946376.692531675 \tabularnewline
567941.847622343 \tabularnewline
-39302.695428133 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300481&T=2

[TABLE]
[ROW][C]Estimated ARIMA Residuals[/C][/ROW]
[ROW][C]Value[/C][/ROW]
[ROW][C]-31494.0291833927[/C][/ROW]
[ROW][C]208983.139458225[/C][/ROW]
[ROW][C]97257.2253134032[/C][/ROW]
[ROW][C]-109027.309635051[/C][/ROW]
[ROW][C]-203134.683668735[/C][/ROW]
[ROW][C]197483.50362414[/C][/ROW]
[ROW][C]-440115.515248709[/C][/ROW]
[ROW][C]198417.88286197[/C][/ROW]
[ROW][C]-768496.433168524[/C][/ROW]
[ROW][C]-502401.906067031[/C][/ROW]
[ROW][C]-421715.84064483[/C][/ROW]
[ROW][C]-222602.467096033[/C][/ROW]
[ROW][C]-587550.999147453[/C][/ROW]
[ROW][C]185688.477463427[/C][/ROW]
[ROW][C]-10131.6603335983[/C][/ROW]
[ROW][C]151396.629800418[/C][/ROW]
[ROW][C]-225181.399188869[/C][/ROW]
[ROW][C]-244456.350646102[/C][/ROW]
[ROW][C]-757963.664403267[/C][/ROW]
[ROW][C]63876.3511068483[/C][/ROW]
[ROW][C]-401702.896450117[/C][/ROW]
[ROW][C]-511012.271562809[/C][/ROW]
[ROW][C]656566.95638772[/C][/ROW]
[ROW][C]118628.371625182[/C][/ROW]
[ROW][C]-5031.61253759941[/C][/ROW]
[ROW][C]-577651.389136718[/C][/ROW]
[ROW][C]-969280.467429781[/C][/ROW]
[ROW][C]176298.255459809[/C][/ROW]
[ROW][C]-399337.742499038[/C][/ROW]
[ROW][C]4324.29795966404[/C][/ROW]
[ROW][C]-178767.190248112[/C][/ROW]
[ROW][C]316329.221197914[/C][/ROW]
[ROW][C]188443.659755667[/C][/ROW]
[ROW][C]167712.720262834[/C][/ROW]
[ROW][C]-239290.583859669[/C][/ROW]
[ROW][C]368974.551004307[/C][/ROW]
[ROW][C]-717870.39078984[/C][/ROW]
[ROW][C]1048821.83419365[/C][/ROW]
[ROW][C]177966.910985378[/C][/ROW]
[ROW][C]-137120.038645502[/C][/ROW]
[ROW][C]115357.825855501[/C][/ROW]
[ROW][C]703379.694746327[/C][/ROW]
[ROW][C]-825318.232673824[/C][/ROW]
[ROW][C]139085.473400101[/C][/ROW]
[ROW][C]-37593.7053410709[/C][/ROW]
[ROW][C]1584807.64797741[/C][/ROW]
[ROW][C]-446780.392416447[/C][/ROW]
[ROW][C]16856.6812452972[/C][/ROW]
[ROW][C]-313728.529716197[/C][/ROW]
[ROW][C]51656.0071882494[/C][/ROW]
[ROW][C]177725.362446856[/C][/ROW]
[ROW][C]315684.847084154[/C][/ROW]
[ROW][C]378989.770010043[/C][/ROW]
[ROW][C]320276.858816761[/C][/ROW]
[ROW][C]-700496.771304954[/C][/ROW]
[ROW][C]7687.12619743124[/C][/ROW]
[ROW][C]366912.77324757[/C][/ROW]
[ROW][C]-96409.8590789027[/C][/ROW]
[ROW][C]-59876.1591821164[/C][/ROW]
[ROW][C]-246425.824472699[/C][/ROW]
[ROW][C]236882.553638942[/C][/ROW]
[ROW][C]-593451.321610149[/C][/ROW]
[ROW][C]-413271.169143945[/C][/ROW]
[ROW][C]670715.965667732[/C][/ROW]
[ROW][C]-460816.158046141[/C][/ROW]
[ROW][C]67968.3949120864[/C][/ROW]
[ROW][C]-1737388.67101728[/C][/ROW]
[ROW][C]595415.459600676[/C][/ROW]
[ROW][C]-541146.528920323[/C][/ROW]
[ROW][C]-940088.694066625[/C][/ROW]
[ROW][C]-685259.209782146[/C][/ROW]
[ROW][C]307929.586126283[/C][/ROW]
[ROW][C]-802139.962811969[/C][/ROW]
[ROW][C]706704.839693975[/C][/ROW]
[ROW][C]618826.916853089[/C][/ROW]
[ROW][C]-1377364.36696056[/C][/ROW]
[ROW][C]852265.48467901[/C][/ROW]
[ROW][C]225808.103573367[/C][/ROW]
[ROW][C]295476.225985434[/C][/ROW]
[ROW][C]-4388.77075152472[/C][/ROW]
[ROW][C]-137008.753890075[/C][/ROW]
[ROW][C]-515168.664463192[/C][/ROW]
[ROW][C]-1700828.60001331[/C][/ROW]
[ROW][C]-1039709.9723306[/C][/ROW]
[ROW][C]-518337.790516704[/C][/ROW]
[ROW][C]-550350.14609253[/C][/ROW]
[ROW][C]-512205.985652604[/C][/ROW]
[ROW][C]803434.753702816[/C][/ROW]
[ROW][C]227395.596889015[/C][/ROW]
[ROW][C]693003.505994923[/C][/ROW]
[ROW][C]603160.01116572[/C][/ROW]
[ROW][C]117817.265245054[/C][/ROW]
[ROW][C]239247.274103426[/C][/ROW]
[ROW][C]252230.934736985[/C][/ROW]
[ROW][C]77370.9470127188[/C][/ROW]
[ROW][C]-725308.247928463[/C][/ROW]
[ROW][C]-154785.29376515[/C][/ROW]
[ROW][C]783762.466882825[/C][/ROW]
[ROW][C]949975.7510405[/C][/ROW]
[ROW][C]-143704.224648975[/C][/ROW]
[ROW][C]477172.195202615[/C][/ROW]
[ROW][C]-946376.692531675[/C][/ROW]
[ROW][C]567941.847622343[/C][/ROW]
[ROW][C]-39302.695428133[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300481&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300481&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimated ARIMA Residuals
Value
-31494.0291833927
208983.139458225
97257.2253134032
-109027.309635051
-203134.683668735
197483.50362414
-440115.515248709
198417.88286197
-768496.433168524
-502401.906067031
-421715.84064483
-222602.467096033
-587550.999147453
185688.477463427
-10131.6603335983
151396.629800418
-225181.399188869
-244456.350646102
-757963.664403267
63876.3511068483
-401702.896450117
-511012.271562809
656566.95638772
118628.371625182
-5031.61253759941
-577651.389136718
-969280.467429781
176298.255459809
-399337.742499038
4324.29795966404
-178767.190248112
316329.221197914
188443.659755667
167712.720262834
-239290.583859669
368974.551004307
-717870.39078984
1048821.83419365
177966.910985378
-137120.038645502
115357.825855501
703379.694746327
-825318.232673824
139085.473400101
-37593.7053410709
1584807.64797741
-446780.392416447
16856.6812452972
-313728.529716197
51656.0071882494
177725.362446856
315684.847084154
378989.770010043
320276.858816761
-700496.771304954
7687.12619743124
366912.77324757
-96409.8590789027
-59876.1591821164
-246425.824472699
236882.553638942
-593451.321610149
-413271.169143945
670715.965667732
-460816.158046141
67968.3949120864
-1737388.67101728
595415.459600676
-541146.528920323
-940088.694066625
-685259.209782146
307929.586126283
-802139.962811969
706704.839693975
618826.916853089
-1377364.36696056
852265.48467901
225808.103573367
295476.225985434
-4388.77075152472
-137008.753890075
-515168.664463192
-1700828.60001331
-1039709.9723306
-518337.790516704
-550350.14609253
-512205.985652604
803434.753702816
227395.596889015
693003.505994923
603160.01116572
117817.265245054
239247.274103426
252230.934736985
77370.9470127188
-725308.247928463
-154785.29376515
783762.466882825
949975.7510405
-143704.224648975
477172.195202615
-946376.692531675
567941.847622343
-39302.695428133



Parameters (Session):
par1 = FALSE ; par2 = 2.0 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = 3 ; par7 = 1 ; par8 = 2 ; par9 = 1 ;
Parameters (R input):
par1 = FALSE ; par2 = 2.0 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = 3 ; par7 = 1 ; par8 = 2 ; par9 = 1 ;
R code (references can be found in the software module):
library(lattice)
if (par1 == 'TRUE') par1 <- TRUE
if (par1 == 'FALSE') par1 <- FALSE
par2 <- as.numeric(par2) #Box-Cox lambda transformation parameter
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #degree (p) of the non-seasonal AR(p) polynomial
par7 <- as.numeric(par7) #degree (q) of the non-seasonal MA(q) polynomial
par8 <- as.numeric(par8) #degree (P) of the seasonal AR(P) polynomial
par9 <- as.numeric(par9) #degree (Q) of the seasonal MA(Q) polynomial
armaGR <- function(arima.out, names, n){
try1 <- arima.out$coef
try2 <- sqrt(diag(arima.out$var.coef))
try.data.frame <- data.frame(matrix(NA,ncol=4,nrow=length(names)))
dimnames(try.data.frame) <- list(names,c('coef','std','tstat','pv'))
try.data.frame[,1] <- try1
for(i in 1:length(try2)) try.data.frame[which(rownames(try.data.frame)==names(try2)[i]),2] <- try2[i]
try.data.frame[,3] <- try.data.frame[,1] / try.data.frame[,2]
try.data.frame[,4] <- round((1-pt(abs(try.data.frame[,3]),df=n-(length(try2)+1)))*2,5)
vector <- rep(NA,length(names))
vector[is.na(try.data.frame[,4])] <- 0
maxi <- which.max(try.data.frame[,4])
continue <- max(try.data.frame[,4],na.rm=TRUE) > .05
vector[maxi] <- 0
list(summary=try.data.frame,next.vector=vector,continue=continue)
}
arimaSelect <- function(series, order=c(13,0,0), seasonal=list(order=c(2,0,0),period=12), include.mean=F){
nrc <- order[1]+order[3]+seasonal$order[1]+seasonal$order[3]
coeff <- matrix(NA, nrow=nrc*2, ncol=nrc)
pval <- matrix(NA, nrow=nrc*2, ncol=nrc)
mylist <- rep(list(NULL), nrc)
names <- NULL
if(order[1] > 0) names <- paste('ar',1:order[1],sep='')
if(order[3] > 0) names <- c( names , paste('ma',1:order[3],sep='') )
if(seasonal$order[1] > 0) names <- c(names, paste('sar',1:seasonal$order[1],sep=''))
if(seasonal$order[3] > 0) names <- c(names, paste('sma',1:seasonal$order[3],sep=''))
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML')
mylist[[1]] <- arima.out
last.arma <- armaGR(arima.out, names, length(series))
mystop <- FALSE
i <- 1
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- 2
aic <- arima.out$aic
while(!mystop){
mylist[[i]] <- arima.out
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML', fixed=last.arma$next.vector)
aic <- c(aic, arima.out$aic)
last.arma <- armaGR(arima.out, names, length(series))
mystop <- !last.arma$continue
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- i+1
}
list(coeff, pval, mylist, aic=aic)
}
arimaSelectplot <- function(arimaSelect.out,noms,choix){
noms <- names(arimaSelect.out[[3]][[1]]$coef)
coeff <- arimaSelect.out[[1]]
k <- min(which(is.na(coeff[,1])))-1
coeff <- coeff[1:k,]
pval <- arimaSelect.out[[2]][1:k,]
aic <- arimaSelect.out$aic[1:k]
coeff[coeff==0] <- NA
n <- ncol(coeff)
if(missing(choix)) choix <- k
layout(matrix(c(1,1,1,2,
3,3,3,2,
3,3,3,4,
5,6,7,7),nr=4),
widths=c(10,35,45,15),
heights=c(30,30,15,15))
couleurs <- rainbow(75)[1:50]#(50)
ticks <- pretty(coeff)
par(mar=c(1,1,3,1))
plot(aic,k:1-.5,type='o',pch=21,bg='blue',cex=2,axes=F,lty=2,xpd=NA)
points(aic[choix],k-choix+.5,pch=21,cex=4,bg=2,xpd=NA)
title('aic',line=2)
par(mar=c(3,0,0,0))
plot(0,axes=F,xlab='',ylab='',xlim=range(ticks),ylim=c(.1,1))
rect(xleft = min(ticks) + (0:49)/50*(max(ticks)-min(ticks)),
xright = min(ticks) + (1:50)/50*(max(ticks)-min(ticks)),
ytop = rep(1,50),
ybottom= rep(0,50),col=couleurs,border=NA)
axis(1,ticks)
rect(xleft=min(ticks),xright=max(ticks),ytop=1,ybottom=0)
text(mean(coeff,na.rm=T),.5,'coefficients',cex=2,font=2)
par(mar=c(1,1,3,1))
image(1:n,1:k,t(coeff[k:1,]),axes=F,col=couleurs,zlim=range(ticks))
for(i in 1:n) for(j in 1:k) if(!is.na(coeff[j,i])) {
if(pval[j,i]<.01) symb = 'green'
else if( (pval[j,i]<.05) & (pval[j,i]>=.01)) symb = 'orange'
else if( (pval[j,i]<.1) & (pval[j,i]>=.05)) symb = 'red'
else symb = 'black'
polygon(c(i+.5 ,i+.2 ,i+.5 ,i+.5),
c(k-j+0.5,k-j+0.5,k-j+0.8,k-j+0.5),
col=symb)
if(j==choix) {
rect(xleft=i-.5,
xright=i+.5,
ybottom=k-j+1.5,
ytop=k-j+.5,
lwd=4)
text(i,
k-j+1,
round(coeff[j,i],2),
cex=1.2,
font=2)
}
else{
rect(xleft=i-.5,xright=i+.5,ybottom=k-j+1.5,ytop=k-j+.5)
text(i,k-j+1,round(coeff[j,i],2),cex=1.2,font=1)
}
}
axis(3,1:n,noms)
par(mar=c(0.5,0,0,0.5))
plot(0,axes=F,xlab='',ylab='',type='n',xlim=c(0,8),ylim=c(-.2,.8))
cols <- c('green','orange','red','black')
niv <- c('0','0.01','0.05','0.1')
for(i in 0:3){
polygon(c(1+2*i ,1+2*i ,1+2*i-.5 ,1+2*i),
c(.4 ,.7 , .4 , .4),
col=cols[i+1])
text(2*i,0.5,niv[i+1],cex=1.5)
}
text(8,.5,1,cex=1.5)
text(4,0,'p-value',cex=2)
box()
residus <- arimaSelect.out[[3]][[choix]]$res
par(mar=c(1,2,4,1))
acf(residus,main='')
title('acf',line=.5)
par(mar=c(1,2,4,1))
pacf(residus,main='')
title('pacf',line=.5)
par(mar=c(2,2,4,1))
qqnorm(residus,main='')
title('qq-norm',line=.5)
qqline(residus)
residus
}
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
(selection <- arimaSelect(x, order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5)))
bitmap(file='test1.png')
resid <- arimaSelectplot(selection)
dev.off()
resid
bitmap(file='test2.png')
acf(resid,length(resid)/2, main='Residual Autocorrelation Function')
dev.off()
bitmap(file='test3.png')
pacf(resid,length(resid)/2, main='Residual Partial Autocorrelation Function')
dev.off()
bitmap(file='test4.png')
cpgram(resid, main='Residual Cumulative Periodogram')
dev.off()
bitmap(file='test5.png')
hist(resid, main='Residual Histogram', xlab='values of Residuals')
dev.off()
bitmap(file='test6.png')
densityplot(~resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test7.png')
qqnorm(resid, main='Residual Normal Q-Q Plot')
qqline(resid)
dev.off()
ncols <- length(selection[[1]][1,])
nrows <- length(selection[[2]][,1])-1
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ARIMA Parameter Estimation and Backward Selection', ncols+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Iteration', header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,names(selection[[3]][[1]]$coef)[i],header=TRUE)
}
a<-table.row.end(a)
for (j in 1:nrows) {
a<-table.row.start(a)
mydum <- 'Estimates ('
mydum <- paste(mydum,j)
mydum <- paste(mydum,')')
a<-table.element(a,mydum, header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,round(selection[[1]][j,i],4))
}
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'(p-val)', header=TRUE)
for (i in 1:ncols) {
mydum <- '('
mydum <- paste(mydum,round(selection[[2]][j,i],4),sep='')
mydum <- paste(mydum,')')
a<-table.element(a,mydum)
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimated ARIMA Residuals', 1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Value', 1,TRUE)
a<-table.row.end(a)
for (i in (par4*par5+par3):length(resid)) {
a<-table.row.start(a)
a<-table.element(a,resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')