Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationFri, 16 Dec 2016 17:03:32 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/16/t1481904233c79a9ebwfkm93z7.htm/, Retrieved Fri, 01 Nov 2024 03:46:18 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=300400, Retrieved Fri, 01 Nov 2024 03:46:18 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact130
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [Multiple Regressi...] [2016-12-16 16:03:32] [2119c57aaf7ec7a6908fa91aebc758c5] [Current]
Feedback Forum

Post a new message
Dataseries X:
5	3	4	5	13
2	2	5	2	16
3	3	4	2	17
3	3	4	2	NA
3	2	4	4	NA
4	4	5	4	16
4	2	5	4	17
2	2	5	2	17
4	4	4	4	15
3	5	4	3	16
3	5	5	3	14
4	2	5	4	16
2	2	4	3	17
1	1	4	2	NA
2	2	4	2	NA
3	4	5	2	NA
5	4	5	2	16
4	4	4	3	NA
5	4	4	2	16
3	3	4	2	NA
5	5	5	3	NA
2	2	4	2	NA
4	5	5	3	16
4	2	4	2	15
3	3	5	2	16
2	1	4	2	16
1	1	4	5	13
2	2	3	3	15
5	1	5	4	17
4	4	4	3	NA
3	3	4	3	13
2	3	5	3	17
1	2	4	2	NA
3	2	5	4	14
3	3	5	3	14
3	1	5	2	18
5	3	4	3	NA
2	2	4	4	17
2	2	4	3	13
1	2	5	4	16
4	4	4	3	15
4	1	4	4	15
2	2	4	3	NA
1	5	2	2	15
5	4	4	3	13
4	4	4	1	NA
4	4	5	2	17
4	2	5	3	NA
2	2	5	3	NA
2	2	4	2	11
3	2	4	3	14
2	1	4	2	13
3	5	5	2	NA
4	5	5	2	17
3	3	4	2	16
2	2	5	2	NA
2	2	5	2	17
1	2	4	2	16
3	2	5	3	16
4	5	5	3	16
4	5	5	4	15
4	3	5	3	12
3	3	3	3	17
5	4	5	4	14
4	1	4	2	14
1	1	3	1	16
1	1	5	3	NA
5	5	5	4	NA
5	4	3	4	NA
3	1	4	4	NA
2	2	4	2	NA
4	3	5	2	15
4	2	5	1	16
4	2	5	2	14
4	5	5	2	15
5	5	5	3	17
4	2	5	2	NA
4	4	4	3	10
4	4	4	4	NA
2	1	4	2	17
1	1	5	2	NA
1	2	4	1	20
5	4	5	4	17
5	5	5	3	18
3	2	5	4	NA
2	2	2	2	17
4	3	4	3	14
2	1	5	5	NA
3	4	4	3	17
1	1	4	1	NA
5	5	5	3	17
4	4	5	3	NA
2	1	4	2	16
2	3	5	1	18
1	1	5	3	18
4	2	5	2	16
2	1	5	2	NA
3	1	5	3	NA
1	3	4	3	15
2	2	5	3	13
3	2	4	3	NA
1	2	5	2	NA
4	3	4	1	NA
1	2	5	4	NA
4	4	5	3	16
1	3	5	2	NA
4	2	3	3	NA
2	2	5	3	NA
3	4	3	3	12
3	1	4	2	NA
3	4	4	3	16
3	3	5	2	16
3	5	4	3	NA
2	4	5	2	16
2	3	5	3	14
4	4	5	4	15
2	3	4	3	14
5	5	4	3	NA
1	1	5	2	15
3	2	4	3	NA
3	4	5	2	15
3	4	5	2	16
4	5	3	2	NA
3	2	5	2	NA
2	4	4	3	11
4	5	4	2	NA
5	5	3	3	18
4	2	5	2	NA
4	4	4	2	11
4	4	4	2	NA
3	5	4	5	18
4	2	4	3	NA
3	4	5	3	15
1	2	5	3	17
2	2	5	2	NA
1	1	4	3	14
4	4	4	3	NA
5	3	5	3	13
4	4	5	3	17
3	1	4	2	14
2	4	5	4	19
1	2	5	2	14
3	3	5	1	NA
4	3	5	2	NA
4	5	5	4	16
1	5	5	4	16
5	5	5	4	15
3	4	3	3	12
4	2	5	4	17
1	1	3	2	NA
3	2	4	5	NA
4	2	5	3	15
4	3	2	2	18
5	5	5	3	15
1	1	3	3	NA
1	1	1	2	NA
5	3	5	4	16
3	4	5	2	NA
4	3	5	5	16




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time8 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300400&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]8 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=300400&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300400&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R ServerBig Analytics Cloud Computing Center







Multiple Linear Regression - Estimated Regression Equation
TVDC[t] = + 14.31 -0.098506EC1[t] + 0.0808004EC2[t] + 0.396217EC3[t] -0.207961EC4[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
TVDC[t] =  +  14.31 -0.098506EC1[t] +  0.0808004EC2[t] +  0.396217EC3[t] -0.207961EC4[t]  + e[t] \tabularnewline
 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300400&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]TVDC[t] =  +  14.31 -0.098506EC1[t] +  0.0808004EC2[t] +  0.396217EC3[t] -0.207961EC4[t]  + e[t][/C][/ROW]
[ROW][C][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300400&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300400&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
TVDC[t] = + 14.31 -0.098506EC1[t] + 0.0808004EC2[t] + 0.396217EC3[t] -0.207961EC4[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+14.31 1.218+1.1750e+01 2.726e-20 1.363e-20
EC1-0.09851 0.1682-5.8560e-01 0.5595 0.2798
EC2+0.0808 0.158+5.1150e-01 0.6101 0.3051
EC3+0.3962 0.2572+1.5410e+00 0.1267 0.06334
EC4-0.208 0.2123-9.7950e-01 0.3298 0.1649

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & +14.31 &  1.218 & +1.1750e+01 &  2.726e-20 &  1.363e-20 \tabularnewline
EC1 & -0.09851 &  0.1682 & -5.8560e-01 &  0.5595 &  0.2798 \tabularnewline
EC2 & +0.0808 &  0.158 & +5.1150e-01 &  0.6101 &  0.3051 \tabularnewline
EC3 & +0.3962 &  0.2572 & +1.5410e+00 &  0.1267 &  0.06334 \tabularnewline
EC4 & -0.208 &  0.2123 & -9.7950e-01 &  0.3298 &  0.1649 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300400&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]+14.31[/C][C] 1.218[/C][C]+1.1750e+01[/C][C] 2.726e-20[/C][C] 1.363e-20[/C][/ROW]
[ROW][C]EC1[/C][C]-0.09851[/C][C] 0.1682[/C][C]-5.8560e-01[/C][C] 0.5595[/C][C] 0.2798[/C][/ROW]
[ROW][C]EC2[/C][C]+0.0808[/C][C] 0.158[/C][C]+5.1150e-01[/C][C] 0.6101[/C][C] 0.3051[/C][/ROW]
[ROW][C]EC3[/C][C]+0.3962[/C][C] 0.2572[/C][C]+1.5410e+00[/C][C] 0.1267[/C][C] 0.06334[/C][/ROW]
[ROW][C]EC4[/C][C]-0.208[/C][C] 0.2123[/C][C]-9.7950e-01[/C][C] 0.3298[/C][C] 0.1649[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300400&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300400&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+14.31 1.218+1.1750e+01 2.726e-20 1.363e-20
EC1-0.09851 0.1682-5.8560e-01 0.5595 0.2798
EC2+0.0808 0.158+5.1150e-01 0.6101 0.3051
EC3+0.3962 0.2572+1.5410e+00 0.1267 0.06334
EC4-0.208 0.2123-9.7950e-01 0.3298 0.1649







Multiple Linear Regression - Regression Statistics
Multiple R 0.1824
R-squared 0.03329
Adjusted R-squared-0.006994
F-TEST (value) 0.8264
F-TEST (DF numerator)4
F-TEST (DF denominator)96
p-value 0.5116
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 1.846
Sum Squared Residuals 327.3

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R &  0.1824 \tabularnewline
R-squared &  0.03329 \tabularnewline
Adjusted R-squared & -0.006994 \tabularnewline
F-TEST (value) &  0.8264 \tabularnewline
F-TEST (DF numerator) & 4 \tabularnewline
F-TEST (DF denominator) & 96 \tabularnewline
p-value &  0.5116 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation &  1.846 \tabularnewline
Sum Squared Residuals &  327.3 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300400&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C] 0.1824[/C][/ROW]
[ROW][C]R-squared[/C][C] 0.03329[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]-0.006994[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C] 0.8264[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]4[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]96[/C][/ROW]
[ROW][C]p-value[/C][C] 0.5116[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C] 1.846[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C] 327.3[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300400&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300400&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R 0.1824
R-squared 0.03329
Adjusted R-squared-0.006994
F-TEST (value) 0.8264
F-TEST (DF numerator)4
F-TEST (DF denominator)96
p-value 0.5116
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 1.846
Sum Squared Residuals 327.3







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 13 14.61-1.605
2 16 15.84 0.1602
3 17 15.43 1.574
4 16 15.39 0.6115
5 17 15.23 1.773
6 17 15.84 1.16
7 15 14.99 0.007763
8 16 15.38 0.6205
9 14 15.78-1.776
10 16 15.23 0.7731
11 17 15.24 1.764
12 16 15.71 0.2941
13 16 15.31 0.6903
14 16 15.68 0.3228
15 15 15.25-0.2466
16 16 15.82 0.1779
17 16 15.36 0.6372
18 13 14.84-1.837
19 15 14.84 0.1606
20 17 15.05 1.952
21 13 15.22-2.218
22 17 15.71 1.287
23 14 15.33-1.325
24 14 15.61-1.614
25 18 15.66 2.34
26 17 15.03 1.972
27 13 15.24-2.236
28 16 15.52 0.4776
29 15 15.2-0.2002
30 15 14.75 0.2502
31 15 14.99 0.007957
32 13 15.1-2.102
33 17 15.8 1.196
34 11 15.44-4.444
35 14 15.14-1.137
36 13 15.36-2.363
37 17 15.89 1.115
38 16 15.43 0.5741
39 17 15.84 1.16
40 16 15.54 0.4579
41 16 15.53 0.4667
42 16 15.68 0.3228
43 15 15.47-0.4693
44 12 15.52-3.516
45 17 14.82 2.178
46 14 15.29-1.29
47 14 15.17-1.166
48 16 15.27 0.727
49 15 15.72-0.7236
50 16 15.85 0.1493
51 14 15.64-1.643
52 15 15.89-0.8852
53 17 15.58 1.421
54 10 15.2-5.2
55 17 15.36 1.637
56 20 15.75 4.25
57 17 15.29 1.71
58 18 15.58 2.421
59 17 14.65 2.349
60 14 15.12-1.119
61 17 15.3 1.701
62 17 15.58 1.421
63 16 15.36 0.6372
64 18 16.13 1.871
65 18 15.65 2.35
66 16 15.64 0.3572
67 15 15.41-0.4149
68 13 15.63-2.632
69 16 15.6 0.4036
70 12 14.9-2.902
71 16 15.3 0.7013
72 16 15.82 0.1779
73 16 16-0.001387
74 14 15.71-1.713
75 15 15.39-0.3885
76 14 15.32-1.316
77 15 15.86-0.8575
78 15 15.9-0.9029
79 16 15.9 0.09712
80 11 15.4-4.397
81 18 14.79 3.214
82 11 15.41-4.408
83 18 14.96 3.036
84 15 15.69-0.6949
85 17 15.73 1.27
86 14 15.25-1.253
87 13 15.42-2.417
88 17 15.6 1.404
89 14 15.26-1.264
90 19 15.59 3.415
91 14 15.94-1.938
92 16 15.47 0.5307
93 16 15.76 0.2352
94 15 15.37-0.3707
95 12 14.9-2.902
96 17 15.23 1.773
97 15 15.43-0.4348
98 18 14.53 3.465
99 15 15.58-0.5787
100 16 15.21 0.7909
101 16 15.1 0.9003

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 &  13 &  14.61 & -1.605 \tabularnewline
2 &  16 &  15.84 &  0.1602 \tabularnewline
3 &  17 &  15.43 &  1.574 \tabularnewline
4 &  16 &  15.39 &  0.6115 \tabularnewline
5 &  17 &  15.23 &  1.773 \tabularnewline
6 &  17 &  15.84 &  1.16 \tabularnewline
7 &  15 &  14.99 &  0.007763 \tabularnewline
8 &  16 &  15.38 &  0.6205 \tabularnewline
9 &  14 &  15.78 & -1.776 \tabularnewline
10 &  16 &  15.23 &  0.7731 \tabularnewline
11 &  17 &  15.24 &  1.764 \tabularnewline
12 &  16 &  15.71 &  0.2941 \tabularnewline
13 &  16 &  15.31 &  0.6903 \tabularnewline
14 &  16 &  15.68 &  0.3228 \tabularnewline
15 &  15 &  15.25 & -0.2466 \tabularnewline
16 &  16 &  15.82 &  0.1779 \tabularnewline
17 &  16 &  15.36 &  0.6372 \tabularnewline
18 &  13 &  14.84 & -1.837 \tabularnewline
19 &  15 &  14.84 &  0.1606 \tabularnewline
20 &  17 &  15.05 &  1.952 \tabularnewline
21 &  13 &  15.22 & -2.218 \tabularnewline
22 &  17 &  15.71 &  1.287 \tabularnewline
23 &  14 &  15.33 & -1.325 \tabularnewline
24 &  14 &  15.61 & -1.614 \tabularnewline
25 &  18 &  15.66 &  2.34 \tabularnewline
26 &  17 &  15.03 &  1.972 \tabularnewline
27 &  13 &  15.24 & -2.236 \tabularnewline
28 &  16 &  15.52 &  0.4776 \tabularnewline
29 &  15 &  15.2 & -0.2002 \tabularnewline
30 &  15 &  14.75 &  0.2502 \tabularnewline
31 &  15 &  14.99 &  0.007957 \tabularnewline
32 &  13 &  15.1 & -2.102 \tabularnewline
33 &  17 &  15.8 &  1.196 \tabularnewline
34 &  11 &  15.44 & -4.444 \tabularnewline
35 &  14 &  15.14 & -1.137 \tabularnewline
36 &  13 &  15.36 & -2.363 \tabularnewline
37 &  17 &  15.89 &  1.115 \tabularnewline
38 &  16 &  15.43 &  0.5741 \tabularnewline
39 &  17 &  15.84 &  1.16 \tabularnewline
40 &  16 &  15.54 &  0.4579 \tabularnewline
41 &  16 &  15.53 &  0.4667 \tabularnewline
42 &  16 &  15.68 &  0.3228 \tabularnewline
43 &  15 &  15.47 & -0.4693 \tabularnewline
44 &  12 &  15.52 & -3.516 \tabularnewline
45 &  17 &  14.82 &  2.178 \tabularnewline
46 &  14 &  15.29 & -1.29 \tabularnewline
47 &  14 &  15.17 & -1.166 \tabularnewline
48 &  16 &  15.27 &  0.727 \tabularnewline
49 &  15 &  15.72 & -0.7236 \tabularnewline
50 &  16 &  15.85 &  0.1493 \tabularnewline
51 &  14 &  15.64 & -1.643 \tabularnewline
52 &  15 &  15.89 & -0.8852 \tabularnewline
53 &  17 &  15.58 &  1.421 \tabularnewline
54 &  10 &  15.2 & -5.2 \tabularnewline
55 &  17 &  15.36 &  1.637 \tabularnewline
56 &  20 &  15.75 &  4.25 \tabularnewline
57 &  17 &  15.29 &  1.71 \tabularnewline
58 &  18 &  15.58 &  2.421 \tabularnewline
59 &  17 &  14.65 &  2.349 \tabularnewline
60 &  14 &  15.12 & -1.119 \tabularnewline
61 &  17 &  15.3 &  1.701 \tabularnewline
62 &  17 &  15.58 &  1.421 \tabularnewline
63 &  16 &  15.36 &  0.6372 \tabularnewline
64 &  18 &  16.13 &  1.871 \tabularnewline
65 &  18 &  15.65 &  2.35 \tabularnewline
66 &  16 &  15.64 &  0.3572 \tabularnewline
67 &  15 &  15.41 & -0.4149 \tabularnewline
68 &  13 &  15.63 & -2.632 \tabularnewline
69 &  16 &  15.6 &  0.4036 \tabularnewline
70 &  12 &  14.9 & -2.902 \tabularnewline
71 &  16 &  15.3 &  0.7013 \tabularnewline
72 &  16 &  15.82 &  0.1779 \tabularnewline
73 &  16 &  16 & -0.001387 \tabularnewline
74 &  14 &  15.71 & -1.713 \tabularnewline
75 &  15 &  15.39 & -0.3885 \tabularnewline
76 &  14 &  15.32 & -1.316 \tabularnewline
77 &  15 &  15.86 & -0.8575 \tabularnewline
78 &  15 &  15.9 & -0.9029 \tabularnewline
79 &  16 &  15.9 &  0.09712 \tabularnewline
80 &  11 &  15.4 & -4.397 \tabularnewline
81 &  18 &  14.79 &  3.214 \tabularnewline
82 &  11 &  15.41 & -4.408 \tabularnewline
83 &  18 &  14.96 &  3.036 \tabularnewline
84 &  15 &  15.69 & -0.6949 \tabularnewline
85 &  17 &  15.73 &  1.27 \tabularnewline
86 &  14 &  15.25 & -1.253 \tabularnewline
87 &  13 &  15.42 & -2.417 \tabularnewline
88 &  17 &  15.6 &  1.404 \tabularnewline
89 &  14 &  15.26 & -1.264 \tabularnewline
90 &  19 &  15.59 &  3.415 \tabularnewline
91 &  14 &  15.94 & -1.938 \tabularnewline
92 &  16 &  15.47 &  0.5307 \tabularnewline
93 &  16 &  15.76 &  0.2352 \tabularnewline
94 &  15 &  15.37 & -0.3707 \tabularnewline
95 &  12 &  14.9 & -2.902 \tabularnewline
96 &  17 &  15.23 &  1.773 \tabularnewline
97 &  15 &  15.43 & -0.4348 \tabularnewline
98 &  18 &  14.53 &  3.465 \tabularnewline
99 &  15 &  15.58 & -0.5787 \tabularnewline
100 &  16 &  15.21 &  0.7909 \tabularnewline
101 &  16 &  15.1 &  0.9003 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300400&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C] 13[/C][C] 14.61[/C][C]-1.605[/C][/ROW]
[ROW][C]2[/C][C] 16[/C][C] 15.84[/C][C] 0.1602[/C][/ROW]
[ROW][C]3[/C][C] 17[/C][C] 15.43[/C][C] 1.574[/C][/ROW]
[ROW][C]4[/C][C] 16[/C][C] 15.39[/C][C] 0.6115[/C][/ROW]
[ROW][C]5[/C][C] 17[/C][C] 15.23[/C][C] 1.773[/C][/ROW]
[ROW][C]6[/C][C] 17[/C][C] 15.84[/C][C] 1.16[/C][/ROW]
[ROW][C]7[/C][C] 15[/C][C] 14.99[/C][C] 0.007763[/C][/ROW]
[ROW][C]8[/C][C] 16[/C][C] 15.38[/C][C] 0.6205[/C][/ROW]
[ROW][C]9[/C][C] 14[/C][C] 15.78[/C][C]-1.776[/C][/ROW]
[ROW][C]10[/C][C] 16[/C][C] 15.23[/C][C] 0.7731[/C][/ROW]
[ROW][C]11[/C][C] 17[/C][C] 15.24[/C][C] 1.764[/C][/ROW]
[ROW][C]12[/C][C] 16[/C][C] 15.71[/C][C] 0.2941[/C][/ROW]
[ROW][C]13[/C][C] 16[/C][C] 15.31[/C][C] 0.6903[/C][/ROW]
[ROW][C]14[/C][C] 16[/C][C] 15.68[/C][C] 0.3228[/C][/ROW]
[ROW][C]15[/C][C] 15[/C][C] 15.25[/C][C]-0.2466[/C][/ROW]
[ROW][C]16[/C][C] 16[/C][C] 15.82[/C][C] 0.1779[/C][/ROW]
[ROW][C]17[/C][C] 16[/C][C] 15.36[/C][C] 0.6372[/C][/ROW]
[ROW][C]18[/C][C] 13[/C][C] 14.84[/C][C]-1.837[/C][/ROW]
[ROW][C]19[/C][C] 15[/C][C] 14.84[/C][C] 0.1606[/C][/ROW]
[ROW][C]20[/C][C] 17[/C][C] 15.05[/C][C] 1.952[/C][/ROW]
[ROW][C]21[/C][C] 13[/C][C] 15.22[/C][C]-2.218[/C][/ROW]
[ROW][C]22[/C][C] 17[/C][C] 15.71[/C][C] 1.287[/C][/ROW]
[ROW][C]23[/C][C] 14[/C][C] 15.33[/C][C]-1.325[/C][/ROW]
[ROW][C]24[/C][C] 14[/C][C] 15.61[/C][C]-1.614[/C][/ROW]
[ROW][C]25[/C][C] 18[/C][C] 15.66[/C][C] 2.34[/C][/ROW]
[ROW][C]26[/C][C] 17[/C][C] 15.03[/C][C] 1.972[/C][/ROW]
[ROW][C]27[/C][C] 13[/C][C] 15.24[/C][C]-2.236[/C][/ROW]
[ROW][C]28[/C][C] 16[/C][C] 15.52[/C][C] 0.4776[/C][/ROW]
[ROW][C]29[/C][C] 15[/C][C] 15.2[/C][C]-0.2002[/C][/ROW]
[ROW][C]30[/C][C] 15[/C][C] 14.75[/C][C] 0.2502[/C][/ROW]
[ROW][C]31[/C][C] 15[/C][C] 14.99[/C][C] 0.007957[/C][/ROW]
[ROW][C]32[/C][C] 13[/C][C] 15.1[/C][C]-2.102[/C][/ROW]
[ROW][C]33[/C][C] 17[/C][C] 15.8[/C][C] 1.196[/C][/ROW]
[ROW][C]34[/C][C] 11[/C][C] 15.44[/C][C]-4.444[/C][/ROW]
[ROW][C]35[/C][C] 14[/C][C] 15.14[/C][C]-1.137[/C][/ROW]
[ROW][C]36[/C][C] 13[/C][C] 15.36[/C][C]-2.363[/C][/ROW]
[ROW][C]37[/C][C] 17[/C][C] 15.89[/C][C] 1.115[/C][/ROW]
[ROW][C]38[/C][C] 16[/C][C] 15.43[/C][C] 0.5741[/C][/ROW]
[ROW][C]39[/C][C] 17[/C][C] 15.84[/C][C] 1.16[/C][/ROW]
[ROW][C]40[/C][C] 16[/C][C] 15.54[/C][C] 0.4579[/C][/ROW]
[ROW][C]41[/C][C] 16[/C][C] 15.53[/C][C] 0.4667[/C][/ROW]
[ROW][C]42[/C][C] 16[/C][C] 15.68[/C][C] 0.3228[/C][/ROW]
[ROW][C]43[/C][C] 15[/C][C] 15.47[/C][C]-0.4693[/C][/ROW]
[ROW][C]44[/C][C] 12[/C][C] 15.52[/C][C]-3.516[/C][/ROW]
[ROW][C]45[/C][C] 17[/C][C] 14.82[/C][C] 2.178[/C][/ROW]
[ROW][C]46[/C][C] 14[/C][C] 15.29[/C][C]-1.29[/C][/ROW]
[ROW][C]47[/C][C] 14[/C][C] 15.17[/C][C]-1.166[/C][/ROW]
[ROW][C]48[/C][C] 16[/C][C] 15.27[/C][C] 0.727[/C][/ROW]
[ROW][C]49[/C][C] 15[/C][C] 15.72[/C][C]-0.7236[/C][/ROW]
[ROW][C]50[/C][C] 16[/C][C] 15.85[/C][C] 0.1493[/C][/ROW]
[ROW][C]51[/C][C] 14[/C][C] 15.64[/C][C]-1.643[/C][/ROW]
[ROW][C]52[/C][C] 15[/C][C] 15.89[/C][C]-0.8852[/C][/ROW]
[ROW][C]53[/C][C] 17[/C][C] 15.58[/C][C] 1.421[/C][/ROW]
[ROW][C]54[/C][C] 10[/C][C] 15.2[/C][C]-5.2[/C][/ROW]
[ROW][C]55[/C][C] 17[/C][C] 15.36[/C][C] 1.637[/C][/ROW]
[ROW][C]56[/C][C] 20[/C][C] 15.75[/C][C] 4.25[/C][/ROW]
[ROW][C]57[/C][C] 17[/C][C] 15.29[/C][C] 1.71[/C][/ROW]
[ROW][C]58[/C][C] 18[/C][C] 15.58[/C][C] 2.421[/C][/ROW]
[ROW][C]59[/C][C] 17[/C][C] 14.65[/C][C] 2.349[/C][/ROW]
[ROW][C]60[/C][C] 14[/C][C] 15.12[/C][C]-1.119[/C][/ROW]
[ROW][C]61[/C][C] 17[/C][C] 15.3[/C][C] 1.701[/C][/ROW]
[ROW][C]62[/C][C] 17[/C][C] 15.58[/C][C] 1.421[/C][/ROW]
[ROW][C]63[/C][C] 16[/C][C] 15.36[/C][C] 0.6372[/C][/ROW]
[ROW][C]64[/C][C] 18[/C][C] 16.13[/C][C] 1.871[/C][/ROW]
[ROW][C]65[/C][C] 18[/C][C] 15.65[/C][C] 2.35[/C][/ROW]
[ROW][C]66[/C][C] 16[/C][C] 15.64[/C][C] 0.3572[/C][/ROW]
[ROW][C]67[/C][C] 15[/C][C] 15.41[/C][C]-0.4149[/C][/ROW]
[ROW][C]68[/C][C] 13[/C][C] 15.63[/C][C]-2.632[/C][/ROW]
[ROW][C]69[/C][C] 16[/C][C] 15.6[/C][C] 0.4036[/C][/ROW]
[ROW][C]70[/C][C] 12[/C][C] 14.9[/C][C]-2.902[/C][/ROW]
[ROW][C]71[/C][C] 16[/C][C] 15.3[/C][C] 0.7013[/C][/ROW]
[ROW][C]72[/C][C] 16[/C][C] 15.82[/C][C] 0.1779[/C][/ROW]
[ROW][C]73[/C][C] 16[/C][C] 16[/C][C]-0.001387[/C][/ROW]
[ROW][C]74[/C][C] 14[/C][C] 15.71[/C][C]-1.713[/C][/ROW]
[ROW][C]75[/C][C] 15[/C][C] 15.39[/C][C]-0.3885[/C][/ROW]
[ROW][C]76[/C][C] 14[/C][C] 15.32[/C][C]-1.316[/C][/ROW]
[ROW][C]77[/C][C] 15[/C][C] 15.86[/C][C]-0.8575[/C][/ROW]
[ROW][C]78[/C][C] 15[/C][C] 15.9[/C][C]-0.9029[/C][/ROW]
[ROW][C]79[/C][C] 16[/C][C] 15.9[/C][C] 0.09712[/C][/ROW]
[ROW][C]80[/C][C] 11[/C][C] 15.4[/C][C]-4.397[/C][/ROW]
[ROW][C]81[/C][C] 18[/C][C] 14.79[/C][C] 3.214[/C][/ROW]
[ROW][C]82[/C][C] 11[/C][C] 15.41[/C][C]-4.408[/C][/ROW]
[ROW][C]83[/C][C] 18[/C][C] 14.96[/C][C] 3.036[/C][/ROW]
[ROW][C]84[/C][C] 15[/C][C] 15.69[/C][C]-0.6949[/C][/ROW]
[ROW][C]85[/C][C] 17[/C][C] 15.73[/C][C] 1.27[/C][/ROW]
[ROW][C]86[/C][C] 14[/C][C] 15.25[/C][C]-1.253[/C][/ROW]
[ROW][C]87[/C][C] 13[/C][C] 15.42[/C][C]-2.417[/C][/ROW]
[ROW][C]88[/C][C] 17[/C][C] 15.6[/C][C] 1.404[/C][/ROW]
[ROW][C]89[/C][C] 14[/C][C] 15.26[/C][C]-1.264[/C][/ROW]
[ROW][C]90[/C][C] 19[/C][C] 15.59[/C][C] 3.415[/C][/ROW]
[ROW][C]91[/C][C] 14[/C][C] 15.94[/C][C]-1.938[/C][/ROW]
[ROW][C]92[/C][C] 16[/C][C] 15.47[/C][C] 0.5307[/C][/ROW]
[ROW][C]93[/C][C] 16[/C][C] 15.76[/C][C] 0.2352[/C][/ROW]
[ROW][C]94[/C][C] 15[/C][C] 15.37[/C][C]-0.3707[/C][/ROW]
[ROW][C]95[/C][C] 12[/C][C] 14.9[/C][C]-2.902[/C][/ROW]
[ROW][C]96[/C][C] 17[/C][C] 15.23[/C][C] 1.773[/C][/ROW]
[ROW][C]97[/C][C] 15[/C][C] 15.43[/C][C]-0.4348[/C][/ROW]
[ROW][C]98[/C][C] 18[/C][C] 14.53[/C][C] 3.465[/C][/ROW]
[ROW][C]99[/C][C] 15[/C][C] 15.58[/C][C]-0.5787[/C][/ROW]
[ROW][C]100[/C][C] 16[/C][C] 15.21[/C][C] 0.7909[/C][/ROW]
[ROW][C]101[/C][C] 16[/C][C] 15.1[/C][C] 0.9003[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300400&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300400&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 13 14.61-1.605
2 16 15.84 0.1602
3 17 15.43 1.574
4 16 15.39 0.6115
5 17 15.23 1.773
6 17 15.84 1.16
7 15 14.99 0.007763
8 16 15.38 0.6205
9 14 15.78-1.776
10 16 15.23 0.7731
11 17 15.24 1.764
12 16 15.71 0.2941
13 16 15.31 0.6903
14 16 15.68 0.3228
15 15 15.25-0.2466
16 16 15.82 0.1779
17 16 15.36 0.6372
18 13 14.84-1.837
19 15 14.84 0.1606
20 17 15.05 1.952
21 13 15.22-2.218
22 17 15.71 1.287
23 14 15.33-1.325
24 14 15.61-1.614
25 18 15.66 2.34
26 17 15.03 1.972
27 13 15.24-2.236
28 16 15.52 0.4776
29 15 15.2-0.2002
30 15 14.75 0.2502
31 15 14.99 0.007957
32 13 15.1-2.102
33 17 15.8 1.196
34 11 15.44-4.444
35 14 15.14-1.137
36 13 15.36-2.363
37 17 15.89 1.115
38 16 15.43 0.5741
39 17 15.84 1.16
40 16 15.54 0.4579
41 16 15.53 0.4667
42 16 15.68 0.3228
43 15 15.47-0.4693
44 12 15.52-3.516
45 17 14.82 2.178
46 14 15.29-1.29
47 14 15.17-1.166
48 16 15.27 0.727
49 15 15.72-0.7236
50 16 15.85 0.1493
51 14 15.64-1.643
52 15 15.89-0.8852
53 17 15.58 1.421
54 10 15.2-5.2
55 17 15.36 1.637
56 20 15.75 4.25
57 17 15.29 1.71
58 18 15.58 2.421
59 17 14.65 2.349
60 14 15.12-1.119
61 17 15.3 1.701
62 17 15.58 1.421
63 16 15.36 0.6372
64 18 16.13 1.871
65 18 15.65 2.35
66 16 15.64 0.3572
67 15 15.41-0.4149
68 13 15.63-2.632
69 16 15.6 0.4036
70 12 14.9-2.902
71 16 15.3 0.7013
72 16 15.82 0.1779
73 16 16-0.001387
74 14 15.71-1.713
75 15 15.39-0.3885
76 14 15.32-1.316
77 15 15.86-0.8575
78 15 15.9-0.9029
79 16 15.9 0.09712
80 11 15.4-4.397
81 18 14.79 3.214
82 11 15.41-4.408
83 18 14.96 3.036
84 15 15.69-0.6949
85 17 15.73 1.27
86 14 15.25-1.253
87 13 15.42-2.417
88 17 15.6 1.404
89 14 15.26-1.264
90 19 15.59 3.415
91 14 15.94-1.938
92 16 15.47 0.5307
93 16 15.76 0.2352
94 15 15.37-0.3707
95 12 14.9-2.902
96 17 15.23 1.773
97 15 15.43-0.4348
98 18 14.53 3.465
99 15 15.58-0.5787
100 16 15.21 0.7909
101 16 15.1 0.9003







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
8 0.1834 0.3668 0.8166
9 0.3175 0.6351 0.6825
10 0.1922 0.3845 0.8078
11 0.1375 0.275 0.8625
12 0.0759 0.1518 0.9241
13 0.03962 0.07925 0.9604
14 0.02441 0.04881 0.9756
15 0.02468 0.04937 0.9753
16 0.01367 0.02734 0.9863
17 0.00792 0.01584 0.9921
18 0.01214 0.02429 0.9879
19 0.006274 0.01255 0.9937
20 0.004914 0.009828 0.9951
21 0.0115 0.02301 0.9885
22 0.00895 0.0179 0.991
23 0.009344 0.01869 0.9907
24 0.01165 0.02329 0.9884
25 0.009691 0.01938 0.9903
26 0.01621 0.03241 0.9838
27 0.02682 0.05363 0.9732
28 0.01852 0.03705 0.9815
29 0.01162 0.02325 0.9884
30 0.007202 0.0144 0.9928
31 0.005243 0.01049 0.9948
32 0.007097 0.01419 0.9929
33 0.004974 0.009948 0.995
34 0.07551 0.151 0.9245
35 0.06237 0.1247 0.9376
36 0.08034 0.1607 0.9197
37 0.06418 0.1284 0.9358
38 0.04844 0.09688 0.9516
39 0.038 0.07601 0.962
40 0.02761 0.05522 0.9724
41 0.01923 0.03845 0.9808
42 0.01306 0.02612 0.9869
43 0.008941 0.01788 0.9911
44 0.03194 0.06388 0.9681
45 0.04234 0.08469 0.9577
46 0.03553 0.07105 0.9645
47 0.02984 0.05967 0.9702
48 0.02198 0.04396 0.978
49 0.01639 0.03277 0.9836
50 0.01126 0.02253 0.9887
51 0.01066 0.02132 0.9893
52 0.007711 0.01542 0.9923
53 0.006755 0.01351 0.9932
54 0.06907 0.1381 0.9309
55 0.06319 0.1264 0.9368
56 0.1857 0.3715 0.8143
57 0.1815 0.3629 0.8185
58 0.2124 0.4249 0.7876
59 0.2487 0.4974 0.7513
60 0.2183 0.4365 0.7817
61 0.2124 0.4247 0.7876
62 0.1945 0.3889 0.8055
63 0.164 0.3281 0.836
64 0.2103 0.4207 0.7897
65 0.2498 0.4997 0.7502
66 0.218 0.4361 0.782
67 0.1777 0.3553 0.8223
68 0.2091 0.4183 0.7909
69 0.1697 0.3394 0.8303
70 0.2363 0.4725 0.7637
71 0.1958 0.3915 0.8042
72 0.1723 0.3446 0.8277
73 0.1554 0.3109 0.8446
74 0.1375 0.275 0.8625
75 0.1092 0.2184 0.8908
76 0.09189 0.1838 0.9081
77 0.07291 0.1458 0.9271
78 0.0566 0.1132 0.9434
79 0.05714 0.1143 0.9429
80 0.2055 0.4111 0.7945
81 0.2807 0.5614 0.7193
82 0.4553 0.9107 0.5447
83 0.4304 0.8607 0.5696
84 0.3505 0.7009 0.6495
85 0.3277 0.6553 0.6723
86 0.2903 0.5807 0.7097
87 0.3061 0.6121 0.6939
88 0.2879 0.5759 0.7121
89 0.2258 0.4516 0.7742
90 0.4236 0.8472 0.5764
91 0.3326 0.6651 0.6674
92 0.238 0.476 0.762
93 0.6891 0.6219 0.3109

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
8 &  0.1834 &  0.3668 &  0.8166 \tabularnewline
9 &  0.3175 &  0.6351 &  0.6825 \tabularnewline
10 &  0.1922 &  0.3845 &  0.8078 \tabularnewline
11 &  0.1375 &  0.275 &  0.8625 \tabularnewline
12 &  0.0759 &  0.1518 &  0.9241 \tabularnewline
13 &  0.03962 &  0.07925 &  0.9604 \tabularnewline
14 &  0.02441 &  0.04881 &  0.9756 \tabularnewline
15 &  0.02468 &  0.04937 &  0.9753 \tabularnewline
16 &  0.01367 &  0.02734 &  0.9863 \tabularnewline
17 &  0.00792 &  0.01584 &  0.9921 \tabularnewline
18 &  0.01214 &  0.02429 &  0.9879 \tabularnewline
19 &  0.006274 &  0.01255 &  0.9937 \tabularnewline
20 &  0.004914 &  0.009828 &  0.9951 \tabularnewline
21 &  0.0115 &  0.02301 &  0.9885 \tabularnewline
22 &  0.00895 &  0.0179 &  0.991 \tabularnewline
23 &  0.009344 &  0.01869 &  0.9907 \tabularnewline
24 &  0.01165 &  0.02329 &  0.9884 \tabularnewline
25 &  0.009691 &  0.01938 &  0.9903 \tabularnewline
26 &  0.01621 &  0.03241 &  0.9838 \tabularnewline
27 &  0.02682 &  0.05363 &  0.9732 \tabularnewline
28 &  0.01852 &  0.03705 &  0.9815 \tabularnewline
29 &  0.01162 &  0.02325 &  0.9884 \tabularnewline
30 &  0.007202 &  0.0144 &  0.9928 \tabularnewline
31 &  0.005243 &  0.01049 &  0.9948 \tabularnewline
32 &  0.007097 &  0.01419 &  0.9929 \tabularnewline
33 &  0.004974 &  0.009948 &  0.995 \tabularnewline
34 &  0.07551 &  0.151 &  0.9245 \tabularnewline
35 &  0.06237 &  0.1247 &  0.9376 \tabularnewline
36 &  0.08034 &  0.1607 &  0.9197 \tabularnewline
37 &  0.06418 &  0.1284 &  0.9358 \tabularnewline
38 &  0.04844 &  0.09688 &  0.9516 \tabularnewline
39 &  0.038 &  0.07601 &  0.962 \tabularnewline
40 &  0.02761 &  0.05522 &  0.9724 \tabularnewline
41 &  0.01923 &  0.03845 &  0.9808 \tabularnewline
42 &  0.01306 &  0.02612 &  0.9869 \tabularnewline
43 &  0.008941 &  0.01788 &  0.9911 \tabularnewline
44 &  0.03194 &  0.06388 &  0.9681 \tabularnewline
45 &  0.04234 &  0.08469 &  0.9577 \tabularnewline
46 &  0.03553 &  0.07105 &  0.9645 \tabularnewline
47 &  0.02984 &  0.05967 &  0.9702 \tabularnewline
48 &  0.02198 &  0.04396 &  0.978 \tabularnewline
49 &  0.01639 &  0.03277 &  0.9836 \tabularnewline
50 &  0.01126 &  0.02253 &  0.9887 \tabularnewline
51 &  0.01066 &  0.02132 &  0.9893 \tabularnewline
52 &  0.007711 &  0.01542 &  0.9923 \tabularnewline
53 &  0.006755 &  0.01351 &  0.9932 \tabularnewline
54 &  0.06907 &  0.1381 &  0.9309 \tabularnewline
55 &  0.06319 &  0.1264 &  0.9368 \tabularnewline
56 &  0.1857 &  0.3715 &  0.8143 \tabularnewline
57 &  0.1815 &  0.3629 &  0.8185 \tabularnewline
58 &  0.2124 &  0.4249 &  0.7876 \tabularnewline
59 &  0.2487 &  0.4974 &  0.7513 \tabularnewline
60 &  0.2183 &  0.4365 &  0.7817 \tabularnewline
61 &  0.2124 &  0.4247 &  0.7876 \tabularnewline
62 &  0.1945 &  0.3889 &  0.8055 \tabularnewline
63 &  0.164 &  0.3281 &  0.836 \tabularnewline
64 &  0.2103 &  0.4207 &  0.7897 \tabularnewline
65 &  0.2498 &  0.4997 &  0.7502 \tabularnewline
66 &  0.218 &  0.4361 &  0.782 \tabularnewline
67 &  0.1777 &  0.3553 &  0.8223 \tabularnewline
68 &  0.2091 &  0.4183 &  0.7909 \tabularnewline
69 &  0.1697 &  0.3394 &  0.8303 \tabularnewline
70 &  0.2363 &  0.4725 &  0.7637 \tabularnewline
71 &  0.1958 &  0.3915 &  0.8042 \tabularnewline
72 &  0.1723 &  0.3446 &  0.8277 \tabularnewline
73 &  0.1554 &  0.3109 &  0.8446 \tabularnewline
74 &  0.1375 &  0.275 &  0.8625 \tabularnewline
75 &  0.1092 &  0.2184 &  0.8908 \tabularnewline
76 &  0.09189 &  0.1838 &  0.9081 \tabularnewline
77 &  0.07291 &  0.1458 &  0.9271 \tabularnewline
78 &  0.0566 &  0.1132 &  0.9434 \tabularnewline
79 &  0.05714 &  0.1143 &  0.9429 \tabularnewline
80 &  0.2055 &  0.4111 &  0.7945 \tabularnewline
81 &  0.2807 &  0.5614 &  0.7193 \tabularnewline
82 &  0.4553 &  0.9107 &  0.5447 \tabularnewline
83 &  0.4304 &  0.8607 &  0.5696 \tabularnewline
84 &  0.3505 &  0.7009 &  0.6495 \tabularnewline
85 &  0.3277 &  0.6553 &  0.6723 \tabularnewline
86 &  0.2903 &  0.5807 &  0.7097 \tabularnewline
87 &  0.3061 &  0.6121 &  0.6939 \tabularnewline
88 &  0.2879 &  0.5759 &  0.7121 \tabularnewline
89 &  0.2258 &  0.4516 &  0.7742 \tabularnewline
90 &  0.4236 &  0.8472 &  0.5764 \tabularnewline
91 &  0.3326 &  0.6651 &  0.6674 \tabularnewline
92 &  0.238 &  0.476 &  0.762 \tabularnewline
93 &  0.6891 &  0.6219 &  0.3109 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300400&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]8[/C][C] 0.1834[/C][C] 0.3668[/C][C] 0.8166[/C][/ROW]
[ROW][C]9[/C][C] 0.3175[/C][C] 0.6351[/C][C] 0.6825[/C][/ROW]
[ROW][C]10[/C][C] 0.1922[/C][C] 0.3845[/C][C] 0.8078[/C][/ROW]
[ROW][C]11[/C][C] 0.1375[/C][C] 0.275[/C][C] 0.8625[/C][/ROW]
[ROW][C]12[/C][C] 0.0759[/C][C] 0.1518[/C][C] 0.9241[/C][/ROW]
[ROW][C]13[/C][C] 0.03962[/C][C] 0.07925[/C][C] 0.9604[/C][/ROW]
[ROW][C]14[/C][C] 0.02441[/C][C] 0.04881[/C][C] 0.9756[/C][/ROW]
[ROW][C]15[/C][C] 0.02468[/C][C] 0.04937[/C][C] 0.9753[/C][/ROW]
[ROW][C]16[/C][C] 0.01367[/C][C] 0.02734[/C][C] 0.9863[/C][/ROW]
[ROW][C]17[/C][C] 0.00792[/C][C] 0.01584[/C][C] 0.9921[/C][/ROW]
[ROW][C]18[/C][C] 0.01214[/C][C] 0.02429[/C][C] 0.9879[/C][/ROW]
[ROW][C]19[/C][C] 0.006274[/C][C] 0.01255[/C][C] 0.9937[/C][/ROW]
[ROW][C]20[/C][C] 0.004914[/C][C] 0.009828[/C][C] 0.9951[/C][/ROW]
[ROW][C]21[/C][C] 0.0115[/C][C] 0.02301[/C][C] 0.9885[/C][/ROW]
[ROW][C]22[/C][C] 0.00895[/C][C] 0.0179[/C][C] 0.991[/C][/ROW]
[ROW][C]23[/C][C] 0.009344[/C][C] 0.01869[/C][C] 0.9907[/C][/ROW]
[ROW][C]24[/C][C] 0.01165[/C][C] 0.02329[/C][C] 0.9884[/C][/ROW]
[ROW][C]25[/C][C] 0.009691[/C][C] 0.01938[/C][C] 0.9903[/C][/ROW]
[ROW][C]26[/C][C] 0.01621[/C][C] 0.03241[/C][C] 0.9838[/C][/ROW]
[ROW][C]27[/C][C] 0.02682[/C][C] 0.05363[/C][C] 0.9732[/C][/ROW]
[ROW][C]28[/C][C] 0.01852[/C][C] 0.03705[/C][C] 0.9815[/C][/ROW]
[ROW][C]29[/C][C] 0.01162[/C][C] 0.02325[/C][C] 0.9884[/C][/ROW]
[ROW][C]30[/C][C] 0.007202[/C][C] 0.0144[/C][C] 0.9928[/C][/ROW]
[ROW][C]31[/C][C] 0.005243[/C][C] 0.01049[/C][C] 0.9948[/C][/ROW]
[ROW][C]32[/C][C] 0.007097[/C][C] 0.01419[/C][C] 0.9929[/C][/ROW]
[ROW][C]33[/C][C] 0.004974[/C][C] 0.009948[/C][C] 0.995[/C][/ROW]
[ROW][C]34[/C][C] 0.07551[/C][C] 0.151[/C][C] 0.9245[/C][/ROW]
[ROW][C]35[/C][C] 0.06237[/C][C] 0.1247[/C][C] 0.9376[/C][/ROW]
[ROW][C]36[/C][C] 0.08034[/C][C] 0.1607[/C][C] 0.9197[/C][/ROW]
[ROW][C]37[/C][C] 0.06418[/C][C] 0.1284[/C][C] 0.9358[/C][/ROW]
[ROW][C]38[/C][C] 0.04844[/C][C] 0.09688[/C][C] 0.9516[/C][/ROW]
[ROW][C]39[/C][C] 0.038[/C][C] 0.07601[/C][C] 0.962[/C][/ROW]
[ROW][C]40[/C][C] 0.02761[/C][C] 0.05522[/C][C] 0.9724[/C][/ROW]
[ROW][C]41[/C][C] 0.01923[/C][C] 0.03845[/C][C] 0.9808[/C][/ROW]
[ROW][C]42[/C][C] 0.01306[/C][C] 0.02612[/C][C] 0.9869[/C][/ROW]
[ROW][C]43[/C][C] 0.008941[/C][C] 0.01788[/C][C] 0.9911[/C][/ROW]
[ROW][C]44[/C][C] 0.03194[/C][C] 0.06388[/C][C] 0.9681[/C][/ROW]
[ROW][C]45[/C][C] 0.04234[/C][C] 0.08469[/C][C] 0.9577[/C][/ROW]
[ROW][C]46[/C][C] 0.03553[/C][C] 0.07105[/C][C] 0.9645[/C][/ROW]
[ROW][C]47[/C][C] 0.02984[/C][C] 0.05967[/C][C] 0.9702[/C][/ROW]
[ROW][C]48[/C][C] 0.02198[/C][C] 0.04396[/C][C] 0.978[/C][/ROW]
[ROW][C]49[/C][C] 0.01639[/C][C] 0.03277[/C][C] 0.9836[/C][/ROW]
[ROW][C]50[/C][C] 0.01126[/C][C] 0.02253[/C][C] 0.9887[/C][/ROW]
[ROW][C]51[/C][C] 0.01066[/C][C] 0.02132[/C][C] 0.9893[/C][/ROW]
[ROW][C]52[/C][C] 0.007711[/C][C] 0.01542[/C][C] 0.9923[/C][/ROW]
[ROW][C]53[/C][C] 0.006755[/C][C] 0.01351[/C][C] 0.9932[/C][/ROW]
[ROW][C]54[/C][C] 0.06907[/C][C] 0.1381[/C][C] 0.9309[/C][/ROW]
[ROW][C]55[/C][C] 0.06319[/C][C] 0.1264[/C][C] 0.9368[/C][/ROW]
[ROW][C]56[/C][C] 0.1857[/C][C] 0.3715[/C][C] 0.8143[/C][/ROW]
[ROW][C]57[/C][C] 0.1815[/C][C] 0.3629[/C][C] 0.8185[/C][/ROW]
[ROW][C]58[/C][C] 0.2124[/C][C] 0.4249[/C][C] 0.7876[/C][/ROW]
[ROW][C]59[/C][C] 0.2487[/C][C] 0.4974[/C][C] 0.7513[/C][/ROW]
[ROW][C]60[/C][C] 0.2183[/C][C] 0.4365[/C][C] 0.7817[/C][/ROW]
[ROW][C]61[/C][C] 0.2124[/C][C] 0.4247[/C][C] 0.7876[/C][/ROW]
[ROW][C]62[/C][C] 0.1945[/C][C] 0.3889[/C][C] 0.8055[/C][/ROW]
[ROW][C]63[/C][C] 0.164[/C][C] 0.3281[/C][C] 0.836[/C][/ROW]
[ROW][C]64[/C][C] 0.2103[/C][C] 0.4207[/C][C] 0.7897[/C][/ROW]
[ROW][C]65[/C][C] 0.2498[/C][C] 0.4997[/C][C] 0.7502[/C][/ROW]
[ROW][C]66[/C][C] 0.218[/C][C] 0.4361[/C][C] 0.782[/C][/ROW]
[ROW][C]67[/C][C] 0.1777[/C][C] 0.3553[/C][C] 0.8223[/C][/ROW]
[ROW][C]68[/C][C] 0.2091[/C][C] 0.4183[/C][C] 0.7909[/C][/ROW]
[ROW][C]69[/C][C] 0.1697[/C][C] 0.3394[/C][C] 0.8303[/C][/ROW]
[ROW][C]70[/C][C] 0.2363[/C][C] 0.4725[/C][C] 0.7637[/C][/ROW]
[ROW][C]71[/C][C] 0.1958[/C][C] 0.3915[/C][C] 0.8042[/C][/ROW]
[ROW][C]72[/C][C] 0.1723[/C][C] 0.3446[/C][C] 0.8277[/C][/ROW]
[ROW][C]73[/C][C] 0.1554[/C][C] 0.3109[/C][C] 0.8446[/C][/ROW]
[ROW][C]74[/C][C] 0.1375[/C][C] 0.275[/C][C] 0.8625[/C][/ROW]
[ROW][C]75[/C][C] 0.1092[/C][C] 0.2184[/C][C] 0.8908[/C][/ROW]
[ROW][C]76[/C][C] 0.09189[/C][C] 0.1838[/C][C] 0.9081[/C][/ROW]
[ROW][C]77[/C][C] 0.07291[/C][C] 0.1458[/C][C] 0.9271[/C][/ROW]
[ROW][C]78[/C][C] 0.0566[/C][C] 0.1132[/C][C] 0.9434[/C][/ROW]
[ROW][C]79[/C][C] 0.05714[/C][C] 0.1143[/C][C] 0.9429[/C][/ROW]
[ROW][C]80[/C][C] 0.2055[/C][C] 0.4111[/C][C] 0.7945[/C][/ROW]
[ROW][C]81[/C][C] 0.2807[/C][C] 0.5614[/C][C] 0.7193[/C][/ROW]
[ROW][C]82[/C][C] 0.4553[/C][C] 0.9107[/C][C] 0.5447[/C][/ROW]
[ROW][C]83[/C][C] 0.4304[/C][C] 0.8607[/C][C] 0.5696[/C][/ROW]
[ROW][C]84[/C][C] 0.3505[/C][C] 0.7009[/C][C] 0.6495[/C][/ROW]
[ROW][C]85[/C][C] 0.3277[/C][C] 0.6553[/C][C] 0.6723[/C][/ROW]
[ROW][C]86[/C][C] 0.2903[/C][C] 0.5807[/C][C] 0.7097[/C][/ROW]
[ROW][C]87[/C][C] 0.3061[/C][C] 0.6121[/C][C] 0.6939[/C][/ROW]
[ROW][C]88[/C][C] 0.2879[/C][C] 0.5759[/C][C] 0.7121[/C][/ROW]
[ROW][C]89[/C][C] 0.2258[/C][C] 0.4516[/C][C] 0.7742[/C][/ROW]
[ROW][C]90[/C][C] 0.4236[/C][C] 0.8472[/C][C] 0.5764[/C][/ROW]
[ROW][C]91[/C][C] 0.3326[/C][C] 0.6651[/C][C] 0.6674[/C][/ROW]
[ROW][C]92[/C][C] 0.238[/C][C] 0.476[/C][C] 0.762[/C][/ROW]
[ROW][C]93[/C][C] 0.6891[/C][C] 0.6219[/C][C] 0.3109[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300400&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300400&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
8 0.1834 0.3668 0.8166
9 0.3175 0.6351 0.6825
10 0.1922 0.3845 0.8078
11 0.1375 0.275 0.8625
12 0.0759 0.1518 0.9241
13 0.03962 0.07925 0.9604
14 0.02441 0.04881 0.9756
15 0.02468 0.04937 0.9753
16 0.01367 0.02734 0.9863
17 0.00792 0.01584 0.9921
18 0.01214 0.02429 0.9879
19 0.006274 0.01255 0.9937
20 0.004914 0.009828 0.9951
21 0.0115 0.02301 0.9885
22 0.00895 0.0179 0.991
23 0.009344 0.01869 0.9907
24 0.01165 0.02329 0.9884
25 0.009691 0.01938 0.9903
26 0.01621 0.03241 0.9838
27 0.02682 0.05363 0.9732
28 0.01852 0.03705 0.9815
29 0.01162 0.02325 0.9884
30 0.007202 0.0144 0.9928
31 0.005243 0.01049 0.9948
32 0.007097 0.01419 0.9929
33 0.004974 0.009948 0.995
34 0.07551 0.151 0.9245
35 0.06237 0.1247 0.9376
36 0.08034 0.1607 0.9197
37 0.06418 0.1284 0.9358
38 0.04844 0.09688 0.9516
39 0.038 0.07601 0.962
40 0.02761 0.05522 0.9724
41 0.01923 0.03845 0.9808
42 0.01306 0.02612 0.9869
43 0.008941 0.01788 0.9911
44 0.03194 0.06388 0.9681
45 0.04234 0.08469 0.9577
46 0.03553 0.07105 0.9645
47 0.02984 0.05967 0.9702
48 0.02198 0.04396 0.978
49 0.01639 0.03277 0.9836
50 0.01126 0.02253 0.9887
51 0.01066 0.02132 0.9893
52 0.007711 0.01542 0.9923
53 0.006755 0.01351 0.9932
54 0.06907 0.1381 0.9309
55 0.06319 0.1264 0.9368
56 0.1857 0.3715 0.8143
57 0.1815 0.3629 0.8185
58 0.2124 0.4249 0.7876
59 0.2487 0.4974 0.7513
60 0.2183 0.4365 0.7817
61 0.2124 0.4247 0.7876
62 0.1945 0.3889 0.8055
63 0.164 0.3281 0.836
64 0.2103 0.4207 0.7897
65 0.2498 0.4997 0.7502
66 0.218 0.4361 0.782
67 0.1777 0.3553 0.8223
68 0.2091 0.4183 0.7909
69 0.1697 0.3394 0.8303
70 0.2363 0.4725 0.7637
71 0.1958 0.3915 0.8042
72 0.1723 0.3446 0.8277
73 0.1554 0.3109 0.8446
74 0.1375 0.275 0.8625
75 0.1092 0.2184 0.8908
76 0.09189 0.1838 0.9081
77 0.07291 0.1458 0.9271
78 0.0566 0.1132 0.9434
79 0.05714 0.1143 0.9429
80 0.2055 0.4111 0.7945
81 0.2807 0.5614 0.7193
82 0.4553 0.9107 0.5447
83 0.4304 0.8607 0.5696
84 0.3505 0.7009 0.6495
85 0.3277 0.6553 0.6723
86 0.2903 0.5807 0.7097
87 0.3061 0.6121 0.6939
88 0.2879 0.5759 0.7121
89 0.2258 0.4516 0.7742
90 0.4236 0.8472 0.5764
91 0.3326 0.6651 0.6674
92 0.238 0.476 0.762
93 0.6891 0.6219 0.3109







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level2 0.02326NOK
5% type I error level280.325581NOK
10% type I error level370.430233NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 2 &  0.02326 & NOK \tabularnewline
5% type I error level & 28 & 0.325581 & NOK \tabularnewline
10% type I error level & 37 & 0.430233 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300400&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]2[/C][C] 0.02326[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]28[/C][C]0.325581[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]37[/C][C]0.430233[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300400&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300400&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level2 0.02326NOK
5% type I error level280.325581NOK
10% type I error level370.430233NOK







Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 2.5431, df1 = 2, df2 = 94, p-value = 0.08402
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 2.5521, df1 = 8, df2 = 88, p-value = 0.01502
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.616, df1 = 2, df2 = 94, p-value = 0.2042

\begin{tabular}{lllllllll}
\hline
Ramsey RESET F-Test for powers (2 and 3) of fitted values \tabularnewline
> reset_test_fitted
	RESET test
data:  mylm
RESET = 2.5431, df1 = 2, df2 = 94, p-value = 0.08402
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of regressors \tabularnewline
> reset_test_regressors
	RESET test
data:  mylm
RESET = 2.5521, df1 = 8, df2 = 88, p-value = 0.01502
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of principal components \tabularnewline
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.616, df1 = 2, df2 = 94, p-value = 0.2042
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=300400&T=7

[TABLE]
[ROW][C]Ramsey RESET F-Test for powers (2 and 3) of fitted values[/C][/ROW]
[ROW][C]
> reset_test_fitted
	RESET test
data:  mylm
RESET = 2.5431, df1 = 2, df2 = 94, p-value = 0.08402
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of regressors[/C][/ROW] [ROW][C]
> reset_test_regressors
	RESET test
data:  mylm
RESET = 2.5521, df1 = 8, df2 = 88, p-value = 0.01502
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of principal components[/C][/ROW] [ROW][C]
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.616, df1 = 2, df2 = 94, p-value = 0.2042
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=300400&T=7

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300400&T=7

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 2.5431, df1 = 2, df2 = 94, p-value = 0.08402
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 2.5521, df1 = 8, df2 = 88, p-value = 0.01502
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.616, df1 = 2, df2 = 94, p-value = 0.2042







Variance Inflation Factors (Multicollinearity)
> vif
     EC1      EC2      EC3      EC4 
1.339084 1.272293 1.066006 1.094380 

\begin{tabular}{lllllllll}
\hline
Variance Inflation Factors (Multicollinearity) \tabularnewline
> vif
     EC1      EC2      EC3      EC4 
1.339084 1.272293 1.066006 1.094380 
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=300400&T=8

[TABLE]
[ROW][C]Variance Inflation Factors (Multicollinearity)[/C][/ROW]
[ROW][C]
> vif
     EC1      EC2      EC3      EC4 
1.339084 1.272293 1.066006 1.094380 
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=300400&T=8

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300400&T=8

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variance Inflation Factors (Multicollinearity)
> vif
     EC1      EC2      EC3      EC4 
1.339084 1.272293 1.066006 1.094380 



Parameters (Session):
par1 = 5 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ;
Parameters (R input):
par1 = 5 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ;
R code (references can be found in the software module):
par5 <- '0'
par4 <- '0'
par3 <- 'No Linear Trend'
par2 <- 'Do not include Seasonal Dummies'
par1 <- '5'
library(lattice)
library(lmtest)
library(car)
library(MASS)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
mywarning <- ''
par1 <- as.numeric(par1)
if(is.na(par1)) {
par1 <- 1
mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.'
}
if (par4=='') par4 <- 0
par4 <- as.numeric(par4)
if (par5=='') par5 <- 0
par5 <- as.numeric(par5)
x <- na.omit(t(y))
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'Seasonal Differences (s=12)'){
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'First and Seasonal Differences (s=12)'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if(par4 > 0) {
x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep='')))
for (i in 1:(n-par4)) {
for (j in 1:par4) {
x2[i,j] <- x[i+par4-j,par1]
}
}
x <- cbind(x[(par4+1):n,], x2)
n <- n - par4
}
if(par5 > 0) {
x2 <- array(0, dim=c(n-par5*12,par5), dimnames=list(1:(n-par5*12), paste(colnames(x)[par1],'(t-',1:par5,'s)',sep='')))
for (i in 1:(n-par5*12)) {
for (j in 1:par5) {
x2[i,j] <- x[i+par5*12-j*12,par1]
}
}
x <- cbind(x[(par5*12+1):n,], x2)
n <- n - par5*12
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
(k <- length(x[n,]))
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
print(x)
(k <- length(x[n,]))
head(x)
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
sresid <- studres(mylm)
hist(sresid, freq=FALSE, main='Distribution of Studentized Residuals')
xfit<-seq(min(sresid),max(sresid),length=40)
yfit<-dnorm(xfit)
lines(xfit, yfit)
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqPlot(mylm, main='QQ Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
print(z)
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, mywarning)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Multiple Linear Regression - Ordinary Least Squares', 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
myr <- as.numeric(mysum$resid)
myr
if(n < 200) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' '))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of fitted values',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_fitted <- resettest(mylm,power=2:3,type='fitted')
a<-table.element(a,paste('
',RC.texteval('reset_test_fitted'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of regressors',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_regressors <- resettest(mylm,power=2:3,type='regressor')
a<-table.element(a,paste('
',RC.texteval('reset_test_regressors'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of principal components',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_principal_components <- resettest(mylm,power=2:3,type='princomp')
a<-table.element(a,paste('
',RC.texteval('reset_test_principal_components'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable8.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variance Inflation Factors (Multicollinearity)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
vif <- vif(mylm)
a<-table.element(a,paste('
',RC.texteval('vif'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable9.tab')