Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_autocorrelation.wasp
Title produced by software(Partial) Autocorrelation Function
Date of computationFri, 16 Dec 2016 16:14:42 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/16/t1481901356bwga7nc22fbvz2z.htm/, Retrieved Fri, 01 Nov 2024 03:28:24 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=300351, Retrieved Fri, 01 Nov 2024 03:28:24 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact97
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [(Partial) Autocorrelation Function] [] [2016-12-16 15:14:42] [9b171b8beffcb53bb49a1e7c02b89c12] [Current]
Feedback Forum

Post a new message
Dataseries X:
4865
5025
5135
5235
5290
5335
5350
5360
5350
5320
5285
5235
5185
5120
5065
4995
4990
4960
4955
4960
4965
4980
5005
5040
5095
5165
5215
5275
5320
5370
5445
5535
5585
5650
5695
5715
5935
6010
6085
6155
6210
6270
6370
6440
6490
6580
6655
6695
6905
7070
7200
7315
7225
7300
7335
7340
7320
7275
7220
7160
7015
6870
6610
6430
6330
6240
6210
6185
6185
6185
6205
6250
6310
6405
6515
6655
6795
6945
7100
7260




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300351&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=300351&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300351&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Autocorrelation Function
Time lag kACF(k)T-STATP-value
1-0.347073-3.06530.001493
20.0855570.75560.226076
30.123871.0940.138663
4-0.247955-2.18990.015761
50.2061991.82110.036213
60.0919070.81170.209717
7-0.105467-0.93150.177245
80.042510.37540.354178
9-0.022277-0.19670.422269
100.0440160.38870.349263
11-0.08136-0.71860.237281
120.0572540.50560.307264
13-0.036053-0.31840.375514
14-0.221588-1.9570.026962
150.1870431.65190.051286
16-0.333728-2.94740.002113
170.1763881.55780.061662
180.0417560.36880.356645
19-0.103099-0.91050.182669

\begin{tabular}{lllllllll}
\hline
Autocorrelation Function \tabularnewline
Time lag k & ACF(k) & T-STAT & P-value \tabularnewline
1 & -0.347073 & -3.0653 & 0.001493 \tabularnewline
2 & 0.085557 & 0.7556 & 0.226076 \tabularnewline
3 & 0.12387 & 1.094 & 0.138663 \tabularnewline
4 & -0.247955 & -2.1899 & 0.015761 \tabularnewline
5 & 0.206199 & 1.8211 & 0.036213 \tabularnewline
6 & 0.091907 & 0.8117 & 0.209717 \tabularnewline
7 & -0.105467 & -0.9315 & 0.177245 \tabularnewline
8 & 0.04251 & 0.3754 & 0.354178 \tabularnewline
9 & -0.022277 & -0.1967 & 0.422269 \tabularnewline
10 & 0.044016 & 0.3887 & 0.349263 \tabularnewline
11 & -0.08136 & -0.7186 & 0.237281 \tabularnewline
12 & 0.057254 & 0.5056 & 0.307264 \tabularnewline
13 & -0.036053 & -0.3184 & 0.375514 \tabularnewline
14 & -0.221588 & -1.957 & 0.026962 \tabularnewline
15 & 0.187043 & 1.6519 & 0.051286 \tabularnewline
16 & -0.333728 & -2.9474 & 0.002113 \tabularnewline
17 & 0.176388 & 1.5578 & 0.061662 \tabularnewline
18 & 0.041756 & 0.3688 & 0.356645 \tabularnewline
19 & -0.103099 & -0.9105 & 0.182669 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300351&T=1

[TABLE]
[ROW][C]Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]ACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]-0.347073[/C][C]-3.0653[/C][C]0.001493[/C][/ROW]
[ROW][C]2[/C][C]0.085557[/C][C]0.7556[/C][C]0.226076[/C][/ROW]
[ROW][C]3[/C][C]0.12387[/C][C]1.094[/C][C]0.138663[/C][/ROW]
[ROW][C]4[/C][C]-0.247955[/C][C]-2.1899[/C][C]0.015761[/C][/ROW]
[ROW][C]5[/C][C]0.206199[/C][C]1.8211[/C][C]0.036213[/C][/ROW]
[ROW][C]6[/C][C]0.091907[/C][C]0.8117[/C][C]0.209717[/C][/ROW]
[ROW][C]7[/C][C]-0.105467[/C][C]-0.9315[/C][C]0.177245[/C][/ROW]
[ROW][C]8[/C][C]0.04251[/C][C]0.3754[/C][C]0.354178[/C][/ROW]
[ROW][C]9[/C][C]-0.022277[/C][C]-0.1967[/C][C]0.422269[/C][/ROW]
[ROW][C]10[/C][C]0.044016[/C][C]0.3887[/C][C]0.349263[/C][/ROW]
[ROW][C]11[/C][C]-0.08136[/C][C]-0.7186[/C][C]0.237281[/C][/ROW]
[ROW][C]12[/C][C]0.057254[/C][C]0.5056[/C][C]0.307264[/C][/ROW]
[ROW][C]13[/C][C]-0.036053[/C][C]-0.3184[/C][C]0.375514[/C][/ROW]
[ROW][C]14[/C][C]-0.221588[/C][C]-1.957[/C][C]0.026962[/C][/ROW]
[ROW][C]15[/C][C]0.187043[/C][C]1.6519[/C][C]0.051286[/C][/ROW]
[ROW][C]16[/C][C]-0.333728[/C][C]-2.9474[/C][C]0.002113[/C][/ROW]
[ROW][C]17[/C][C]0.176388[/C][C]1.5578[/C][C]0.061662[/C][/ROW]
[ROW][C]18[/C][C]0.041756[/C][C]0.3688[/C][C]0.356645[/C][/ROW]
[ROW][C]19[/C][C]-0.103099[/C][C]-0.9105[/C][C]0.182669[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300351&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300351&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Autocorrelation Function
Time lag kACF(k)T-STATP-value
1-0.347073-3.06530.001493
20.0855570.75560.226076
30.123871.0940.138663
4-0.247955-2.18990.015761
50.2061991.82110.036213
60.0919070.81170.209717
7-0.105467-0.93150.177245
80.042510.37540.354178
9-0.022277-0.19670.422269
100.0440160.38870.349263
11-0.08136-0.71860.237281
120.0572540.50560.307264
13-0.036053-0.31840.375514
14-0.221588-1.9570.026962
150.1870431.65190.051286
16-0.333728-2.94740.002113
170.1763881.55780.061662
180.0417560.36880.356645
19-0.103099-0.91050.182669







Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
1-0.347073-3.06530.001493
2-0.039682-0.35050.363468
30.160531.41780.080121
4-0.175204-1.54740.062912
50.0643860.56860.285615
60.2229731.96920.026238
70.0238140.21030.416983
8-0.103142-0.91090.18257
9-0.002578-0.02280.490947
100.1266681.11870.13335
11-0.138957-1.22720.111713
12-0.061168-0.54020.295292
130.0379820.33550.369093
14-0.243949-2.15450.017144
15-0.043186-0.38140.35197
16-0.275449-2.43270.008638
170.0735660.64970.258891
180.0605680.53490.297114
190.0715270.63170.264712

\begin{tabular}{lllllllll}
\hline
Partial Autocorrelation Function \tabularnewline
Time lag k & PACF(k) & T-STAT & P-value \tabularnewline
1 & -0.347073 & -3.0653 & 0.001493 \tabularnewline
2 & -0.039682 & -0.3505 & 0.363468 \tabularnewline
3 & 0.16053 & 1.4178 & 0.080121 \tabularnewline
4 & -0.175204 & -1.5474 & 0.062912 \tabularnewline
5 & 0.064386 & 0.5686 & 0.285615 \tabularnewline
6 & 0.222973 & 1.9692 & 0.026238 \tabularnewline
7 & 0.023814 & 0.2103 & 0.416983 \tabularnewline
8 & -0.103142 & -0.9109 & 0.18257 \tabularnewline
9 & -0.002578 & -0.0228 & 0.490947 \tabularnewline
10 & 0.126668 & 1.1187 & 0.13335 \tabularnewline
11 & -0.138957 & -1.2272 & 0.111713 \tabularnewline
12 & -0.061168 & -0.5402 & 0.295292 \tabularnewline
13 & 0.037982 & 0.3355 & 0.369093 \tabularnewline
14 & -0.243949 & -2.1545 & 0.017144 \tabularnewline
15 & -0.043186 & -0.3814 & 0.35197 \tabularnewline
16 & -0.275449 & -2.4327 & 0.008638 \tabularnewline
17 & 0.073566 & 0.6497 & 0.258891 \tabularnewline
18 & 0.060568 & 0.5349 & 0.297114 \tabularnewline
19 & 0.071527 & 0.6317 & 0.264712 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300351&T=2

[TABLE]
[ROW][C]Partial Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]PACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]-0.347073[/C][C]-3.0653[/C][C]0.001493[/C][/ROW]
[ROW][C]2[/C][C]-0.039682[/C][C]-0.3505[/C][C]0.363468[/C][/ROW]
[ROW][C]3[/C][C]0.16053[/C][C]1.4178[/C][C]0.080121[/C][/ROW]
[ROW][C]4[/C][C]-0.175204[/C][C]-1.5474[/C][C]0.062912[/C][/ROW]
[ROW][C]5[/C][C]0.064386[/C][C]0.5686[/C][C]0.285615[/C][/ROW]
[ROW][C]6[/C][C]0.222973[/C][C]1.9692[/C][C]0.026238[/C][/ROW]
[ROW][C]7[/C][C]0.023814[/C][C]0.2103[/C][C]0.416983[/C][/ROW]
[ROW][C]8[/C][C]-0.103142[/C][C]-0.9109[/C][C]0.18257[/C][/ROW]
[ROW][C]9[/C][C]-0.002578[/C][C]-0.0228[/C][C]0.490947[/C][/ROW]
[ROW][C]10[/C][C]0.126668[/C][C]1.1187[/C][C]0.13335[/C][/ROW]
[ROW][C]11[/C][C]-0.138957[/C][C]-1.2272[/C][C]0.111713[/C][/ROW]
[ROW][C]12[/C][C]-0.061168[/C][C]-0.5402[/C][C]0.295292[/C][/ROW]
[ROW][C]13[/C][C]0.037982[/C][C]0.3355[/C][C]0.369093[/C][/ROW]
[ROW][C]14[/C][C]-0.243949[/C][C]-2.1545[/C][C]0.017144[/C][/ROW]
[ROW][C]15[/C][C]-0.043186[/C][C]-0.3814[/C][C]0.35197[/C][/ROW]
[ROW][C]16[/C][C]-0.275449[/C][C]-2.4327[/C][C]0.008638[/C][/ROW]
[ROW][C]17[/C][C]0.073566[/C][C]0.6497[/C][C]0.258891[/C][/ROW]
[ROW][C]18[/C][C]0.060568[/C][C]0.5349[/C][C]0.297114[/C][/ROW]
[ROW][C]19[/C][C]0.071527[/C][C]0.6317[/C][C]0.264712[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300351&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300351&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
1-0.347073-3.06530.001493
2-0.039682-0.35050.363468
30.160531.41780.080121
4-0.175204-1.54740.062912
50.0643860.56860.285615
60.2229731.96920.026238
70.0238140.21030.416983
8-0.103142-0.91090.18257
9-0.002578-0.02280.490947
100.1266681.11870.13335
11-0.138957-1.22720.111713
12-0.061168-0.54020.295292
130.0379820.33550.369093
14-0.243949-2.15450.017144
15-0.043186-0.38140.35197
16-0.275449-2.43270.008638
170.0735660.64970.258891
180.0605680.53490.297114
190.0715270.63170.264712



Parameters (Session):
par1 = Default ; par2 = 1 ; par3 = 1 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ;
Parameters (R input):
par1 = Default ; par2 = 1 ; par3 = 2 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ; par8 = ;
R code (references can be found in the software module):
par8 <- ''
par7 <- '0.95'
par6 <- 'White Noise'
par5 <- '12'
par4 <- '0'
par3 <- '1'
par2 <- '1'
par1 <- 'Default'
if (par1 == 'Default') {
par1 = 10*log10(length(x))
} else {
par1 <- as.numeric(par1)
}
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
par5 <- as.numeric(par5)
if (par6 == 'White Noise') par6 <- 'white' else par6 <- 'ma'
par7 <- as.numeric(par7)
if (par8 != '') par8 <- as.numeric(par8)
x <- na.omit(x)
ox <- x
if (par8 == '') {
if (par2 == 0) {
x <- log(x)
} else {
x <- (x ^ par2 - 1) / par2
}
} else {
x <- log(x,base=par8)
}
if (par3 > 0) x <- diff(x,lag=1,difference=par3)
if (par4 > 0) x <- diff(x,lag=par5,difference=par4)
bitmap(file='picts.png')
op <- par(mfrow=c(2,1))
plot(ox,type='l',main='Original Time Series',xlab='time',ylab='value')
if (par8=='') {
mytitle <- paste('Working Time Series (lambda=',par2,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(lambda=',par2,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
} else {
mytitle <- paste('Working Time Series (base=',par8,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(base=',par8,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
}
plot(x,type='l', main=mytitle,xlab='time',ylab='value')
par(op)
dev.off()
bitmap(file='pic1.png')
racf <- acf(x, par1, main='Autocorrelation', xlab='time lag', ylab='ACF', ci.type=par6, ci=par7, sub=mysub)
dev.off()
bitmap(file='pic2.png')
rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF',sub=mysub)
dev.off()
(myacf <- c(racf$acf))
(mypacf <- c(rpacf$acf))
lengthx <- length(x)
sqrtn <- sqrt(lengthx)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'ACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 2:(par1+1)) {
a<-table.row.start(a)
a<-table.element(a,i-1,header=TRUE)
a<-table.element(a,round(myacf[i],6))
mytstat <- myacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Partial Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'PACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:par1) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,round(mypacf[i],6))
mytstat <- mypacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')