Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimabackwardselection.wasp
Title produced by softwareARIMA Backward Selection
Date of computationFri, 16 Dec 2016 15:48:07 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/16/t1481899787n3yc5ik1ii03wbk.htm/, Retrieved Fri, 01 Nov 2024 03:30:45 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=300331, Retrieved Fri, 01 Nov 2024 03:30:45 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact79
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [ARIMA Backward Selection] [ARIMA b] [2016-12-16 14:48:07] [9fb47d69755d1f4b66b6f2591280f9e0] [Current]
Feedback Forum

Post a new message
Dataseries X:
2058.44
2163.84
2223.38
2126.36
1989.96
2115.1
2204.74
2197.16
2003.2
2100.46
2091.98
2027.38
1937.32
2145.32
2228.88
2367.04
2178.48
2417.94
2424.08
2517.46
2313
2595.96
2614.1
2604.26
2240.9
2514.2
2615.36
2638.56
2345.84
2625.46
2654.58
2850.46
2591.16
2868.08
2951.72
3046.74
2930.46
3161.2
3054.26
3289.48
3165.14
3317.62
3353.74
3571.6




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time4 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300331&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]4 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=300331&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300331&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R ServerBig Analytics Cloud Computing Center







ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2ar3ma1sar1sar2sma1
Estimates ( 1 )-0.0666-0.09010.0220.1157-0.9683-0.11580.6122
(p-val)(0.9839 )(0.6927 )(0.9461 )(0.9719 )(0.1059 )(0.7478 )(0.2616 )
Estimates ( 2 )0-0.09330.02740.0494-0.9723-0.11840.614
(p-val)(NA )(0.5681 )(0.8692 )(0.7721 )(0.0941 )(0.7322 )(0.2588 )
Estimates ( 3 )0-0.09300.0504-0.9821-0.1210.6216
(p-val)(NA )(0.5689 )(NA )(0.7676 )(0.0779 )(0.7224 )(0.2322 )
Estimates ( 4 )0-0.093300-0.9967-0.13880.6337
(p-val)(NA )(0.5666 )(NA )(NA )(0.0813 )(0.6794 )(0.2368 )
Estimates ( 5 )0-0.085400-0.755900.4162
(p-val)(NA )(0.5987 )(NA )(NA )(0.0215 )(NA )(0.3401 )
Estimates ( 6 )0000-0.765600.4319
(p-val)(NA )(NA )(NA )(NA )(0.0126 )(NA )(0.2892 )
Estimates ( 7 )0000-0.417700
(p-val)(NA )(NA )(NA )(NA )(0.0056 )(NA )(NA )
Estimates ( 8 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 9 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 10 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 11 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 12 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 13 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )

\begin{tabular}{lllllllll}
\hline
ARIMA Parameter Estimation and Backward Selection \tabularnewline
Iteration & ar1 & ar2 & ar3 & ma1 & sar1 & sar2 & sma1 \tabularnewline
Estimates ( 1 ) & -0.0666 & -0.0901 & 0.022 & 0.1157 & -0.9683 & -0.1158 & 0.6122 \tabularnewline
(p-val) & (0.9839 ) & (0.6927 ) & (0.9461 ) & (0.9719 ) & (0.1059 ) & (0.7478 ) & (0.2616 ) \tabularnewline
Estimates ( 2 ) & 0 & -0.0933 & 0.0274 & 0.0494 & -0.9723 & -0.1184 & 0.614 \tabularnewline
(p-val) & (NA ) & (0.5681 ) & (0.8692 ) & (0.7721 ) & (0.0941 ) & (0.7322 ) & (0.2588 ) \tabularnewline
Estimates ( 3 ) & 0 & -0.093 & 0 & 0.0504 & -0.9821 & -0.121 & 0.6216 \tabularnewline
(p-val) & (NA ) & (0.5689 ) & (NA ) & (0.7676 ) & (0.0779 ) & (0.7224 ) & (0.2322 ) \tabularnewline
Estimates ( 4 ) & 0 & -0.0933 & 0 & 0 & -0.9967 & -0.1388 & 0.6337 \tabularnewline
(p-val) & (NA ) & (0.5666 ) & (NA ) & (NA ) & (0.0813 ) & (0.6794 ) & (0.2368 ) \tabularnewline
Estimates ( 5 ) & 0 & -0.0854 & 0 & 0 & -0.7559 & 0 & 0.4162 \tabularnewline
(p-val) & (NA ) & (0.5987 ) & (NA ) & (NA ) & (0.0215 ) & (NA ) & (0.3401 ) \tabularnewline
Estimates ( 6 ) & 0 & 0 & 0 & 0 & -0.7656 & 0 & 0.4319 \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (0.0126 ) & (NA ) & (0.2892 ) \tabularnewline
Estimates ( 7 ) & 0 & 0 & 0 & 0 & -0.4177 & 0 & 0 \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (0.0056 ) & (NA ) & (NA ) \tabularnewline
Estimates ( 8 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 9 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 10 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 11 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 12 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 13 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300331&T=1

[TABLE]
[ROW][C]ARIMA Parameter Estimation and Backward Selection[/C][/ROW]
[ROW][C]Iteration[/C][C]ar1[/C][C]ar2[/C][C]ar3[/C][C]ma1[/C][C]sar1[/C][C]sar2[/C][C]sma1[/C][/ROW]
[ROW][C]Estimates ( 1 )[/C][C]-0.0666[/C][C]-0.0901[/C][C]0.022[/C][C]0.1157[/C][C]-0.9683[/C][C]-0.1158[/C][C]0.6122[/C][/ROW]
[ROW][C](p-val)[/C][C](0.9839 )[/C][C](0.6927 )[/C][C](0.9461 )[/C][C](0.9719 )[/C][C](0.1059 )[/C][C](0.7478 )[/C][C](0.2616 )[/C][/ROW]
[ROW][C]Estimates ( 2 )[/C][C]0[/C][C]-0.0933[/C][C]0.0274[/C][C]0.0494[/C][C]-0.9723[/C][C]-0.1184[/C][C]0.614[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](0.5681 )[/C][C](0.8692 )[/C][C](0.7721 )[/C][C](0.0941 )[/C][C](0.7322 )[/C][C](0.2588 )[/C][/ROW]
[ROW][C]Estimates ( 3 )[/C][C]0[/C][C]-0.093[/C][C]0[/C][C]0.0504[/C][C]-0.9821[/C][C]-0.121[/C][C]0.6216[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](0.5689 )[/C][C](NA )[/C][C](0.7676 )[/C][C](0.0779 )[/C][C](0.7224 )[/C][C](0.2322 )[/C][/ROW]
[ROW][C]Estimates ( 4 )[/C][C]0[/C][C]-0.0933[/C][C]0[/C][C]0[/C][C]-0.9967[/C][C]-0.1388[/C][C]0.6337[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](0.5666 )[/C][C](NA )[/C][C](NA )[/C][C](0.0813 )[/C][C](0.6794 )[/C][C](0.2368 )[/C][/ROW]
[ROW][C]Estimates ( 5 )[/C][C]0[/C][C]-0.0854[/C][C]0[/C][C]0[/C][C]-0.7559[/C][C]0[/C][C]0.4162[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](0.5987 )[/C][C](NA )[/C][C](NA )[/C][C](0.0215 )[/C][C](NA )[/C][C](0.3401 )[/C][/ROW]
[ROW][C]Estimates ( 6 )[/C][C]0[/C][C]0[/C][C]0[/C][C]0[/C][C]-0.7656[/C][C]0[/C][C]0.4319[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](0.0126 )[/C][C](NA )[/C][C](0.2892 )[/C][/ROW]
[ROW][C]Estimates ( 7 )[/C][C]0[/C][C]0[/C][C]0[/C][C]0[/C][C]-0.4177[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](0.0056 )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 8 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 9 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 10 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 11 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 12 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 13 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300331&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300331&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2ar3ma1sar1sar2sma1
Estimates ( 1 )-0.0666-0.09010.0220.1157-0.9683-0.11580.6122
(p-val)(0.9839 )(0.6927 )(0.9461 )(0.9719 )(0.1059 )(0.7478 )(0.2616 )
Estimates ( 2 )0-0.09330.02740.0494-0.9723-0.11840.614
(p-val)(NA )(0.5681 )(0.8692 )(0.7721 )(0.0941 )(0.7322 )(0.2588 )
Estimates ( 3 )0-0.09300.0504-0.9821-0.1210.6216
(p-val)(NA )(0.5689 )(NA )(0.7676 )(0.0779 )(0.7224 )(0.2322 )
Estimates ( 4 )0-0.093300-0.9967-0.13880.6337
(p-val)(NA )(0.5666 )(NA )(NA )(0.0813 )(0.6794 )(0.2368 )
Estimates ( 5 )0-0.085400-0.755900.4162
(p-val)(NA )(0.5987 )(NA )(NA )(0.0215 )(NA )(0.3401 )
Estimates ( 6 )0000-0.765600.4319
(p-val)(NA )(NA )(NA )(NA )(0.0126 )(NA )(0.2892 )
Estimates ( 7 )0000-0.417700
(p-val)(NA )(NA )(NA )(NA )(0.0056 )(NA )(NA )
Estimates ( 8 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 9 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 10 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 11 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 12 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 13 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )







Estimated ARIMA Residuals
Value
-4.72788088456989
17.5218440524227
26.7177509343765
79.3950552406256
-51.1036842162421
-19.1123287224078
-83.6831513360682
-18.6271440858995
77.9046071888282
97.1488804035409
52.18988213187
166.409709985679
-51.7784157864002
74.3755733068746
-29.4015829103102
38.795317244863
-68.9763800854721
35.4761841617566
-34.5741422330461
-154.228607241987
-141.281696544562
8.32022134331484
107.136001007142
20.6264194361666
10.0089649595312
-4.66892973569294
-54.7573321127426
189.064253907867
83.1755453974717
4.15495823737006
23.0204351478572
-50.3255886025871
132.679008775367
-50.0416444771074
-158.784987633827
84.7229628160869
44.1220783345946
-91.9989789371655
65.7439835942208
53.3767979779415

\begin{tabular}{lllllllll}
\hline
Estimated ARIMA Residuals \tabularnewline
Value \tabularnewline
-4.72788088456989 \tabularnewline
17.5218440524227 \tabularnewline
26.7177509343765 \tabularnewline
79.3950552406256 \tabularnewline
-51.1036842162421 \tabularnewline
-19.1123287224078 \tabularnewline
-83.6831513360682 \tabularnewline
-18.6271440858995 \tabularnewline
77.9046071888282 \tabularnewline
97.1488804035409 \tabularnewline
52.18988213187 \tabularnewline
166.409709985679 \tabularnewline
-51.7784157864002 \tabularnewline
74.3755733068746 \tabularnewline
-29.4015829103102 \tabularnewline
38.795317244863 \tabularnewline
-68.9763800854721 \tabularnewline
35.4761841617566 \tabularnewline
-34.5741422330461 \tabularnewline
-154.228607241987 \tabularnewline
-141.281696544562 \tabularnewline
8.32022134331484 \tabularnewline
107.136001007142 \tabularnewline
20.6264194361666 \tabularnewline
10.0089649595312 \tabularnewline
-4.66892973569294 \tabularnewline
-54.7573321127426 \tabularnewline
189.064253907867 \tabularnewline
83.1755453974717 \tabularnewline
4.15495823737006 \tabularnewline
23.0204351478572 \tabularnewline
-50.3255886025871 \tabularnewline
132.679008775367 \tabularnewline
-50.0416444771074 \tabularnewline
-158.784987633827 \tabularnewline
84.7229628160869 \tabularnewline
44.1220783345946 \tabularnewline
-91.9989789371655 \tabularnewline
65.7439835942208 \tabularnewline
53.3767979779415 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300331&T=2

[TABLE]
[ROW][C]Estimated ARIMA Residuals[/C][/ROW]
[ROW][C]Value[/C][/ROW]
[ROW][C]-4.72788088456989[/C][/ROW]
[ROW][C]17.5218440524227[/C][/ROW]
[ROW][C]26.7177509343765[/C][/ROW]
[ROW][C]79.3950552406256[/C][/ROW]
[ROW][C]-51.1036842162421[/C][/ROW]
[ROW][C]-19.1123287224078[/C][/ROW]
[ROW][C]-83.6831513360682[/C][/ROW]
[ROW][C]-18.6271440858995[/C][/ROW]
[ROW][C]77.9046071888282[/C][/ROW]
[ROW][C]97.1488804035409[/C][/ROW]
[ROW][C]52.18988213187[/C][/ROW]
[ROW][C]166.409709985679[/C][/ROW]
[ROW][C]-51.7784157864002[/C][/ROW]
[ROW][C]74.3755733068746[/C][/ROW]
[ROW][C]-29.4015829103102[/C][/ROW]
[ROW][C]38.795317244863[/C][/ROW]
[ROW][C]-68.9763800854721[/C][/ROW]
[ROW][C]35.4761841617566[/C][/ROW]
[ROW][C]-34.5741422330461[/C][/ROW]
[ROW][C]-154.228607241987[/C][/ROW]
[ROW][C]-141.281696544562[/C][/ROW]
[ROW][C]8.32022134331484[/C][/ROW]
[ROW][C]107.136001007142[/C][/ROW]
[ROW][C]20.6264194361666[/C][/ROW]
[ROW][C]10.0089649595312[/C][/ROW]
[ROW][C]-4.66892973569294[/C][/ROW]
[ROW][C]-54.7573321127426[/C][/ROW]
[ROW][C]189.064253907867[/C][/ROW]
[ROW][C]83.1755453974717[/C][/ROW]
[ROW][C]4.15495823737006[/C][/ROW]
[ROW][C]23.0204351478572[/C][/ROW]
[ROW][C]-50.3255886025871[/C][/ROW]
[ROW][C]132.679008775367[/C][/ROW]
[ROW][C]-50.0416444771074[/C][/ROW]
[ROW][C]-158.784987633827[/C][/ROW]
[ROW][C]84.7229628160869[/C][/ROW]
[ROW][C]44.1220783345946[/C][/ROW]
[ROW][C]-91.9989789371655[/C][/ROW]
[ROW][C]65.7439835942208[/C][/ROW]
[ROW][C]53.3767979779415[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300331&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300331&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimated ARIMA Residuals
Value
-4.72788088456989
17.5218440524227
26.7177509343765
79.3950552406256
-51.1036842162421
-19.1123287224078
-83.6831513360682
-18.6271440858995
77.9046071888282
97.1488804035409
52.18988213187
166.409709985679
-51.7784157864002
74.3755733068746
-29.4015829103102
38.795317244863
-68.9763800854721
35.4761841617566
-34.5741422330461
-154.228607241987
-141.281696544562
8.32022134331484
107.136001007142
20.6264194361666
10.0089649595312
-4.66892973569294
-54.7573321127426
189.064253907867
83.1755453974717
4.15495823737006
23.0204351478572
-50.3255886025871
132.679008775367
-50.0416444771074
-158.784987633827
84.7229628160869
44.1220783345946
-91.9989789371655
65.7439835942208
53.3767979779415



Parameters (Session):
par1 = 48 ; par2 = 1 ; par3 = 1 ; par4 = 1 ; par5 = 4 ; par6 = White Noise ; par7 = 0.95 ;
Parameters (R input):
par1 = FALSE ; par2 = 1 ; par3 = 1 ; par4 = 1 ; par5 = 4 ; par6 = 3 ; par7 = 1 ; par8 = 2 ; par9 = 1 ;
R code (references can be found in the software module):
library(lattice)
if (par1 == 'TRUE') par1 <- TRUE
if (par1 == 'FALSE') par1 <- FALSE
par2 <- as.numeric(par2) #Box-Cox lambda transformation parameter
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #degree (p) of the non-seasonal AR(p) polynomial
par7 <- as.numeric(par7) #degree (q) of the non-seasonal MA(q) polynomial
par8 <- as.numeric(par8) #degree (P) of the seasonal AR(P) polynomial
par9 <- as.numeric(par9) #degree (Q) of the seasonal MA(Q) polynomial
armaGR <- function(arima.out, names, n){
try1 <- arima.out$coef
try2 <- sqrt(diag(arima.out$var.coef))
try.data.frame <- data.frame(matrix(NA,ncol=4,nrow=length(names)))
dimnames(try.data.frame) <- list(names,c('coef','std','tstat','pv'))
try.data.frame[,1] <- try1
for(i in 1:length(try2)) try.data.frame[which(rownames(try.data.frame)==names(try2)[i]),2] <- try2[i]
try.data.frame[,3] <- try.data.frame[,1] / try.data.frame[,2]
try.data.frame[,4] <- round((1-pt(abs(try.data.frame[,3]),df=n-(length(try2)+1)))*2,5)
vector <- rep(NA,length(names))
vector[is.na(try.data.frame[,4])] <- 0
maxi <- which.max(try.data.frame[,4])
continue <- max(try.data.frame[,4],na.rm=TRUE) > .05
vector[maxi] <- 0
list(summary=try.data.frame,next.vector=vector,continue=continue)
}
arimaSelect <- function(series, order=c(13,0,0), seasonal=list(order=c(2,0,0),period=12), include.mean=F){
nrc <- order[1]+order[3]+seasonal$order[1]+seasonal$order[3]
coeff <- matrix(NA, nrow=nrc*2, ncol=nrc)
pval <- matrix(NA, nrow=nrc*2, ncol=nrc)
mylist <- rep(list(NULL), nrc)
names <- NULL
if(order[1] > 0) names <- paste('ar',1:order[1],sep='')
if(order[3] > 0) names <- c( names , paste('ma',1:order[3],sep='') )
if(seasonal$order[1] > 0) names <- c(names, paste('sar',1:seasonal$order[1],sep=''))
if(seasonal$order[3] > 0) names <- c(names, paste('sma',1:seasonal$order[3],sep=''))
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML')
mylist[[1]] <- arima.out
last.arma <- armaGR(arima.out, names, length(series))
mystop <- FALSE
i <- 1
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- 2
aic <- arima.out$aic
while(!mystop){
mylist[[i]] <- arima.out
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML', fixed=last.arma$next.vector)
aic <- c(aic, arima.out$aic)
last.arma <- armaGR(arima.out, names, length(series))
mystop <- !last.arma$continue
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- i+1
}
list(coeff, pval, mylist, aic=aic)
}
arimaSelectplot <- function(arimaSelect.out,noms,choix){
noms <- names(arimaSelect.out[[3]][[1]]$coef)
coeff <- arimaSelect.out[[1]]
k <- min(which(is.na(coeff[,1])))-1
coeff <- coeff[1:k,]
pval <- arimaSelect.out[[2]][1:k,]
aic <- arimaSelect.out$aic[1:k]
coeff[coeff==0] <- NA
n <- ncol(coeff)
if(missing(choix)) choix <- k
layout(matrix(c(1,1,1,2,
3,3,3,2,
3,3,3,4,
5,6,7,7),nr=4),
widths=c(10,35,45,15),
heights=c(30,30,15,15))
couleurs <- rainbow(75)[1:50]#(50)
ticks <- pretty(coeff)
par(mar=c(1,1,3,1))
plot(aic,k:1-.5,type='o',pch=21,bg='blue',cex=2,axes=F,lty=2,xpd=NA)
points(aic[choix],k-choix+.5,pch=21,cex=4,bg=2,xpd=NA)
title('aic',line=2)
par(mar=c(3,0,0,0))
plot(0,axes=F,xlab='',ylab='',xlim=range(ticks),ylim=c(.1,1))
rect(xleft = min(ticks) + (0:49)/50*(max(ticks)-min(ticks)),
xright = min(ticks) + (1:50)/50*(max(ticks)-min(ticks)),
ytop = rep(1,50),
ybottom= rep(0,50),col=couleurs,border=NA)
axis(1,ticks)
rect(xleft=min(ticks),xright=max(ticks),ytop=1,ybottom=0)
text(mean(coeff,na.rm=T),.5,'coefficients',cex=2,font=2)
par(mar=c(1,1,3,1))
image(1:n,1:k,t(coeff[k:1,]),axes=F,col=couleurs,zlim=range(ticks))
for(i in 1:n) for(j in 1:k) if(!is.na(coeff[j,i])) {
if(pval[j,i]<.01) symb = 'green'
else if( (pval[j,i]<.05) & (pval[j,i]>=.01)) symb = 'orange'
else if( (pval[j,i]<.1) & (pval[j,i]>=.05)) symb = 'red'
else symb = 'black'
polygon(c(i+.5 ,i+.2 ,i+.5 ,i+.5),
c(k-j+0.5,k-j+0.5,k-j+0.8,k-j+0.5),
col=symb)
if(j==choix) {
rect(xleft=i-.5,
xright=i+.5,
ybottom=k-j+1.5,
ytop=k-j+.5,
lwd=4)
text(i,
k-j+1,
round(coeff[j,i],2),
cex=1.2,
font=2)
}
else{
rect(xleft=i-.5,xright=i+.5,ybottom=k-j+1.5,ytop=k-j+.5)
text(i,k-j+1,round(coeff[j,i],2),cex=1.2,font=1)
}
}
axis(3,1:n,noms)
par(mar=c(0.5,0,0,0.5))
plot(0,axes=F,xlab='',ylab='',type='n',xlim=c(0,8),ylim=c(-.2,.8))
cols <- c('green','orange','red','black')
niv <- c('0','0.01','0.05','0.1')
for(i in 0:3){
polygon(c(1+2*i ,1+2*i ,1+2*i-.5 ,1+2*i),
c(.4 ,.7 , .4 , .4),
col=cols[i+1])
text(2*i,0.5,niv[i+1],cex=1.5)
}
text(8,.5,1,cex=1.5)
text(4,0,'p-value',cex=2)
box()
residus <- arimaSelect.out[[3]][[choix]]$res
par(mar=c(1,2,4,1))
acf(residus,main='')
title('acf',line=.5)
par(mar=c(1,2,4,1))
pacf(residus,main='')
title('pacf',line=.5)
par(mar=c(2,2,4,1))
qqnorm(residus,main='')
title('qq-norm',line=.5)
qqline(residus)
residus
}
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
(selection <- arimaSelect(x, order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5)))
bitmap(file='test1.png')
resid <- arimaSelectplot(selection)
dev.off()
resid
bitmap(file='test2.png')
acf(resid,length(resid)/2, main='Residual Autocorrelation Function')
dev.off()
bitmap(file='test3.png')
pacf(resid,length(resid)/2, main='Residual Partial Autocorrelation Function')
dev.off()
bitmap(file='test4.png')
cpgram(resid, main='Residual Cumulative Periodogram')
dev.off()
bitmap(file='test5.png')
hist(resid, main='Residual Histogram', xlab='values of Residuals')
dev.off()
bitmap(file='test6.png')
densityplot(~resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test7.png')
qqnorm(resid, main='Residual Normal Q-Q Plot')
qqline(resid)
dev.off()
ncols <- length(selection[[1]][1,])
nrows <- length(selection[[2]][,1])-1
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ARIMA Parameter Estimation and Backward Selection', ncols+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Iteration', header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,names(selection[[3]][[1]]$coef)[i],header=TRUE)
}
a<-table.row.end(a)
for (j in 1:nrows) {
a<-table.row.start(a)
mydum <- 'Estimates ('
mydum <- paste(mydum,j)
mydum <- paste(mydum,')')
a<-table.element(a,mydum, header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,round(selection[[1]][j,i],4))
}
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'(p-val)', header=TRUE)
for (i in 1:ncols) {
mydum <- '('
mydum <- paste(mydum,round(selection[[2]][j,i],4),sep='')
mydum <- paste(mydum,')')
a<-table.element(a,mydum)
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimated ARIMA Residuals', 1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Value', 1,TRUE)
a<-table.row.end(a)
for (i in (par4*par5+par3):length(resid)) {
a<-table.row.start(a)
a<-table.element(a,resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')