Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimaforecasting.wasp
Title produced by softwareARIMA Forecasting
Date of computationFri, 16 Dec 2016 15:21:48 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/16/t1481898483j4cakow9zaqpsn5.htm/, Retrieved Fri, 01 Nov 2024 03:39:40 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=300307, Retrieved Fri, 01 Nov 2024 03:39:40 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact100
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [ARIMA Forecasting] [forecasting 1-2] [2016-12-16 14:21:48] [46a1fe1e497d9fc1a6cd5ffde28dca5e] [Current]
Feedback Forum

Post a new message
Dataseries X:
5750
5400
6150
6350
6450
6400
5900
6450
6600
7100
6850
6050
6750
6450
7000
6650
6650
6550
6900
6450
6150
6750
6300
5650
6250
5950
6450
6150
5800
5700
5950
6700
6150
7350
6850
5600
6400
5850
6350
6350
6000
6150
6400
6300
6600
6850
6700
6200
6750
6350
6900
6000
6050
6000
6600
6350
6300
6200
5600
5550
6450
6550
7050
6450
6850
6150
6800
7450
7150
7450
6600
6300
7400
6600
7250
7400
7150
6850
7350
7550
7550
8300
7600
6100
7800
7050
7450
7000
6900
7100
7600
7350
6850
8400
7550
7350
7250
6650
7400
6900
7000
7250
7950
7600
7750
8150
7150
7000
6400
5800
6700
6350
6200
6150
7000




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300307&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=300307&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300307&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[115])
1037950-------
1047600-------
1057750-------
1068150-------
1077150-------
1087000-------
1096400-------
1105800-------
1116700-------
1126350-------
1136200-------
1146150-------
1157000-------
116NA6709.135817.07327601.1869NA0.26140.02520.2614
117NA6870.46025852.90987888.0106NANA0.04510.4015
118NA7272.63126174.68478370.5777NANA0.05860.6868
119NA6273.04725105.31747440.7769NANA0.07050.1112
120NA6123.12694890.46517355.7887NANA0.08160.0816
121NA5523.14224228.96716817.3173NANA0.09210.0127
122NA4923.14513570.2816276.0092NANA0.1020.0013
123NA5823.14574414.04047232.251NANA0.11130.0508
124NA5473.14584009.96056936.331NANA0.12010.0204
125NA5323.14583807.80956838.4821NANA0.12840.015
126NA5273.14583707.39466838.897NANA0.13620.0153
127NA6123.14584508.55317737.7385NANA0.14360.1436
128NA5832.27583768.01637896.5354NANANA0.1338
129NA5993.6063748.16258239.0494NANANA0.1898
130NA6395.7774009.88038781.6736NANANA0.3098
131NA5396.1932882.35757910.0284NANANA0.1056
132NA5246.27272611.55117880.9943NANANA0.096
133NA4646.2881896.1447396.4319NANANA0.0467
134NA4046.29091185.40626907.1756NANANA0.0215
135NA4946.29141978.8017913.7819NANANA0.0875
136NA4596.29161525.89557666.6876NANANA0.0625
137NA4446.29161276.32897616.2542NANANA0.0572
138NA4396.29161129.79597662.7873NANANA0.0591
139NA5246.29161886.03498606.5483NANANA0.1532

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast \tabularnewline
time & Y[t] & F[t] & 95% LB & 95% UB & p-value(H0: Y[t] = F[t]) & P(F[t]>Y[t-1]) & P(F[t]>Y[t-s]) & P(F[t]>Y[115]) \tabularnewline
103 & 7950 & - & - & - & - & - & - & - \tabularnewline
104 & 7600 & - & - & - & - & - & - & - \tabularnewline
105 & 7750 & - & - & - & - & - & - & - \tabularnewline
106 & 8150 & - & - & - & - & - & - & - \tabularnewline
107 & 7150 & - & - & - & - & - & - & - \tabularnewline
108 & 7000 & - & - & - & - & - & - & - \tabularnewline
109 & 6400 & - & - & - & - & - & - & - \tabularnewline
110 & 5800 & - & - & - & - & - & - & - \tabularnewline
111 & 6700 & - & - & - & - & - & - & - \tabularnewline
112 & 6350 & - & - & - & - & - & - & - \tabularnewline
113 & 6200 & - & - & - & - & - & - & - \tabularnewline
114 & 6150 & - & - & - & - & - & - & - \tabularnewline
115 & 7000 & - & - & - & - & - & - & - \tabularnewline
116 & NA & 6709.13 & 5817.0732 & 7601.1869 & NA & 0.2614 & 0.0252 & 0.2614 \tabularnewline
117 & NA & 6870.4602 & 5852.9098 & 7888.0106 & NA & NA & 0.0451 & 0.4015 \tabularnewline
118 & NA & 7272.6312 & 6174.6847 & 8370.5777 & NA & NA & 0.0586 & 0.6868 \tabularnewline
119 & NA & 6273.0472 & 5105.3174 & 7440.7769 & NA & NA & 0.0705 & 0.1112 \tabularnewline
120 & NA & 6123.1269 & 4890.4651 & 7355.7887 & NA & NA & 0.0816 & 0.0816 \tabularnewline
121 & NA & 5523.1422 & 4228.9671 & 6817.3173 & NA & NA & 0.0921 & 0.0127 \tabularnewline
122 & NA & 4923.1451 & 3570.281 & 6276.0092 & NA & NA & 0.102 & 0.0013 \tabularnewline
123 & NA & 5823.1457 & 4414.0404 & 7232.251 & NA & NA & 0.1113 & 0.0508 \tabularnewline
124 & NA & 5473.1458 & 4009.9605 & 6936.331 & NA & NA & 0.1201 & 0.0204 \tabularnewline
125 & NA & 5323.1458 & 3807.8095 & 6838.4821 & NA & NA & 0.1284 & 0.015 \tabularnewline
126 & NA & 5273.1458 & 3707.3946 & 6838.897 & NA & NA & 0.1362 & 0.0153 \tabularnewline
127 & NA & 6123.1458 & 4508.5531 & 7737.7385 & NA & NA & 0.1436 & 0.1436 \tabularnewline
128 & NA & 5832.2758 & 3768.0163 & 7896.5354 & NA & NA & NA & 0.1338 \tabularnewline
129 & NA & 5993.606 & 3748.1625 & 8239.0494 & NA & NA & NA & 0.1898 \tabularnewline
130 & NA & 6395.777 & 4009.8803 & 8781.6736 & NA & NA & NA & 0.3098 \tabularnewline
131 & NA & 5396.193 & 2882.3575 & 7910.0284 & NA & NA & NA & 0.1056 \tabularnewline
132 & NA & 5246.2727 & 2611.5511 & 7880.9943 & NA & NA & NA & 0.096 \tabularnewline
133 & NA & 4646.288 & 1896.144 & 7396.4319 & NA & NA & NA & 0.0467 \tabularnewline
134 & NA & 4046.2909 & 1185.4062 & 6907.1756 & NA & NA & NA & 0.0215 \tabularnewline
135 & NA & 4946.2914 & 1978.801 & 7913.7819 & NA & NA & NA & 0.0875 \tabularnewline
136 & NA & 4596.2916 & 1525.8955 & 7666.6876 & NA & NA & NA & 0.0625 \tabularnewline
137 & NA & 4446.2916 & 1276.3289 & 7616.2542 & NA & NA & NA & 0.0572 \tabularnewline
138 & NA & 4396.2916 & 1129.7959 & 7662.7873 & NA & NA & NA & 0.0591 \tabularnewline
139 & NA & 5246.2916 & 1886.0349 & 8606.5483 & NA & NA & NA & 0.1532 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300307&T=1

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast[/C][/ROW]
[ROW][C]time[/C][C]Y[t][/C][C]F[t][/C][C]95% LB[/C][C]95% UB[/C][C]p-value(H0: Y[t] = F[t])[/C][C]P(F[t]>Y[t-1])[/C][C]P(F[t]>Y[t-s])[/C][C]P(F[t]>Y[115])[/C][/ROW]
[ROW][C]103[/C][C]7950[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]104[/C][C]7600[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]105[/C][C]7750[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]106[/C][C]8150[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]107[/C][C]7150[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]108[/C][C]7000[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]109[/C][C]6400[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]110[/C][C]5800[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]111[/C][C]6700[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]112[/C][C]6350[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]113[/C][C]6200[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]114[/C][C]6150[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]115[/C][C]7000[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]116[/C][C]NA[/C][C]6709.13[/C][C]5817.0732[/C][C]7601.1869[/C][C]NA[/C][C]0.2614[/C][C]0.0252[/C][C]0.2614[/C][/ROW]
[ROW][C]117[/C][C]NA[/C][C]6870.4602[/C][C]5852.9098[/C][C]7888.0106[/C][C]NA[/C][C]NA[/C][C]0.0451[/C][C]0.4015[/C][/ROW]
[ROW][C]118[/C][C]NA[/C][C]7272.6312[/C][C]6174.6847[/C][C]8370.5777[/C][C]NA[/C][C]NA[/C][C]0.0586[/C][C]0.6868[/C][/ROW]
[ROW][C]119[/C][C]NA[/C][C]6273.0472[/C][C]5105.3174[/C][C]7440.7769[/C][C]NA[/C][C]NA[/C][C]0.0705[/C][C]0.1112[/C][/ROW]
[ROW][C]120[/C][C]NA[/C][C]6123.1269[/C][C]4890.4651[/C][C]7355.7887[/C][C]NA[/C][C]NA[/C][C]0.0816[/C][C]0.0816[/C][/ROW]
[ROW][C]121[/C][C]NA[/C][C]5523.1422[/C][C]4228.9671[/C][C]6817.3173[/C][C]NA[/C][C]NA[/C][C]0.0921[/C][C]0.0127[/C][/ROW]
[ROW][C]122[/C][C]NA[/C][C]4923.1451[/C][C]3570.281[/C][C]6276.0092[/C][C]NA[/C][C]NA[/C][C]0.102[/C][C]0.0013[/C][/ROW]
[ROW][C]123[/C][C]NA[/C][C]5823.1457[/C][C]4414.0404[/C][C]7232.251[/C][C]NA[/C][C]NA[/C][C]0.1113[/C][C]0.0508[/C][/ROW]
[ROW][C]124[/C][C]NA[/C][C]5473.1458[/C][C]4009.9605[/C][C]6936.331[/C][C]NA[/C][C]NA[/C][C]0.1201[/C][C]0.0204[/C][/ROW]
[ROW][C]125[/C][C]NA[/C][C]5323.1458[/C][C]3807.8095[/C][C]6838.4821[/C][C]NA[/C][C]NA[/C][C]0.1284[/C][C]0.015[/C][/ROW]
[ROW][C]126[/C][C]NA[/C][C]5273.1458[/C][C]3707.3946[/C][C]6838.897[/C][C]NA[/C][C]NA[/C][C]0.1362[/C][C]0.0153[/C][/ROW]
[ROW][C]127[/C][C]NA[/C][C]6123.1458[/C][C]4508.5531[/C][C]7737.7385[/C][C]NA[/C][C]NA[/C][C]0.1436[/C][C]0.1436[/C][/ROW]
[ROW][C]128[/C][C]NA[/C][C]5832.2758[/C][C]3768.0163[/C][C]7896.5354[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.1338[/C][/ROW]
[ROW][C]129[/C][C]NA[/C][C]5993.606[/C][C]3748.1625[/C][C]8239.0494[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.1898[/C][/ROW]
[ROW][C]130[/C][C]NA[/C][C]6395.777[/C][C]4009.8803[/C][C]8781.6736[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.3098[/C][/ROW]
[ROW][C]131[/C][C]NA[/C][C]5396.193[/C][C]2882.3575[/C][C]7910.0284[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.1056[/C][/ROW]
[ROW][C]132[/C][C]NA[/C][C]5246.2727[/C][C]2611.5511[/C][C]7880.9943[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.096[/C][/ROW]
[ROW][C]133[/C][C]NA[/C][C]4646.288[/C][C]1896.144[/C][C]7396.4319[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.0467[/C][/ROW]
[ROW][C]134[/C][C]NA[/C][C]4046.2909[/C][C]1185.4062[/C][C]6907.1756[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.0215[/C][/ROW]
[ROW][C]135[/C][C]NA[/C][C]4946.2914[/C][C]1978.801[/C][C]7913.7819[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.0875[/C][/ROW]
[ROW][C]136[/C][C]NA[/C][C]4596.2916[/C][C]1525.8955[/C][C]7666.6876[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.0625[/C][/ROW]
[ROW][C]137[/C][C]NA[/C][C]4446.2916[/C][C]1276.3289[/C][C]7616.2542[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.0572[/C][/ROW]
[ROW][C]138[/C][C]NA[/C][C]4396.2916[/C][C]1129.7959[/C][C]7662.7873[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.0591[/C][/ROW]
[ROW][C]139[/C][C]NA[/C][C]5246.2916[/C][C]1886.0349[/C][C]8606.5483[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.1532[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300307&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300307&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[115])
1037950-------
1047600-------
1057750-------
1068150-------
1077150-------
1087000-------
1096400-------
1105800-------
1116700-------
1126350-------
1136200-------
1146150-------
1157000-------
116NA6709.135817.07327601.1869NA0.26140.02520.2614
117NA6870.46025852.90987888.0106NANA0.04510.4015
118NA7272.63126174.68478370.5777NANA0.05860.6868
119NA6273.04725105.31747440.7769NANA0.07050.1112
120NA6123.12694890.46517355.7887NANA0.08160.0816
121NA5523.14224228.96716817.3173NANA0.09210.0127
122NA4923.14513570.2816276.0092NANA0.1020.0013
123NA5823.14574414.04047232.251NANA0.11130.0508
124NA5473.14584009.96056936.331NANA0.12010.0204
125NA5323.14583807.80956838.4821NANA0.12840.015
126NA5273.14583707.39466838.897NANA0.13620.0153
127NA6123.14584508.55317737.7385NANA0.14360.1436
128NA5832.27583768.01637896.5354NANANA0.1338
129NA5993.6063748.16258239.0494NANANA0.1898
130NA6395.7774009.88038781.6736NANANA0.3098
131NA5396.1932882.35757910.0284NANANA0.1056
132NA5246.27272611.55117880.9943NANANA0.096
133NA4646.2881896.1447396.4319NANANA0.0467
134NA4046.29091185.40626907.1756NANANA0.0215
135NA4946.29141978.8017913.7819NANANA0.0875
136NA4596.29161525.89557666.6876NANANA0.0625
137NA4446.29161276.32897616.2542NANANA0.0572
138NA4396.29161129.79597662.7873NANANA0.0591
139NA5246.29161886.03498606.5483NANANA0.1532







Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
1160.0678NANANANA00NANA
1170.0756NANANANANANANANA
1180.077NANANANANANANANA
1190.095NANANANANANANANA
1200.1027NANANANANANANANA
1210.1196NANANANANANANANA
1220.1402NANANANANANANANA
1230.1235NANANANANANANANA
1240.1364NANANANANANANANA
1250.1452NANANANANANANANA
1260.1515NANANANANANANANA
1270.1345NANANANANANANANA
1280.1806NANANANANANANANA
1290.1911NANANANANANANANA
1300.1903NANANANANANANANA
1310.2377NANANANANANANANA
1320.2562NANANANANANANANA
1330.302NANANANANANANANA
1340.3607NANANANANANANANA
1350.3061NANANANANANANANA
1360.3408NANANANANANANANA
1370.3637NANANANANANANANA
1380.3791NANANANANANANANA
1390.3268NANANANANANANANA

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast Performance \tabularnewline
time & % S.E. & PE & MAPE & sMAPE & Sq.E & MSE & RMSE & ScaledE & MASE \tabularnewline
116 & 0.0678 & NA & NA & NA & NA & 0 & 0 & NA & NA \tabularnewline
117 & 0.0756 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
118 & 0.077 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
119 & 0.095 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
120 & 0.1027 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
121 & 0.1196 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
122 & 0.1402 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
123 & 0.1235 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
124 & 0.1364 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
125 & 0.1452 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
126 & 0.1515 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
127 & 0.1345 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
128 & 0.1806 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
129 & 0.1911 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
130 & 0.1903 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
131 & 0.2377 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
132 & 0.2562 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
133 & 0.302 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
134 & 0.3607 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
135 & 0.3061 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
136 & 0.3408 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
137 & 0.3637 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
138 & 0.3791 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
139 & 0.3268 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300307&T=2

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast Performance[/C][/ROW]
[ROW][C]time[/C][C]% S.E.[/C][C]PE[/C][C]MAPE[/C][C]sMAPE[/C][C]Sq.E[/C][C]MSE[/C][C]RMSE[/C][C]ScaledE[/C][C]MASE[/C][/ROW]
[ROW][C]116[/C][C]0.0678[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0[/C][C]0[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]117[/C][C]0.0756[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]118[/C][C]0.077[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]119[/C][C]0.095[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]120[/C][C]0.1027[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]121[/C][C]0.1196[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]122[/C][C]0.1402[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]123[/C][C]0.1235[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]124[/C][C]0.1364[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]125[/C][C]0.1452[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]126[/C][C]0.1515[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]127[/C][C]0.1345[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]128[/C][C]0.1806[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]129[/C][C]0.1911[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]130[/C][C]0.1903[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]131[/C][C]0.2377[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]132[/C][C]0.2562[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]133[/C][C]0.302[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]134[/C][C]0.3607[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]135[/C][C]0.3061[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]136[/C][C]0.3408[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]137[/C][C]0.3637[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]138[/C][C]0.3791[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]139[/C][C]0.3268[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300307&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300307&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
1160.0678NANANANA00NANA
1170.0756NANANANANANANANA
1180.077NANANANANANANANA
1190.095NANANANANANANANA
1200.1027NANANANANANANANA
1210.1196NANANANANANANANA
1220.1402NANANANANANANANA
1230.1235NANANANANANANANA
1240.1364NANANANANANANANA
1250.1452NANANANANANANANA
1260.1515NANANANANANANANA
1270.1345NANANANANANANANA
1280.1806NANANANANANANANA
1290.1911NANANANANANANANA
1300.1903NANANANANANANANA
1310.2377NANANANANANANANA
1320.2562NANANANANANANANA
1330.302NANANANANANANANA
1340.3607NANANANANANANANA
1350.3061NANANANANANANANA
1360.3408NANANANANANANANA
1370.3637NANANANANANANANA
1380.3791NANANANANANANANA
1390.3268NANANANANANANANA



Parameters (Session):
par1 = 0 ; par2 = 1 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = 1 ; par7 = 1 ; par8 = 0 ; par9 = 0 ; par10 = FALSE ;
Parameters (R input):
par1 = 0 ; par2 = 1 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = 1 ; par7 = 1 ; par8 = 0 ; par9 = 0 ; par10 = FALSE ;
R code (references can be found in the software module):
par1 <- as.numeric(par1) #cut off periods
par2 <- as.numeric(par2) #lambda
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #p
par7 <- as.numeric(par7) #q
par8 <- as.numeric(par8) #P
par9 <- as.numeric(par9) #Q
if (par10 == 'TRUE') par10 <- TRUE
if (par10 == 'FALSE') par10 <- FALSE
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
lx <- length(x)
first <- lx - 2*par1
nx <- lx - par1
nx1 <- nx + 1
fx <- lx - nx
if (fx < 1) {
fx <- par5*2
nx1 <- lx + fx - 1
first <- lx - 2*fx
}
first <- 1
if (fx < 3) fx <- round(lx/10,0)
(arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML'))
(forecast <- predict(arima.out,fx))
(lb <- forecast$pred - 1.96 * forecast$se)
(ub <- forecast$pred + 1.96 * forecast$se)
if (par2 == 0) {
x <- exp(x)
forecast$pred <- exp(forecast$pred)
lb <- exp(lb)
ub <- exp(ub)
}
if (par2 != 0) {
x <- x^(1/par2)
forecast$pred <- forecast$pred^(1/par2)
lb <- lb^(1/par2)
ub <- ub^(1/par2)
}
if (par2 < 0) {
olb <- lb
lb <- ub
ub <- olb
}
(actandfor <- c(x[1:nx], forecast$pred))
(perc.se <- (ub-forecast$pred)/1.96/forecast$pred)
bitmap(file='test1.png')
opar <- par(mar=c(4,4,2,2),las=1)
ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub))
plot(x,ylim=ylim,type='n',xlim=c(first,lx))
usr <- par('usr')
rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon')
rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender')
abline(h= (-3:3)*2 , col ='gray', lty =3)
polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA)
lines(nx1:lx, lb , lty=2)
lines(nx1:lx, ub , lty=2)
lines(x, lwd=2)
lines(nx1:lx, forecast$pred , lwd=2 , col ='white')
box()
par(opar)
dev.off()
prob.dec <- array(NA, dim=fx)
prob.sdec <- array(NA, dim=fx)
prob.ldec <- array(NA, dim=fx)
prob.pval <- array(NA, dim=fx)
perf.pe <- array(0, dim=fx)
perf.spe <- array(0, dim=fx)
perf.scalederr <- array(0, dim=fx)
perf.mase <- array(0, dim=fx)
perf.mase1 <- array(0, dim=fx)
perf.mape <- array(0, dim=fx)
perf.smape <- array(0, dim=fx)
perf.mape1 <- array(0, dim=fx)
perf.smape1 <- array(0,dim=fx)
perf.se <- array(0, dim=fx)
perf.mse <- array(0, dim=fx)
perf.mse1 <- array(0, dim=fx)
perf.rmse <- array(0, dim=fx)
perf.scaleddenom <- 0
for (i in 2:fx) {
perf.scaleddenom = perf.scaleddenom + abs(x[nx+i] - x[nx+i-1])
}
perf.scaleddenom = perf.scaleddenom / (fx-1)
for (i in 1:fx) {
locSD <- (ub[i] - forecast$pred[i]) / 1.96
perf.scalederr[i] = (x[nx+i] - forecast$pred[i]) / perf.scaleddenom
perf.pe[i] = (x[nx+i] - forecast$pred[i]) / x[nx+i]
perf.spe[i] = 2*(x[nx+i] - forecast$pred[i]) / (x[nx+i] + forecast$pred[i])
perf.se[i] = (x[nx+i] - forecast$pred[i])^2
prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD)
prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD)
prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD)
prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD)
}
perf.mape[1] = abs(perf.pe[1])
perf.smape[1] = abs(perf.spe[1])
perf.mape1[1] = perf.mape[1]
perf.smape1[1] = perf.smape[1]
perf.mse[1] = perf.se[1]
perf.mase[1] = abs(perf.scalederr[1])
perf.mase1[1] = perf.mase[1]
for (i in 2:fx) {
perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i])
perf.mape1[i] = perf.mape[i] / i
perf.smape[i] = perf.smape[i-1] + abs(perf.spe[i])
perf.smape1[i] = perf.smape[i] / i
perf.mse[i] = perf.mse[i-1] + perf.se[i]
perf.mse1[i] = perf.mse[i] / i
perf.mase[i] = perf.mase[i-1] + abs(perf.scalederr[i])
perf.mase1[i] = perf.mase[i] / i
}
perf.rmse = sqrt(perf.mse1)
bitmap(file='test2.png')
plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub)))
dum <- forecast$pred
dum[1:par1] <- x[(nx+1):lx]
lines(dum, lty=1)
lines(ub,lty=3)
lines(lb,lty=3)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'Y[t]',1,header=TRUE)
a<-table.element(a,'F[t]',1,header=TRUE)
a<-table.element(a,'95% LB',1,header=TRUE)
a<-table.element(a,'95% UB',1,header=TRUE)
a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE)
mylab <- paste('P(F[t]>Y[',nx,sep='')
mylab <- paste(mylab,'])',sep='')
a<-table.element(a,mylab,1,header=TRUE)
a<-table.row.end(a)
for (i in (nx-par5):nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.row.end(a)
}
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(x[nx+i],4))
a<-table.element(a,round(forecast$pred[i],4))
a<-table.element(a,round(lb[i],4))
a<-table.element(a,round(ub[i],4))
a<-table.element(a,round((1-prob.pval[i]),4))
a<-table.element(a,round((1-prob.dec[i]),4))
a<-table.element(a,round((1-prob.sdec[i]),4))
a<-table.element(a,round((1-prob.ldec[i]),4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',10,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'% S.E.',1,header=TRUE)
a<-table.element(a,'PE',1,header=TRUE)
a<-table.element(a,'MAPE',1,header=TRUE)
a<-table.element(a,'sMAPE',1,header=TRUE)
a<-table.element(a,'Sq.E',1,header=TRUE)
a<-table.element(a,'MSE',1,header=TRUE)
a<-table.element(a,'RMSE',1,header=TRUE)
a<-table.element(a,'ScaledE',1,header=TRUE)
a<-table.element(a,'MASE',1,header=TRUE)
a<-table.row.end(a)
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(perc.se[i],4))
a<-table.element(a,round(perf.pe[i],4))
a<-table.element(a,round(perf.mape1[i],4))
a<-table.element(a,round(perf.smape1[i],4))
a<-table.element(a,round(perf.se[i],4))
a<-table.element(a,round(perf.mse1[i],4))
a<-table.element(a,round(perf.rmse[i],4))
a<-table.element(a,round(perf.scalederr[i],4))
a<-table.element(a,round(perf.mase1[i],4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')