Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_autocorrelation.wasp
Title produced by software(Partial) Autocorrelation Function
Date of computationFri, 16 Dec 2016 14:04:03 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/16/t1481893497pp47ru6hiatjmrz.htm/, Retrieved Fri, 01 Nov 2024 03:27:23 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=300237, Retrieved Fri, 01 Nov 2024 03:27:23 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact133
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [(Partial) Autocorrelation Function] [autocorrelation N247] [2016-12-16 08:48:05] [5ad8e5538a25411d3c3b0ec85050bd51]
- R P     [(Partial) Autocorrelation Function] [Autocorrelation N...] [2016-12-16 13:04:03] [b95f76f605693b3a3343a287ab24f42a] [Current]
- R         [(Partial) Autocorrelation Function] [autocorrelation m...] [2016-12-18 19:18:14] [d1d385d9b7e195437bdc484ddbefdda4]
- R         [(Partial) Autocorrelation Function] [1x d] [2016-12-18 21:05:51] [d1d385d9b7e195437bdc484ddbefdda4]
Feedback Forum

Post a new message
Dataseries X:
3300
4100
3550
3650
3400
4050
2950
3300
3950
3950
3900
3700
3850
4350
4350
3550
3800
4150
3500
3850
4250
4150
4200
4100
4200
4350
4150
4200
3850
4100
3800
4250
4400
4400
4450
4050
4100
4450
4600
4100
4300
4850
3800
4450
4800
4900
4900
4350
4500
5050
5150
4450
4900
5450
4100
5050
5550
5450
5500
4950
5400
5750
5950
5950
5750
6450
5000
5950
6250
6300
6400
5700
5750
6450
6500
5950
6200
6750
5300
6450
6900
6800
6750
6050
6100
7400
7300
6200
6550
7500
5400
6750
7400
7450
7200
6500
7150
8000
7000
7600
7100
8050
5700
7550
7800
7800
8250
7150
7350
7800
8250
7500
8150
8550




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300237&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=300237&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300237&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.8652339.23820
20.8369288.93590
30.8413628.98330
40.8187728.74210
50.7915548.45150
60.7761458.2870
70.7625838.14220
80.7221177.71010
90.6992447.46590
100.6499266.93930
110.6427976.86320
120.7069377.5480
130.608356.49540
140.5832996.22790
150.5819076.21310
160.5543495.91880
170.529215.65040
180.5085345.42970
190.4899695.23140
200.46334.94671e-06

\begin{tabular}{lllllllll}
\hline
Autocorrelation Function \tabularnewline
Time lag k & ACF(k) & T-STAT & P-value \tabularnewline
1 & 0.865233 & 9.2382 & 0 \tabularnewline
2 & 0.836928 & 8.9359 & 0 \tabularnewline
3 & 0.841362 & 8.9833 & 0 \tabularnewline
4 & 0.818772 & 8.7421 & 0 \tabularnewline
5 & 0.791554 & 8.4515 & 0 \tabularnewline
6 & 0.776145 & 8.287 & 0 \tabularnewline
7 & 0.762583 & 8.1422 & 0 \tabularnewline
8 & 0.722117 & 7.7101 & 0 \tabularnewline
9 & 0.699244 & 7.4659 & 0 \tabularnewline
10 & 0.649926 & 6.9393 & 0 \tabularnewline
11 & 0.642797 & 6.8632 & 0 \tabularnewline
12 & 0.706937 & 7.548 & 0 \tabularnewline
13 & 0.60835 & 6.4954 & 0 \tabularnewline
14 & 0.583299 & 6.2279 & 0 \tabularnewline
15 & 0.581907 & 6.2131 & 0 \tabularnewline
16 & 0.554349 & 5.9188 & 0 \tabularnewline
17 & 0.52921 & 5.6504 & 0 \tabularnewline
18 & 0.508534 & 5.4297 & 0 \tabularnewline
19 & 0.489969 & 5.2314 & 0 \tabularnewline
20 & 0.4633 & 4.9467 & 1e-06 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300237&T=1

[TABLE]
[ROW][C]Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]ACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.865233[/C][C]9.2382[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]0.836928[/C][C]8.9359[/C][C]0[/C][/ROW]
[ROW][C]3[/C][C]0.841362[/C][C]8.9833[/C][C]0[/C][/ROW]
[ROW][C]4[/C][C]0.818772[/C][C]8.7421[/C][C]0[/C][/ROW]
[ROW][C]5[/C][C]0.791554[/C][C]8.4515[/C][C]0[/C][/ROW]
[ROW][C]6[/C][C]0.776145[/C][C]8.287[/C][C]0[/C][/ROW]
[ROW][C]7[/C][C]0.762583[/C][C]8.1422[/C][C]0[/C][/ROW]
[ROW][C]8[/C][C]0.722117[/C][C]7.7101[/C][C]0[/C][/ROW]
[ROW][C]9[/C][C]0.699244[/C][C]7.4659[/C][C]0[/C][/ROW]
[ROW][C]10[/C][C]0.649926[/C][C]6.9393[/C][C]0[/C][/ROW]
[ROW][C]11[/C][C]0.642797[/C][C]6.8632[/C][C]0[/C][/ROW]
[ROW][C]12[/C][C]0.706937[/C][C]7.548[/C][C]0[/C][/ROW]
[ROW][C]13[/C][C]0.60835[/C][C]6.4954[/C][C]0[/C][/ROW]
[ROW][C]14[/C][C]0.583299[/C][C]6.2279[/C][C]0[/C][/ROW]
[ROW][C]15[/C][C]0.581907[/C][C]6.2131[/C][C]0[/C][/ROW]
[ROW][C]16[/C][C]0.554349[/C][C]5.9188[/C][C]0[/C][/ROW]
[ROW][C]17[/C][C]0.52921[/C][C]5.6504[/C][C]0[/C][/ROW]
[ROW][C]18[/C][C]0.508534[/C][C]5.4297[/C][C]0[/C][/ROW]
[ROW][C]19[/C][C]0.489969[/C][C]5.2314[/C][C]0[/C][/ROW]
[ROW][C]20[/C][C]0.4633[/C][C]4.9467[/C][C]1e-06[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300237&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300237&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.8652339.23820
20.8369288.93590
30.8413628.98330
40.8187728.74210
50.7915548.45150
60.7761458.2870
70.7625838.14220
80.7221177.71010
90.6992447.46590
100.6499266.93930
110.6427976.86320
120.7069377.5480
130.608356.49540
140.5832996.22790
150.5819076.21310
160.5543495.91880
170.529215.65040
180.5085345.42970
190.4899695.23140
200.46334.94671e-06







Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.8652339.23820
20.3512743.75060.000139
30.3070573.27850.000692
40.1094561.16870.122487
50.018240.19470.422968
60.0186060.19870.421444
70.0255610.27290.392706
8-0.101563-1.08440.140238
9-0.04296-0.45870.323666
10-0.181281-1.93560.0277
110.0522050.55740.289174
120.4705355.02391e-06
13-0.343126-3.66360.000189
14-0.076496-0.81670.207887
15-0.01462-0.15610.438116
16-0.030388-0.32450.373095
170.0957971.02280.154276
18-0.127694-1.36340.087722
19-0.127811-1.36470.087525
200.124021.32420.094048

\begin{tabular}{lllllllll}
\hline
Partial Autocorrelation Function \tabularnewline
Time lag k & PACF(k) & T-STAT & P-value \tabularnewline
1 & 0.865233 & 9.2382 & 0 \tabularnewline
2 & 0.351274 & 3.7506 & 0.000139 \tabularnewline
3 & 0.307057 & 3.2785 & 0.000692 \tabularnewline
4 & 0.109456 & 1.1687 & 0.122487 \tabularnewline
5 & 0.01824 & 0.1947 & 0.422968 \tabularnewline
6 & 0.018606 & 0.1987 & 0.421444 \tabularnewline
7 & 0.025561 & 0.2729 & 0.392706 \tabularnewline
8 & -0.101563 & -1.0844 & 0.140238 \tabularnewline
9 & -0.04296 & -0.4587 & 0.323666 \tabularnewline
10 & -0.181281 & -1.9356 & 0.0277 \tabularnewline
11 & 0.052205 & 0.5574 & 0.289174 \tabularnewline
12 & 0.470535 & 5.0239 & 1e-06 \tabularnewline
13 & -0.343126 & -3.6636 & 0.000189 \tabularnewline
14 & -0.076496 & -0.8167 & 0.207887 \tabularnewline
15 & -0.01462 & -0.1561 & 0.438116 \tabularnewline
16 & -0.030388 & -0.3245 & 0.373095 \tabularnewline
17 & 0.095797 & 1.0228 & 0.154276 \tabularnewline
18 & -0.127694 & -1.3634 & 0.087722 \tabularnewline
19 & -0.127811 & -1.3647 & 0.087525 \tabularnewline
20 & 0.12402 & 1.3242 & 0.094048 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300237&T=2

[TABLE]
[ROW][C]Partial Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]PACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.865233[/C][C]9.2382[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]0.351274[/C][C]3.7506[/C][C]0.000139[/C][/ROW]
[ROW][C]3[/C][C]0.307057[/C][C]3.2785[/C][C]0.000692[/C][/ROW]
[ROW][C]4[/C][C]0.109456[/C][C]1.1687[/C][C]0.122487[/C][/ROW]
[ROW][C]5[/C][C]0.01824[/C][C]0.1947[/C][C]0.422968[/C][/ROW]
[ROW][C]6[/C][C]0.018606[/C][C]0.1987[/C][C]0.421444[/C][/ROW]
[ROW][C]7[/C][C]0.025561[/C][C]0.2729[/C][C]0.392706[/C][/ROW]
[ROW][C]8[/C][C]-0.101563[/C][C]-1.0844[/C][C]0.140238[/C][/ROW]
[ROW][C]9[/C][C]-0.04296[/C][C]-0.4587[/C][C]0.323666[/C][/ROW]
[ROW][C]10[/C][C]-0.181281[/C][C]-1.9356[/C][C]0.0277[/C][/ROW]
[ROW][C]11[/C][C]0.052205[/C][C]0.5574[/C][C]0.289174[/C][/ROW]
[ROW][C]12[/C][C]0.470535[/C][C]5.0239[/C][C]1e-06[/C][/ROW]
[ROW][C]13[/C][C]-0.343126[/C][C]-3.6636[/C][C]0.000189[/C][/ROW]
[ROW][C]14[/C][C]-0.076496[/C][C]-0.8167[/C][C]0.207887[/C][/ROW]
[ROW][C]15[/C][C]-0.01462[/C][C]-0.1561[/C][C]0.438116[/C][/ROW]
[ROW][C]16[/C][C]-0.030388[/C][C]-0.3245[/C][C]0.373095[/C][/ROW]
[ROW][C]17[/C][C]0.095797[/C][C]1.0228[/C][C]0.154276[/C][/ROW]
[ROW][C]18[/C][C]-0.127694[/C][C]-1.3634[/C][C]0.087722[/C][/ROW]
[ROW][C]19[/C][C]-0.127811[/C][C]-1.3647[/C][C]0.087525[/C][/ROW]
[ROW][C]20[/C][C]0.12402[/C][C]1.3242[/C][C]0.094048[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300237&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300237&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.8652339.23820
20.3512743.75060.000139
30.3070573.27850.000692
40.1094561.16870.122487
50.018240.19470.422968
60.0186060.19870.421444
70.0255610.27290.392706
8-0.101563-1.08440.140238
9-0.04296-0.45870.323666
10-0.181281-1.93560.0277
110.0522050.55740.289174
120.4705355.02391e-06
13-0.343126-3.66360.000189
14-0.076496-0.81670.207887
15-0.01462-0.15610.438116
16-0.030388-0.32450.373095
170.0957971.02280.154276
18-0.127694-1.36340.087722
19-0.127811-1.36470.087525
200.124021.32420.094048



Parameters (Session):
par1 = 12 ; par2 = -0.5 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = 3 ; par7 = 0 ; par8 = 0 ; par9 = 1 ; par10 = FALSE ;
Parameters (R input):
par1 = Default ; par2 = 1 ; par3 = 0 ; par4 = 0 ; par5 = 1 ; par6 = White Noise ; par7 = 0.95 ; par8 = ;
R code (references can be found in the software module):
par8 <- ''
par7 <- '0.95'
par6 <- 'White Noise'
par5 <- '12'
par4 <- '0'
par3 <- '0'
par2 <- '1'
par1 <- 'Default'
if (par1 == 'Default') {
par1 = 10*log10(length(x))
} else {
par1 <- as.numeric(par1)
}
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
par5 <- as.numeric(par5)
if (par6 == 'White Noise') par6 <- 'white' else par6 <- 'ma'
par7 <- as.numeric(par7)
if (par8 != '') par8 <- as.numeric(par8)
x <- na.omit(x)
ox <- x
if (par8 == '') {
if (par2 == 0) {
x <- log(x)
} else {
x <- (x ^ par2 - 1) / par2
}
} else {
x <- log(x,base=par8)
}
if (par3 > 0) x <- diff(x,lag=1,difference=par3)
if (par4 > 0) x <- diff(x,lag=par5,difference=par4)
bitmap(file='picts.png')
op <- par(mfrow=c(2,1))
plot(ox,type='l',main='Original Time Series',xlab='time',ylab='value')
if (par8=='') {
mytitle <- paste('Working Time Series (lambda=',par2,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(lambda=',par2,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
} else {
mytitle <- paste('Working Time Series (base=',par8,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(base=',par8,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
}
plot(x,type='l', main=mytitle,xlab='time',ylab='value')
par(op)
dev.off()
bitmap(file='pic1.png')
racf <- acf(x, par1, main='Autocorrelation', xlab='time lag', ylab='ACF', ci.type=par6, ci=par7, sub=mysub)
dev.off()
bitmap(file='pic2.png')
rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF',sub=mysub)
dev.off()
(myacf <- c(racf$acf))
(mypacf <- c(rpacf$acf))
lengthx <- length(x)
sqrtn <- sqrt(lengthx)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'ACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 2:(par1+1)) {
a<-table.row.start(a)
a<-table.element(a,i-1,header=TRUE)
a<-table.element(a,round(myacf[i],6))
mytstat <- myacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Partial Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'PACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:par1) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,round(mypacf[i],6))
mytstat <- mypacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')