Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_exponentialsmoothing.wasp
Title produced by softwareExponential Smoothing
Date of computationFri, 16 Dec 2016 13:41:14 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/16/t1481892121c9f9hjihsill026.htm/, Retrieved Fri, 01 Nov 2024 03:38:53 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=300222, Retrieved Fri, 01 Nov 2024 03:38:53 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact100
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Exponential Smoothing] [forecast N2170: s...] [2016-12-16 12:41:14] [111362aa4cdbe055231fbc5cb9e916c4] [Current]
Feedback Forum

Post a new message
Dataseries X:
4030
4320
4840
4410
4180
4240
3680
4270
4140
4470
4180
4510
4490
3960
3750
3670
3590
2840
3530
4320
3740
3710
3830
3490
4200
4280
4650
2100
2410
1230
2420
2360
1870
2250
1960
2550
3180
3330
3760
3930
3710
3250
3450
3480
3090
3690
3250
3300
4040
3630
3820
3400
2500
2380
2520
2340
2420
2430
2080
2420
2430
2400
2790
2370
2700
2640
2910
2420
2800
2830
2310
2540
2780
2820
3610
3270
3030
3250
3040
3630
3320
3440
3110
3180
3330
3100
3440
3320
3380
3610
3320
3860
3430
3510
3290
3010
3860
3530
3610
3370
3700
3500
4110
4590
3680
4220
3740
3550
4150
4110
4160
3780
3150
3260
4750
4110
3610
3890
2800
2610
3600
3400
3400
3120
3150
3240




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300222&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=300222&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300222&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Estimated Parameters of Exponential Smoothing
ParameterValue
alpha0.70678592078236
beta0.0682508353545743
gammaFALSE

\begin{tabular}{lllllllll}
\hline
Estimated Parameters of Exponential Smoothing \tabularnewline
Parameter & Value \tabularnewline
alpha & 0.70678592078236 \tabularnewline
beta & 0.0682508353545743 \tabularnewline
gamma & FALSE \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300222&T=1

[TABLE]
[ROW][C]Estimated Parameters of Exponential Smoothing[/C][/ROW]
[ROW][C]Parameter[/C][C]Value[/C][/ROW]
[ROW][C]alpha[/C][C]0.70678592078236[/C][/ROW]
[ROW][C]beta[/C][C]0.0682508353545743[/C][/ROW]
[ROW][C]gamma[/C][C]FALSE[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300222&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300222&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimated Parameters of Exponential Smoothing
ParameterValue
alpha0.70678592078236
beta0.0682508353545743
gammaFALSE







Interpolation Forecasts of Exponential Smoothing
tObservedFittedResiduals
348404610230
444105073.6556695673-663.655669567301
541804873.6741875249-693.674187524899
642404619.01407812706-379.014078127059
736804568.4681462881-888.468146288104
842704114.98867720036155.011322799639
941404406.50335476084-266.503354760845
1044704387.2416095745882.7583904254197
1141804618.82530816428-438.825308164279
1245104460.592616738449.4073832615995
1344904649.81926707498-159.819267074978
1439604683.45798830625-723.457988306252
1537504283.82610275355-533.826102753555
1636703992.47227106468-322.472271064677
1735903834.94469925846-244.944699258459
1828403720.39670258482-880.396702584821
1935303114.25095822946415.749041770539
2043203444.25798283656875.742017163444
2137404141.62624839685-401.626248396849
2237103916.79466824431-206.794668244313
2338303819.6917938017710.30820619823
2434903876.53142914713-386.53142914713
2542003634.24461236414565.755387635855
2642804092.31203134316187.687968656844
2746504292.22055063364357.779449366358
2821004629.60615981695-2529.60615981695
2924102804.20328524903-394.203285249025
3012302469.05723197471-1239.05723197471
3124201477.00975737633942.990242623671
3223602072.69136754751287.308632452486
3318702218.80585054063-348.805850540633
3422501898.49762187264351.502378127357
3519602090.11341757592-130.113417575917
3625501935.05344369362614.946556306375
3731802336.25561008273843.744389917269
3833302939.87002137453390.129978625469
3937603241.69552781406518.30447218594
4039303659.11531094327270.884689056731
4137103914.7294080776-204.729408077604
4232503824.31027109273-574.310271092727
4334503444.972585715975.02741428403169
4434803475.345135819934.65486418007322
4530903505.67891748971-415.678917489711
4636903218.87487738219471.125122617813
4732503581.57792467102-331.577924671019
4833003360.94686174723-60.9468617472326
4940403328.65402464602711.34597535398
5036303876.52131762231-246.521317622314
5138203735.4896187857684.510381214242
5234003832.50313743975-432.503137439749
5325003543.23537839566-1043.23537839566
5423802771.98632084212-391.986320842124
5525202442.1220059873977.8779940126124
5623402448.107909038-108.107909038004
5724202317.42660616645102.573393833551
5824302340.5998921366889.4001078633214
5920802358.77503267412-278.775032674116
6024202103.28141410225316.718585897752
6124302283.95240324871146.047596751293
6224002351.0406906957648.9593093042427
6327902351.8700783809438.129921619102
6423702648.89460641176-278.894606411761
6527002425.68277169423274.317228305771
6626402606.7059875414733.2940124585293
6729102618.98344870749291.016551292508
6824202827.45384049046-407.453840490458
6928002522.60013767855277.399862321446
7028302715.17280673448114.827193265525
7123102798.38052011402-488.380520114018
7225402431.69065856172108.309341438277
7327802491.95749525324288.042504746759
7428202693.1520057428126.847994257197
7536102786.53549179483823.464508205171
7632703412.00060376237-142.000603762371
7730303348.2386388695-318.238638869504
7832503144.56268443643105.437315563568
7930403245.42109171644-205.421091716442
8036303116.6599008951513.340099104897
8133203520.67187433854-200.671874338535
8234403410.3500814155929.64991858441
8331103464.24676338253-354.246763382526
8431803229.72226170148-49.7222617014786
8533303208.032851609121.967148390996
8631003313.57463959769-213.574639597689
8734403171.65764673203268.34235326797
8833203383.29729360503-63.2972936050287
8933803357.4853262700122.5146737299851
9036103393.4101285381216.589871461903
9133203576.95256836026-256.952568360261
9238603413.4068133811446.593186618903
9334303768.66038057783-338.660380577832
9435103552.57123574126-42.5712357412572
9532903543.70014744582-253.700147445823
9630103373.36794409815-363.367944098151
9738603107.99567814534752.004321854655
9835303667.22855927158-137.228559271585
9936103591.3444283692818.6555716307189
10033703626.53692753587-256.536927535874
10137003454.85222732981245.147772670186
10235003649.57682699719-149.576826997193
10341103558.1002409347551.899759065303
10445903989.04037285397600.95962714603
10536804483.64485770862-803.644857708618
10642203946.72786148693273.272138513067
10737404184.14293681838-444.142936818384
10835503893.07424655548-343.07424655548
10941503656.89001782079493.109982179212
11041104035.4960281851874.5039718148205
11141604121.8311810129638.168818987042
11237804184.32637472743-404.32637472743
11331503914.56800488631-764.568004886313
11432603353.31413358931-93.314133589311
11547503261.991692545991488.00830745401
11641104360.10531930155-250.105319301554
11736104217.67994309946-607.679943099458
11838903793.2121487639896.7878512360235
11928003871.32119608507-1071.32119608507
12026103072.14804142457-462.148041424575
12136002681.23646143272918.763538567278
12234003310.6537298452689.3462701547392
12334003358.160501048841.8394989512026
12431203374.1084394966-254.108439496596
12531503168.62667348578-18.6266734857791
12632403128.68157722842111.318422771582

\begin{tabular}{lllllllll}
\hline
Interpolation Forecasts of Exponential Smoothing \tabularnewline
t & Observed & Fitted & Residuals \tabularnewline
3 & 4840 & 4610 & 230 \tabularnewline
4 & 4410 & 5073.6556695673 & -663.655669567301 \tabularnewline
5 & 4180 & 4873.6741875249 & -693.674187524899 \tabularnewline
6 & 4240 & 4619.01407812706 & -379.014078127059 \tabularnewline
7 & 3680 & 4568.4681462881 & -888.468146288104 \tabularnewline
8 & 4270 & 4114.98867720036 & 155.011322799639 \tabularnewline
9 & 4140 & 4406.50335476084 & -266.503354760845 \tabularnewline
10 & 4470 & 4387.24160957458 & 82.7583904254197 \tabularnewline
11 & 4180 & 4618.82530816428 & -438.825308164279 \tabularnewline
12 & 4510 & 4460.5926167384 & 49.4073832615995 \tabularnewline
13 & 4490 & 4649.81926707498 & -159.819267074978 \tabularnewline
14 & 3960 & 4683.45798830625 & -723.457988306252 \tabularnewline
15 & 3750 & 4283.82610275355 & -533.826102753555 \tabularnewline
16 & 3670 & 3992.47227106468 & -322.472271064677 \tabularnewline
17 & 3590 & 3834.94469925846 & -244.944699258459 \tabularnewline
18 & 2840 & 3720.39670258482 & -880.396702584821 \tabularnewline
19 & 3530 & 3114.25095822946 & 415.749041770539 \tabularnewline
20 & 4320 & 3444.25798283656 & 875.742017163444 \tabularnewline
21 & 3740 & 4141.62624839685 & -401.626248396849 \tabularnewline
22 & 3710 & 3916.79466824431 & -206.794668244313 \tabularnewline
23 & 3830 & 3819.69179380177 & 10.30820619823 \tabularnewline
24 & 3490 & 3876.53142914713 & -386.53142914713 \tabularnewline
25 & 4200 & 3634.24461236414 & 565.755387635855 \tabularnewline
26 & 4280 & 4092.31203134316 & 187.687968656844 \tabularnewline
27 & 4650 & 4292.22055063364 & 357.779449366358 \tabularnewline
28 & 2100 & 4629.60615981695 & -2529.60615981695 \tabularnewline
29 & 2410 & 2804.20328524903 & -394.203285249025 \tabularnewline
30 & 1230 & 2469.05723197471 & -1239.05723197471 \tabularnewline
31 & 2420 & 1477.00975737633 & 942.990242623671 \tabularnewline
32 & 2360 & 2072.69136754751 & 287.308632452486 \tabularnewline
33 & 1870 & 2218.80585054063 & -348.805850540633 \tabularnewline
34 & 2250 & 1898.49762187264 & 351.502378127357 \tabularnewline
35 & 1960 & 2090.11341757592 & -130.113417575917 \tabularnewline
36 & 2550 & 1935.05344369362 & 614.946556306375 \tabularnewline
37 & 3180 & 2336.25561008273 & 843.744389917269 \tabularnewline
38 & 3330 & 2939.87002137453 & 390.129978625469 \tabularnewline
39 & 3760 & 3241.69552781406 & 518.30447218594 \tabularnewline
40 & 3930 & 3659.11531094327 & 270.884689056731 \tabularnewline
41 & 3710 & 3914.7294080776 & -204.729408077604 \tabularnewline
42 & 3250 & 3824.31027109273 & -574.310271092727 \tabularnewline
43 & 3450 & 3444.97258571597 & 5.02741428403169 \tabularnewline
44 & 3480 & 3475.34513581993 & 4.65486418007322 \tabularnewline
45 & 3090 & 3505.67891748971 & -415.678917489711 \tabularnewline
46 & 3690 & 3218.87487738219 & 471.125122617813 \tabularnewline
47 & 3250 & 3581.57792467102 & -331.577924671019 \tabularnewline
48 & 3300 & 3360.94686174723 & -60.9468617472326 \tabularnewline
49 & 4040 & 3328.65402464602 & 711.34597535398 \tabularnewline
50 & 3630 & 3876.52131762231 & -246.521317622314 \tabularnewline
51 & 3820 & 3735.48961878576 & 84.510381214242 \tabularnewline
52 & 3400 & 3832.50313743975 & -432.503137439749 \tabularnewline
53 & 2500 & 3543.23537839566 & -1043.23537839566 \tabularnewline
54 & 2380 & 2771.98632084212 & -391.986320842124 \tabularnewline
55 & 2520 & 2442.12200598739 & 77.8779940126124 \tabularnewline
56 & 2340 & 2448.107909038 & -108.107909038004 \tabularnewline
57 & 2420 & 2317.42660616645 & 102.573393833551 \tabularnewline
58 & 2430 & 2340.59989213668 & 89.4001078633214 \tabularnewline
59 & 2080 & 2358.77503267412 & -278.775032674116 \tabularnewline
60 & 2420 & 2103.28141410225 & 316.718585897752 \tabularnewline
61 & 2430 & 2283.95240324871 & 146.047596751293 \tabularnewline
62 & 2400 & 2351.04069069576 & 48.9593093042427 \tabularnewline
63 & 2790 & 2351.8700783809 & 438.129921619102 \tabularnewline
64 & 2370 & 2648.89460641176 & -278.894606411761 \tabularnewline
65 & 2700 & 2425.68277169423 & 274.317228305771 \tabularnewline
66 & 2640 & 2606.70598754147 & 33.2940124585293 \tabularnewline
67 & 2910 & 2618.98344870749 & 291.016551292508 \tabularnewline
68 & 2420 & 2827.45384049046 & -407.453840490458 \tabularnewline
69 & 2800 & 2522.60013767855 & 277.399862321446 \tabularnewline
70 & 2830 & 2715.17280673448 & 114.827193265525 \tabularnewline
71 & 2310 & 2798.38052011402 & -488.380520114018 \tabularnewline
72 & 2540 & 2431.69065856172 & 108.309341438277 \tabularnewline
73 & 2780 & 2491.95749525324 & 288.042504746759 \tabularnewline
74 & 2820 & 2693.1520057428 & 126.847994257197 \tabularnewline
75 & 3610 & 2786.53549179483 & 823.464508205171 \tabularnewline
76 & 3270 & 3412.00060376237 & -142.000603762371 \tabularnewline
77 & 3030 & 3348.2386388695 & -318.238638869504 \tabularnewline
78 & 3250 & 3144.56268443643 & 105.437315563568 \tabularnewline
79 & 3040 & 3245.42109171644 & -205.421091716442 \tabularnewline
80 & 3630 & 3116.6599008951 & 513.340099104897 \tabularnewline
81 & 3320 & 3520.67187433854 & -200.671874338535 \tabularnewline
82 & 3440 & 3410.35008141559 & 29.64991858441 \tabularnewline
83 & 3110 & 3464.24676338253 & -354.246763382526 \tabularnewline
84 & 3180 & 3229.72226170148 & -49.7222617014786 \tabularnewline
85 & 3330 & 3208.032851609 & 121.967148390996 \tabularnewline
86 & 3100 & 3313.57463959769 & -213.574639597689 \tabularnewline
87 & 3440 & 3171.65764673203 & 268.34235326797 \tabularnewline
88 & 3320 & 3383.29729360503 & -63.2972936050287 \tabularnewline
89 & 3380 & 3357.48532627001 & 22.5146737299851 \tabularnewline
90 & 3610 & 3393.4101285381 & 216.589871461903 \tabularnewline
91 & 3320 & 3576.95256836026 & -256.952568360261 \tabularnewline
92 & 3860 & 3413.4068133811 & 446.593186618903 \tabularnewline
93 & 3430 & 3768.66038057783 & -338.660380577832 \tabularnewline
94 & 3510 & 3552.57123574126 & -42.5712357412572 \tabularnewline
95 & 3290 & 3543.70014744582 & -253.700147445823 \tabularnewline
96 & 3010 & 3373.36794409815 & -363.367944098151 \tabularnewline
97 & 3860 & 3107.99567814534 & 752.004321854655 \tabularnewline
98 & 3530 & 3667.22855927158 & -137.228559271585 \tabularnewline
99 & 3610 & 3591.34442836928 & 18.6555716307189 \tabularnewline
100 & 3370 & 3626.53692753587 & -256.536927535874 \tabularnewline
101 & 3700 & 3454.85222732981 & 245.147772670186 \tabularnewline
102 & 3500 & 3649.57682699719 & -149.576826997193 \tabularnewline
103 & 4110 & 3558.1002409347 & 551.899759065303 \tabularnewline
104 & 4590 & 3989.04037285397 & 600.95962714603 \tabularnewline
105 & 3680 & 4483.64485770862 & -803.644857708618 \tabularnewline
106 & 4220 & 3946.72786148693 & 273.272138513067 \tabularnewline
107 & 3740 & 4184.14293681838 & -444.142936818384 \tabularnewline
108 & 3550 & 3893.07424655548 & -343.07424655548 \tabularnewline
109 & 4150 & 3656.89001782079 & 493.109982179212 \tabularnewline
110 & 4110 & 4035.49602818518 & 74.5039718148205 \tabularnewline
111 & 4160 & 4121.83118101296 & 38.168818987042 \tabularnewline
112 & 3780 & 4184.32637472743 & -404.32637472743 \tabularnewline
113 & 3150 & 3914.56800488631 & -764.568004886313 \tabularnewline
114 & 3260 & 3353.31413358931 & -93.314133589311 \tabularnewline
115 & 4750 & 3261.99169254599 & 1488.00830745401 \tabularnewline
116 & 4110 & 4360.10531930155 & -250.105319301554 \tabularnewline
117 & 3610 & 4217.67994309946 & -607.679943099458 \tabularnewline
118 & 3890 & 3793.21214876398 & 96.7878512360235 \tabularnewline
119 & 2800 & 3871.32119608507 & -1071.32119608507 \tabularnewline
120 & 2610 & 3072.14804142457 & -462.148041424575 \tabularnewline
121 & 3600 & 2681.23646143272 & 918.763538567278 \tabularnewline
122 & 3400 & 3310.65372984526 & 89.3462701547392 \tabularnewline
123 & 3400 & 3358.1605010488 & 41.8394989512026 \tabularnewline
124 & 3120 & 3374.1084394966 & -254.108439496596 \tabularnewline
125 & 3150 & 3168.62667348578 & -18.6266734857791 \tabularnewline
126 & 3240 & 3128.68157722842 & 111.318422771582 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300222&T=2

[TABLE]
[ROW][C]Interpolation Forecasts of Exponential Smoothing[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Fitted[/C][C]Residuals[/C][/ROW]
[ROW][C]3[/C][C]4840[/C][C]4610[/C][C]230[/C][/ROW]
[ROW][C]4[/C][C]4410[/C][C]5073.6556695673[/C][C]-663.655669567301[/C][/ROW]
[ROW][C]5[/C][C]4180[/C][C]4873.6741875249[/C][C]-693.674187524899[/C][/ROW]
[ROW][C]6[/C][C]4240[/C][C]4619.01407812706[/C][C]-379.014078127059[/C][/ROW]
[ROW][C]7[/C][C]3680[/C][C]4568.4681462881[/C][C]-888.468146288104[/C][/ROW]
[ROW][C]8[/C][C]4270[/C][C]4114.98867720036[/C][C]155.011322799639[/C][/ROW]
[ROW][C]9[/C][C]4140[/C][C]4406.50335476084[/C][C]-266.503354760845[/C][/ROW]
[ROW][C]10[/C][C]4470[/C][C]4387.24160957458[/C][C]82.7583904254197[/C][/ROW]
[ROW][C]11[/C][C]4180[/C][C]4618.82530816428[/C][C]-438.825308164279[/C][/ROW]
[ROW][C]12[/C][C]4510[/C][C]4460.5926167384[/C][C]49.4073832615995[/C][/ROW]
[ROW][C]13[/C][C]4490[/C][C]4649.81926707498[/C][C]-159.819267074978[/C][/ROW]
[ROW][C]14[/C][C]3960[/C][C]4683.45798830625[/C][C]-723.457988306252[/C][/ROW]
[ROW][C]15[/C][C]3750[/C][C]4283.82610275355[/C][C]-533.826102753555[/C][/ROW]
[ROW][C]16[/C][C]3670[/C][C]3992.47227106468[/C][C]-322.472271064677[/C][/ROW]
[ROW][C]17[/C][C]3590[/C][C]3834.94469925846[/C][C]-244.944699258459[/C][/ROW]
[ROW][C]18[/C][C]2840[/C][C]3720.39670258482[/C][C]-880.396702584821[/C][/ROW]
[ROW][C]19[/C][C]3530[/C][C]3114.25095822946[/C][C]415.749041770539[/C][/ROW]
[ROW][C]20[/C][C]4320[/C][C]3444.25798283656[/C][C]875.742017163444[/C][/ROW]
[ROW][C]21[/C][C]3740[/C][C]4141.62624839685[/C][C]-401.626248396849[/C][/ROW]
[ROW][C]22[/C][C]3710[/C][C]3916.79466824431[/C][C]-206.794668244313[/C][/ROW]
[ROW][C]23[/C][C]3830[/C][C]3819.69179380177[/C][C]10.30820619823[/C][/ROW]
[ROW][C]24[/C][C]3490[/C][C]3876.53142914713[/C][C]-386.53142914713[/C][/ROW]
[ROW][C]25[/C][C]4200[/C][C]3634.24461236414[/C][C]565.755387635855[/C][/ROW]
[ROW][C]26[/C][C]4280[/C][C]4092.31203134316[/C][C]187.687968656844[/C][/ROW]
[ROW][C]27[/C][C]4650[/C][C]4292.22055063364[/C][C]357.779449366358[/C][/ROW]
[ROW][C]28[/C][C]2100[/C][C]4629.60615981695[/C][C]-2529.60615981695[/C][/ROW]
[ROW][C]29[/C][C]2410[/C][C]2804.20328524903[/C][C]-394.203285249025[/C][/ROW]
[ROW][C]30[/C][C]1230[/C][C]2469.05723197471[/C][C]-1239.05723197471[/C][/ROW]
[ROW][C]31[/C][C]2420[/C][C]1477.00975737633[/C][C]942.990242623671[/C][/ROW]
[ROW][C]32[/C][C]2360[/C][C]2072.69136754751[/C][C]287.308632452486[/C][/ROW]
[ROW][C]33[/C][C]1870[/C][C]2218.80585054063[/C][C]-348.805850540633[/C][/ROW]
[ROW][C]34[/C][C]2250[/C][C]1898.49762187264[/C][C]351.502378127357[/C][/ROW]
[ROW][C]35[/C][C]1960[/C][C]2090.11341757592[/C][C]-130.113417575917[/C][/ROW]
[ROW][C]36[/C][C]2550[/C][C]1935.05344369362[/C][C]614.946556306375[/C][/ROW]
[ROW][C]37[/C][C]3180[/C][C]2336.25561008273[/C][C]843.744389917269[/C][/ROW]
[ROW][C]38[/C][C]3330[/C][C]2939.87002137453[/C][C]390.129978625469[/C][/ROW]
[ROW][C]39[/C][C]3760[/C][C]3241.69552781406[/C][C]518.30447218594[/C][/ROW]
[ROW][C]40[/C][C]3930[/C][C]3659.11531094327[/C][C]270.884689056731[/C][/ROW]
[ROW][C]41[/C][C]3710[/C][C]3914.7294080776[/C][C]-204.729408077604[/C][/ROW]
[ROW][C]42[/C][C]3250[/C][C]3824.31027109273[/C][C]-574.310271092727[/C][/ROW]
[ROW][C]43[/C][C]3450[/C][C]3444.97258571597[/C][C]5.02741428403169[/C][/ROW]
[ROW][C]44[/C][C]3480[/C][C]3475.34513581993[/C][C]4.65486418007322[/C][/ROW]
[ROW][C]45[/C][C]3090[/C][C]3505.67891748971[/C][C]-415.678917489711[/C][/ROW]
[ROW][C]46[/C][C]3690[/C][C]3218.87487738219[/C][C]471.125122617813[/C][/ROW]
[ROW][C]47[/C][C]3250[/C][C]3581.57792467102[/C][C]-331.577924671019[/C][/ROW]
[ROW][C]48[/C][C]3300[/C][C]3360.94686174723[/C][C]-60.9468617472326[/C][/ROW]
[ROW][C]49[/C][C]4040[/C][C]3328.65402464602[/C][C]711.34597535398[/C][/ROW]
[ROW][C]50[/C][C]3630[/C][C]3876.52131762231[/C][C]-246.521317622314[/C][/ROW]
[ROW][C]51[/C][C]3820[/C][C]3735.48961878576[/C][C]84.510381214242[/C][/ROW]
[ROW][C]52[/C][C]3400[/C][C]3832.50313743975[/C][C]-432.503137439749[/C][/ROW]
[ROW][C]53[/C][C]2500[/C][C]3543.23537839566[/C][C]-1043.23537839566[/C][/ROW]
[ROW][C]54[/C][C]2380[/C][C]2771.98632084212[/C][C]-391.986320842124[/C][/ROW]
[ROW][C]55[/C][C]2520[/C][C]2442.12200598739[/C][C]77.8779940126124[/C][/ROW]
[ROW][C]56[/C][C]2340[/C][C]2448.107909038[/C][C]-108.107909038004[/C][/ROW]
[ROW][C]57[/C][C]2420[/C][C]2317.42660616645[/C][C]102.573393833551[/C][/ROW]
[ROW][C]58[/C][C]2430[/C][C]2340.59989213668[/C][C]89.4001078633214[/C][/ROW]
[ROW][C]59[/C][C]2080[/C][C]2358.77503267412[/C][C]-278.775032674116[/C][/ROW]
[ROW][C]60[/C][C]2420[/C][C]2103.28141410225[/C][C]316.718585897752[/C][/ROW]
[ROW][C]61[/C][C]2430[/C][C]2283.95240324871[/C][C]146.047596751293[/C][/ROW]
[ROW][C]62[/C][C]2400[/C][C]2351.04069069576[/C][C]48.9593093042427[/C][/ROW]
[ROW][C]63[/C][C]2790[/C][C]2351.8700783809[/C][C]438.129921619102[/C][/ROW]
[ROW][C]64[/C][C]2370[/C][C]2648.89460641176[/C][C]-278.894606411761[/C][/ROW]
[ROW][C]65[/C][C]2700[/C][C]2425.68277169423[/C][C]274.317228305771[/C][/ROW]
[ROW][C]66[/C][C]2640[/C][C]2606.70598754147[/C][C]33.2940124585293[/C][/ROW]
[ROW][C]67[/C][C]2910[/C][C]2618.98344870749[/C][C]291.016551292508[/C][/ROW]
[ROW][C]68[/C][C]2420[/C][C]2827.45384049046[/C][C]-407.453840490458[/C][/ROW]
[ROW][C]69[/C][C]2800[/C][C]2522.60013767855[/C][C]277.399862321446[/C][/ROW]
[ROW][C]70[/C][C]2830[/C][C]2715.17280673448[/C][C]114.827193265525[/C][/ROW]
[ROW][C]71[/C][C]2310[/C][C]2798.38052011402[/C][C]-488.380520114018[/C][/ROW]
[ROW][C]72[/C][C]2540[/C][C]2431.69065856172[/C][C]108.309341438277[/C][/ROW]
[ROW][C]73[/C][C]2780[/C][C]2491.95749525324[/C][C]288.042504746759[/C][/ROW]
[ROW][C]74[/C][C]2820[/C][C]2693.1520057428[/C][C]126.847994257197[/C][/ROW]
[ROW][C]75[/C][C]3610[/C][C]2786.53549179483[/C][C]823.464508205171[/C][/ROW]
[ROW][C]76[/C][C]3270[/C][C]3412.00060376237[/C][C]-142.000603762371[/C][/ROW]
[ROW][C]77[/C][C]3030[/C][C]3348.2386388695[/C][C]-318.238638869504[/C][/ROW]
[ROW][C]78[/C][C]3250[/C][C]3144.56268443643[/C][C]105.437315563568[/C][/ROW]
[ROW][C]79[/C][C]3040[/C][C]3245.42109171644[/C][C]-205.421091716442[/C][/ROW]
[ROW][C]80[/C][C]3630[/C][C]3116.6599008951[/C][C]513.340099104897[/C][/ROW]
[ROW][C]81[/C][C]3320[/C][C]3520.67187433854[/C][C]-200.671874338535[/C][/ROW]
[ROW][C]82[/C][C]3440[/C][C]3410.35008141559[/C][C]29.64991858441[/C][/ROW]
[ROW][C]83[/C][C]3110[/C][C]3464.24676338253[/C][C]-354.246763382526[/C][/ROW]
[ROW][C]84[/C][C]3180[/C][C]3229.72226170148[/C][C]-49.7222617014786[/C][/ROW]
[ROW][C]85[/C][C]3330[/C][C]3208.032851609[/C][C]121.967148390996[/C][/ROW]
[ROW][C]86[/C][C]3100[/C][C]3313.57463959769[/C][C]-213.574639597689[/C][/ROW]
[ROW][C]87[/C][C]3440[/C][C]3171.65764673203[/C][C]268.34235326797[/C][/ROW]
[ROW][C]88[/C][C]3320[/C][C]3383.29729360503[/C][C]-63.2972936050287[/C][/ROW]
[ROW][C]89[/C][C]3380[/C][C]3357.48532627001[/C][C]22.5146737299851[/C][/ROW]
[ROW][C]90[/C][C]3610[/C][C]3393.4101285381[/C][C]216.589871461903[/C][/ROW]
[ROW][C]91[/C][C]3320[/C][C]3576.95256836026[/C][C]-256.952568360261[/C][/ROW]
[ROW][C]92[/C][C]3860[/C][C]3413.4068133811[/C][C]446.593186618903[/C][/ROW]
[ROW][C]93[/C][C]3430[/C][C]3768.66038057783[/C][C]-338.660380577832[/C][/ROW]
[ROW][C]94[/C][C]3510[/C][C]3552.57123574126[/C][C]-42.5712357412572[/C][/ROW]
[ROW][C]95[/C][C]3290[/C][C]3543.70014744582[/C][C]-253.700147445823[/C][/ROW]
[ROW][C]96[/C][C]3010[/C][C]3373.36794409815[/C][C]-363.367944098151[/C][/ROW]
[ROW][C]97[/C][C]3860[/C][C]3107.99567814534[/C][C]752.004321854655[/C][/ROW]
[ROW][C]98[/C][C]3530[/C][C]3667.22855927158[/C][C]-137.228559271585[/C][/ROW]
[ROW][C]99[/C][C]3610[/C][C]3591.34442836928[/C][C]18.6555716307189[/C][/ROW]
[ROW][C]100[/C][C]3370[/C][C]3626.53692753587[/C][C]-256.536927535874[/C][/ROW]
[ROW][C]101[/C][C]3700[/C][C]3454.85222732981[/C][C]245.147772670186[/C][/ROW]
[ROW][C]102[/C][C]3500[/C][C]3649.57682699719[/C][C]-149.576826997193[/C][/ROW]
[ROW][C]103[/C][C]4110[/C][C]3558.1002409347[/C][C]551.899759065303[/C][/ROW]
[ROW][C]104[/C][C]4590[/C][C]3989.04037285397[/C][C]600.95962714603[/C][/ROW]
[ROW][C]105[/C][C]3680[/C][C]4483.64485770862[/C][C]-803.644857708618[/C][/ROW]
[ROW][C]106[/C][C]4220[/C][C]3946.72786148693[/C][C]273.272138513067[/C][/ROW]
[ROW][C]107[/C][C]3740[/C][C]4184.14293681838[/C][C]-444.142936818384[/C][/ROW]
[ROW][C]108[/C][C]3550[/C][C]3893.07424655548[/C][C]-343.07424655548[/C][/ROW]
[ROW][C]109[/C][C]4150[/C][C]3656.89001782079[/C][C]493.109982179212[/C][/ROW]
[ROW][C]110[/C][C]4110[/C][C]4035.49602818518[/C][C]74.5039718148205[/C][/ROW]
[ROW][C]111[/C][C]4160[/C][C]4121.83118101296[/C][C]38.168818987042[/C][/ROW]
[ROW][C]112[/C][C]3780[/C][C]4184.32637472743[/C][C]-404.32637472743[/C][/ROW]
[ROW][C]113[/C][C]3150[/C][C]3914.56800488631[/C][C]-764.568004886313[/C][/ROW]
[ROW][C]114[/C][C]3260[/C][C]3353.31413358931[/C][C]-93.314133589311[/C][/ROW]
[ROW][C]115[/C][C]4750[/C][C]3261.99169254599[/C][C]1488.00830745401[/C][/ROW]
[ROW][C]116[/C][C]4110[/C][C]4360.10531930155[/C][C]-250.105319301554[/C][/ROW]
[ROW][C]117[/C][C]3610[/C][C]4217.67994309946[/C][C]-607.679943099458[/C][/ROW]
[ROW][C]118[/C][C]3890[/C][C]3793.21214876398[/C][C]96.7878512360235[/C][/ROW]
[ROW][C]119[/C][C]2800[/C][C]3871.32119608507[/C][C]-1071.32119608507[/C][/ROW]
[ROW][C]120[/C][C]2610[/C][C]3072.14804142457[/C][C]-462.148041424575[/C][/ROW]
[ROW][C]121[/C][C]3600[/C][C]2681.23646143272[/C][C]918.763538567278[/C][/ROW]
[ROW][C]122[/C][C]3400[/C][C]3310.65372984526[/C][C]89.3462701547392[/C][/ROW]
[ROW][C]123[/C][C]3400[/C][C]3358.1605010488[/C][C]41.8394989512026[/C][/ROW]
[ROW][C]124[/C][C]3120[/C][C]3374.1084394966[/C][C]-254.108439496596[/C][/ROW]
[ROW][C]125[/C][C]3150[/C][C]3168.62667348578[/C][C]-18.6266734857791[/C][/ROW]
[ROW][C]126[/C][C]3240[/C][C]3128.68157722842[/C][C]111.318422771582[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300222&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300222&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Interpolation Forecasts of Exponential Smoothing
tObservedFittedResiduals
348404610230
444105073.6556695673-663.655669567301
541804873.6741875249-693.674187524899
642404619.01407812706-379.014078127059
736804568.4681462881-888.468146288104
842704114.98867720036155.011322799639
941404406.50335476084-266.503354760845
1044704387.2416095745882.7583904254197
1141804618.82530816428-438.825308164279
1245104460.592616738449.4073832615995
1344904649.81926707498-159.819267074978
1439604683.45798830625-723.457988306252
1537504283.82610275355-533.826102753555
1636703992.47227106468-322.472271064677
1735903834.94469925846-244.944699258459
1828403720.39670258482-880.396702584821
1935303114.25095822946415.749041770539
2043203444.25798283656875.742017163444
2137404141.62624839685-401.626248396849
2237103916.79466824431-206.794668244313
2338303819.6917938017710.30820619823
2434903876.53142914713-386.53142914713
2542003634.24461236414565.755387635855
2642804092.31203134316187.687968656844
2746504292.22055063364357.779449366358
2821004629.60615981695-2529.60615981695
2924102804.20328524903-394.203285249025
3012302469.05723197471-1239.05723197471
3124201477.00975737633942.990242623671
3223602072.69136754751287.308632452486
3318702218.80585054063-348.805850540633
3422501898.49762187264351.502378127357
3519602090.11341757592-130.113417575917
3625501935.05344369362614.946556306375
3731802336.25561008273843.744389917269
3833302939.87002137453390.129978625469
3937603241.69552781406518.30447218594
4039303659.11531094327270.884689056731
4137103914.7294080776-204.729408077604
4232503824.31027109273-574.310271092727
4334503444.972585715975.02741428403169
4434803475.345135819934.65486418007322
4530903505.67891748971-415.678917489711
4636903218.87487738219471.125122617813
4732503581.57792467102-331.577924671019
4833003360.94686174723-60.9468617472326
4940403328.65402464602711.34597535398
5036303876.52131762231-246.521317622314
5138203735.4896187857684.510381214242
5234003832.50313743975-432.503137439749
5325003543.23537839566-1043.23537839566
5423802771.98632084212-391.986320842124
5525202442.1220059873977.8779940126124
5623402448.107909038-108.107909038004
5724202317.42660616645102.573393833551
5824302340.5998921366889.4001078633214
5920802358.77503267412-278.775032674116
6024202103.28141410225316.718585897752
6124302283.95240324871146.047596751293
6224002351.0406906957648.9593093042427
6327902351.8700783809438.129921619102
6423702648.89460641176-278.894606411761
6527002425.68277169423274.317228305771
6626402606.7059875414733.2940124585293
6729102618.98344870749291.016551292508
6824202827.45384049046-407.453840490458
6928002522.60013767855277.399862321446
7028302715.17280673448114.827193265525
7123102798.38052011402-488.380520114018
7225402431.69065856172108.309341438277
7327802491.95749525324288.042504746759
7428202693.1520057428126.847994257197
7536102786.53549179483823.464508205171
7632703412.00060376237-142.000603762371
7730303348.2386388695-318.238638869504
7832503144.56268443643105.437315563568
7930403245.42109171644-205.421091716442
8036303116.6599008951513.340099104897
8133203520.67187433854-200.671874338535
8234403410.3500814155929.64991858441
8331103464.24676338253-354.246763382526
8431803229.72226170148-49.7222617014786
8533303208.032851609121.967148390996
8631003313.57463959769-213.574639597689
8734403171.65764673203268.34235326797
8833203383.29729360503-63.2972936050287
8933803357.4853262700122.5146737299851
9036103393.4101285381216.589871461903
9133203576.95256836026-256.952568360261
9238603413.4068133811446.593186618903
9334303768.66038057783-338.660380577832
9435103552.57123574126-42.5712357412572
9532903543.70014744582-253.700147445823
9630103373.36794409815-363.367944098151
9738603107.99567814534752.004321854655
9835303667.22855927158-137.228559271585
9936103591.3444283692818.6555716307189
10033703626.53692753587-256.536927535874
10137003454.85222732981245.147772670186
10235003649.57682699719-149.576826997193
10341103558.1002409347551.899759065303
10445903989.04037285397600.95962714603
10536804483.64485770862-803.644857708618
10642203946.72786148693273.272138513067
10737404184.14293681838-444.142936818384
10835503893.07424655548-343.07424655548
10941503656.89001782079493.109982179212
11041104035.4960281851874.5039718148205
11141604121.8311810129638.168818987042
11237804184.32637472743-404.32637472743
11331503914.56800488631-764.568004886313
11432603353.31413358931-93.314133589311
11547503261.991692545991488.00830745401
11641104360.10531930155-250.105319301554
11736104217.67994309946-607.679943099458
11838903793.2121487639896.7878512360235
11928003871.32119608507-1071.32119608507
12026103072.14804142457-462.148041424575
12136002681.23646143272918.763538567278
12234003310.6537298452689.3462701547392
12334003358.160501048841.8394989512026
12431203374.1084394966-254.108439496596
12531503168.62667348578-18.6266734857791
12632403128.68157722842111.318422771582







Extrapolation Forecasts of Exponential Smoothing
tForecast95% Lower Bound95% Upper Bound
1273185.949704766052203.262767745134168.63664178698
1283164.539538365041933.211936101894395.86714062818
1293143.129371964021680.511432041934605.74731188611
1303121.7192055631436.661777691214806.77663343479
1313100.309039161981197.373477457145003.24460086683
1323078.89887276097960.1773041538665197.62044136807
1333057.48870635995723.5296810469975391.4477316729
1343036.07853995893486.4101520207265585.74692789714
1353014.66837355792248.1167742036415781.21997291219
1362993.25820715698.152594464351755978.36381984944
1372971.84804075588-233.8416488962316177.53773040799
1382950.43787435486-478.1295452686046379.00529397833

\begin{tabular}{lllllllll}
\hline
Extrapolation Forecasts of Exponential Smoothing \tabularnewline
t & Forecast & 95% Lower Bound & 95% Upper Bound \tabularnewline
127 & 3185.94970476605 & 2203.26276774513 & 4168.63664178698 \tabularnewline
128 & 3164.53953836504 & 1933.21193610189 & 4395.86714062818 \tabularnewline
129 & 3143.12937196402 & 1680.51143204193 & 4605.74731188611 \tabularnewline
130 & 3121.719205563 & 1436.66177769121 & 4806.77663343479 \tabularnewline
131 & 3100.30903916198 & 1197.37347745714 & 5003.24460086683 \tabularnewline
132 & 3078.89887276097 & 960.177304153866 & 5197.62044136807 \tabularnewline
133 & 3057.48870635995 & 723.529681046997 & 5391.4477316729 \tabularnewline
134 & 3036.07853995893 & 486.410152020726 & 5585.74692789714 \tabularnewline
135 & 3014.66837355792 & 248.116774203641 & 5781.21997291219 \tabularnewline
136 & 2993.2582071569 & 8.15259446435175 & 5978.36381984944 \tabularnewline
137 & 2971.84804075588 & -233.841648896231 & 6177.53773040799 \tabularnewline
138 & 2950.43787435486 & -478.129545268604 & 6379.00529397833 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300222&T=3

[TABLE]
[ROW][C]Extrapolation Forecasts of Exponential Smoothing[/C][/ROW]
[ROW][C]t[/C][C]Forecast[/C][C]95% Lower Bound[/C][C]95% Upper Bound[/C][/ROW]
[ROW][C]127[/C][C]3185.94970476605[/C][C]2203.26276774513[/C][C]4168.63664178698[/C][/ROW]
[ROW][C]128[/C][C]3164.53953836504[/C][C]1933.21193610189[/C][C]4395.86714062818[/C][/ROW]
[ROW][C]129[/C][C]3143.12937196402[/C][C]1680.51143204193[/C][C]4605.74731188611[/C][/ROW]
[ROW][C]130[/C][C]3121.719205563[/C][C]1436.66177769121[/C][C]4806.77663343479[/C][/ROW]
[ROW][C]131[/C][C]3100.30903916198[/C][C]1197.37347745714[/C][C]5003.24460086683[/C][/ROW]
[ROW][C]132[/C][C]3078.89887276097[/C][C]960.177304153866[/C][C]5197.62044136807[/C][/ROW]
[ROW][C]133[/C][C]3057.48870635995[/C][C]723.529681046997[/C][C]5391.4477316729[/C][/ROW]
[ROW][C]134[/C][C]3036.07853995893[/C][C]486.410152020726[/C][C]5585.74692789714[/C][/ROW]
[ROW][C]135[/C][C]3014.66837355792[/C][C]248.116774203641[/C][C]5781.21997291219[/C][/ROW]
[ROW][C]136[/C][C]2993.2582071569[/C][C]8.15259446435175[/C][C]5978.36381984944[/C][/ROW]
[ROW][C]137[/C][C]2971.84804075588[/C][C]-233.841648896231[/C][C]6177.53773040799[/C][/ROW]
[ROW][C]138[/C][C]2950.43787435486[/C][C]-478.129545268604[/C][C]6379.00529397833[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300222&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300222&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Extrapolation Forecasts of Exponential Smoothing
tForecast95% Lower Bound95% Upper Bound
1273185.949704766052203.262767745134168.63664178698
1283164.539538365041933.211936101894395.86714062818
1293143.129371964021680.511432041934605.74731188611
1303121.7192055631436.661777691214806.77663343479
1313100.309039161981197.373477457145003.24460086683
1323078.89887276097960.1773041538665197.62044136807
1333057.48870635995723.5296810469975391.4477316729
1343036.07853995893486.4101520207265585.74692789714
1353014.66837355792248.1167742036415781.21997291219
1362993.25820715698.152594464351755978.36381984944
1372971.84804075588-233.8416488962316177.53773040799
1382950.43787435486-478.1295452686046379.00529397833



Parameters (Session):
par1 = 12 ; par2 = Double ; par3 = additive ; par4 = 12 ;
Parameters (R input):
par1 = 12 ; par2 = Double ; par3 = additive ; par4 = 12 ;
R code (references can be found in the software module):
par4 <- '12'
par3 <- 'additive'
par2 <- 'Single'
par1 <- '12'
par1 <- as.numeric(par1)
par4 <- as.numeric(par4)
if (par2 == 'Single') K <- 1
if (par2 == 'Double') K <- 2
if (par2 == 'Triple') K <- par1
nx <- length(x)
nxmK <- nx - K
x <- ts(x, frequency = par1)
if (par2 == 'Single') fit <- HoltWinters(x, gamma=F, beta=F)
if (par2 == 'Double') fit <- HoltWinters(x, gamma=F)
if (par2 == 'Triple') fit <- HoltWinters(x, seasonal=par3)
fit
myresid <- x - fit$fitted[,'xhat']
bitmap(file='test1.png')
op <- par(mfrow=c(2,1))
plot(fit,ylab='Observed (black) / Fitted (red)',main='Interpolation Fit of Exponential Smoothing')
plot(myresid,ylab='Residuals',main='Interpolation Prediction Errors')
par(op)
dev.off()
bitmap(file='test2.png')
p <- predict(fit, par4, prediction.interval=TRUE)
np <- length(p[,1])
plot(fit,p,ylab='Observed (black) / Fitted (red)',main='Extrapolation Fit of Exponential Smoothing')
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(myresid),lag.max = nx/2,main='Residual ACF')
spectrum(myresid,main='Residals Periodogram')
cpgram(myresid,main='Residal Cumulative Periodogram')
qqnorm(myresid,main='Residual Normal QQ Plot')
qqline(myresid)
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimated Parameters of Exponential Smoothing',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'Value',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,fit$alpha)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,fit$beta)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'gamma',header=TRUE)
a<-table.element(a,fit$gamma)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Interpolation Forecasts of Exponential Smoothing',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Fitted',header=TRUE)
a<-table.element(a,'Residuals',header=TRUE)
a<-table.row.end(a)
for (i in 1:nxmK) {
a<-table.row.start(a)
a<-table.element(a,i+K,header=TRUE)
a<-table.element(a,x[i+K])
a<-table.element(a,fit$fitted[i,'xhat'])
a<-table.element(a,myresid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Extrapolation Forecasts of Exponential Smoothing',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Forecast',header=TRUE)
a<-table.element(a,'95% Lower Bound',header=TRUE)
a<-table.element(a,'95% Upper Bound',header=TRUE)
a<-table.row.end(a)
for (i in 1:np) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,p[i,'fit'])
a<-table.element(a,p[i,'lwr'])
a<-table.element(a,p[i,'upr'])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')