Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_decompose.wasp
Title produced by softwareClassical Decomposition
Date of computationFri, 16 Dec 2016 13:36:42 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/16/t14818919904ipguab1wxw9pzk.htm/, Retrieved Fri, 01 Nov 2024 03:38:40 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=300219, Retrieved Fri, 01 Nov 2024 03:38:40 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact85
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Classical Decomposition] [] [2016-12-16 12:36:42] [1a4fa2544711480e714211476e711237] [Current]
Feedback Forum

Post a new message
Dataseries X:
1100
680
860
440
1480
1620
1240
1440
1540
860
1180
1180
1480
940
1300
860
1220
2180
940
920
2060
1160
980
1020
740
720
1340
1140
1200
1900
1020
2140
2020
1340
1400
2320
1280
1160
2120
1540
2400
1420
1480
3380
1880
2200
1980
1340
1960
1340
3300
1780
2040
4460
800
1420
1960
1940
1880
940
1880
720
1660
4260
2540
2320
2860
5880
3140
4440
3600
2920
2260
3740
3380
4560
3320
4760
4000
4840
6160
3440
3280
2000
3600
4320
3480
5620
4200
8540
3800
5380
5140
2720
3120
3440
5020
5800
2260
5800
5660
4880
3440
5900
5960
5520
5920
3840




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300219&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=300219&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300219&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
11100NANA-344.332NA
2680NANA-314.019NA
3860NANA-347.769NA
4440NANA444.939NA
51480NANA23.4809NA
61620NANA969.939NA
71240779.6271150.83-371.207460.373
814401916.711177.5739.21-476.71
915401724.421206.67517.752-184.418
108601000.041242.5-242.457-140.043
111180872.0231249.17-377.144307.977
121180563.2731261.67-698.394616.727
131480928.1681272.5-344.332551.832
14940924.3141238.33-314.01915.6858
151300890.5641238.33-347.769409.436
168601717.441272.5444.939-857.439
1712201300.151276.6723.4809-80.1476
1821802231.611261.67969.939-51.6059
19940852.961224.17-371.20787.0399
209201923.381184.17739.21-1003.38
2120601694.421176.67517.752365.582
221160947.5431190-242.457212.457
23980823.6891200.83-377.144156.311
241020489.9391188.33-698.394530.061
25740835.6681180-344.332-95.6684
26720920.1481234.17-314.019-200.148
271340935.5641283.33-347.769404.436
2811401734.111289.17444.939-594.106
2912001337.651314.1723.4809-137.648
3019002355.771385.83969.939-455.773
3110201091.291462.5-371.207-71.2934
3221402242.541503.33739.21-102.543
3320202071.921554.17517.752-51.9184
3413401360.881603.33-242.457-20.8767
3514001292.861670-377.144107.144
3623201001.611700-698.3941318.39
3712801354.841699.17-344.332-74.8351
3811601455.981770-314.019-295.981
3921201468.061815.83-347.769651.936
4015402290.771845.83444.939-750.773
4124001929.311905.8323.4809470.686
4214202859.111889.17969.939-1439.11
4314801505.461876.67-371.207-25.4601
4433802651.711912.5739.21728.29
4518802486.921969.17517.752-606.918
4622001785.882028.33-242.457414.123
4719801646.192023.33-377.144333.811
4813401436.612135-698.394-96.6059
49196018892233.33-344.33270.9983
5013401809.312123.33-314.019-469.314
5133001697.232045-347.7691602.77
5217802482.442037.5444.939-702.439
5320402045.982022.523.4809-5.9809
5444602971.612001.67969.9391488.39
558001610.461981.67-371.207-810.46
5614202691.711952.5739.21-1271.71
5719602376.091858.33517.752-416.085
5819401650.881893.33-242.457289.123
5918801640.362017.5-377.144239.644
609401250.771949.17-698.394-310.773
6118801601.51945.83-344.332278.498
627201903.482217.5-314.019-1183.48
6316602104.732452.5-347.769-444.731
6442603050.772605.83444.9391209.23
6525402805.152781.6723.4809-265.148
6623203905.772935.83969.939-1585.77
6728602662.963034.17-371.207197.04
6858803915.043175.83739.211964.96
6931403891.093373.33517.752-751.085
7044403215.043457.5-242.4571224.96
7136003125.363502.5-377.144474.644
7229202938.273636.67-698.394-18.2726
7322603441.53785.83-344.332-1181.5
7437403475.983790-314.019264.019
7533803524.733872.5-347.769-144.731
7645604401.613956.67444.939158.394
7733203925.153901.6723.4809-605.148
7847604819.943850969.939-59.9392
7940003496.293867.5-371.207503.707
8048404686.713947.5739.21153.29
8161604493.593975.83517.7521666.41
8234403781.714024.17-242.457-341.71
8332803727.864105-377.144-447.856
8420003600.774299.17-698.394-1600.77
85360041044448.33-344.332-504.002
8643204148.484462.5-314.019171.519
8734804094.734442.5-347.769-614.731
8856204814.944370444.939805.061
8942004356.814333.3323.4809-156.814
9085405356.614386.67969.9393183.39
9138004134.634505.83-371.207-334.627
9253805365.884626.67739.2114.1233
9351405155.254637.5517.752-15.2517
9427204351.714594.17-242.457-1631.71
9531204285.364662.5-377.144-1165.36
9634403872.444570.83-698.394-432.439
97502040594403.33-344.332960.998
9858004095.984410-314.0191704.02
9922604118.064465.83-347.769-1858.06
10058005061.614616.67444.939738.394
10156604873.48485023.4809786.519
10248805953.274983.33969.939-1073.27
1033440NANA-371.207NA
1045900NANA739.21NA
1055960NANA517.752NA
1065520NANA-242.457NA
1075920NANA-377.144NA
1083840NANA-698.394NA

\begin{tabular}{lllllllll}
\hline
Classical Decomposition by Moving Averages \tabularnewline
t & Observations & Fit & Trend & Seasonal & Random \tabularnewline
1 & 1100 & NA & NA & -344.332 & NA \tabularnewline
2 & 680 & NA & NA & -314.019 & NA \tabularnewline
3 & 860 & NA & NA & -347.769 & NA \tabularnewline
4 & 440 & NA & NA & 444.939 & NA \tabularnewline
5 & 1480 & NA & NA & 23.4809 & NA \tabularnewline
6 & 1620 & NA & NA & 969.939 & NA \tabularnewline
7 & 1240 & 779.627 & 1150.83 & -371.207 & 460.373 \tabularnewline
8 & 1440 & 1916.71 & 1177.5 & 739.21 & -476.71 \tabularnewline
9 & 1540 & 1724.42 & 1206.67 & 517.752 & -184.418 \tabularnewline
10 & 860 & 1000.04 & 1242.5 & -242.457 & -140.043 \tabularnewline
11 & 1180 & 872.023 & 1249.17 & -377.144 & 307.977 \tabularnewline
12 & 1180 & 563.273 & 1261.67 & -698.394 & 616.727 \tabularnewline
13 & 1480 & 928.168 & 1272.5 & -344.332 & 551.832 \tabularnewline
14 & 940 & 924.314 & 1238.33 & -314.019 & 15.6858 \tabularnewline
15 & 1300 & 890.564 & 1238.33 & -347.769 & 409.436 \tabularnewline
16 & 860 & 1717.44 & 1272.5 & 444.939 & -857.439 \tabularnewline
17 & 1220 & 1300.15 & 1276.67 & 23.4809 & -80.1476 \tabularnewline
18 & 2180 & 2231.61 & 1261.67 & 969.939 & -51.6059 \tabularnewline
19 & 940 & 852.96 & 1224.17 & -371.207 & 87.0399 \tabularnewline
20 & 920 & 1923.38 & 1184.17 & 739.21 & -1003.38 \tabularnewline
21 & 2060 & 1694.42 & 1176.67 & 517.752 & 365.582 \tabularnewline
22 & 1160 & 947.543 & 1190 & -242.457 & 212.457 \tabularnewline
23 & 980 & 823.689 & 1200.83 & -377.144 & 156.311 \tabularnewline
24 & 1020 & 489.939 & 1188.33 & -698.394 & 530.061 \tabularnewline
25 & 740 & 835.668 & 1180 & -344.332 & -95.6684 \tabularnewline
26 & 720 & 920.148 & 1234.17 & -314.019 & -200.148 \tabularnewline
27 & 1340 & 935.564 & 1283.33 & -347.769 & 404.436 \tabularnewline
28 & 1140 & 1734.11 & 1289.17 & 444.939 & -594.106 \tabularnewline
29 & 1200 & 1337.65 & 1314.17 & 23.4809 & -137.648 \tabularnewline
30 & 1900 & 2355.77 & 1385.83 & 969.939 & -455.773 \tabularnewline
31 & 1020 & 1091.29 & 1462.5 & -371.207 & -71.2934 \tabularnewline
32 & 2140 & 2242.54 & 1503.33 & 739.21 & -102.543 \tabularnewline
33 & 2020 & 2071.92 & 1554.17 & 517.752 & -51.9184 \tabularnewline
34 & 1340 & 1360.88 & 1603.33 & -242.457 & -20.8767 \tabularnewline
35 & 1400 & 1292.86 & 1670 & -377.144 & 107.144 \tabularnewline
36 & 2320 & 1001.61 & 1700 & -698.394 & 1318.39 \tabularnewline
37 & 1280 & 1354.84 & 1699.17 & -344.332 & -74.8351 \tabularnewline
38 & 1160 & 1455.98 & 1770 & -314.019 & -295.981 \tabularnewline
39 & 2120 & 1468.06 & 1815.83 & -347.769 & 651.936 \tabularnewline
40 & 1540 & 2290.77 & 1845.83 & 444.939 & -750.773 \tabularnewline
41 & 2400 & 1929.31 & 1905.83 & 23.4809 & 470.686 \tabularnewline
42 & 1420 & 2859.11 & 1889.17 & 969.939 & -1439.11 \tabularnewline
43 & 1480 & 1505.46 & 1876.67 & -371.207 & -25.4601 \tabularnewline
44 & 3380 & 2651.71 & 1912.5 & 739.21 & 728.29 \tabularnewline
45 & 1880 & 2486.92 & 1969.17 & 517.752 & -606.918 \tabularnewline
46 & 2200 & 1785.88 & 2028.33 & -242.457 & 414.123 \tabularnewline
47 & 1980 & 1646.19 & 2023.33 & -377.144 & 333.811 \tabularnewline
48 & 1340 & 1436.61 & 2135 & -698.394 & -96.6059 \tabularnewline
49 & 1960 & 1889 & 2233.33 & -344.332 & 70.9983 \tabularnewline
50 & 1340 & 1809.31 & 2123.33 & -314.019 & -469.314 \tabularnewline
51 & 3300 & 1697.23 & 2045 & -347.769 & 1602.77 \tabularnewline
52 & 1780 & 2482.44 & 2037.5 & 444.939 & -702.439 \tabularnewline
53 & 2040 & 2045.98 & 2022.5 & 23.4809 & -5.9809 \tabularnewline
54 & 4460 & 2971.61 & 2001.67 & 969.939 & 1488.39 \tabularnewline
55 & 800 & 1610.46 & 1981.67 & -371.207 & -810.46 \tabularnewline
56 & 1420 & 2691.71 & 1952.5 & 739.21 & -1271.71 \tabularnewline
57 & 1960 & 2376.09 & 1858.33 & 517.752 & -416.085 \tabularnewline
58 & 1940 & 1650.88 & 1893.33 & -242.457 & 289.123 \tabularnewline
59 & 1880 & 1640.36 & 2017.5 & -377.144 & 239.644 \tabularnewline
60 & 940 & 1250.77 & 1949.17 & -698.394 & -310.773 \tabularnewline
61 & 1880 & 1601.5 & 1945.83 & -344.332 & 278.498 \tabularnewline
62 & 720 & 1903.48 & 2217.5 & -314.019 & -1183.48 \tabularnewline
63 & 1660 & 2104.73 & 2452.5 & -347.769 & -444.731 \tabularnewline
64 & 4260 & 3050.77 & 2605.83 & 444.939 & 1209.23 \tabularnewline
65 & 2540 & 2805.15 & 2781.67 & 23.4809 & -265.148 \tabularnewline
66 & 2320 & 3905.77 & 2935.83 & 969.939 & -1585.77 \tabularnewline
67 & 2860 & 2662.96 & 3034.17 & -371.207 & 197.04 \tabularnewline
68 & 5880 & 3915.04 & 3175.83 & 739.21 & 1964.96 \tabularnewline
69 & 3140 & 3891.09 & 3373.33 & 517.752 & -751.085 \tabularnewline
70 & 4440 & 3215.04 & 3457.5 & -242.457 & 1224.96 \tabularnewline
71 & 3600 & 3125.36 & 3502.5 & -377.144 & 474.644 \tabularnewline
72 & 2920 & 2938.27 & 3636.67 & -698.394 & -18.2726 \tabularnewline
73 & 2260 & 3441.5 & 3785.83 & -344.332 & -1181.5 \tabularnewline
74 & 3740 & 3475.98 & 3790 & -314.019 & 264.019 \tabularnewline
75 & 3380 & 3524.73 & 3872.5 & -347.769 & -144.731 \tabularnewline
76 & 4560 & 4401.61 & 3956.67 & 444.939 & 158.394 \tabularnewline
77 & 3320 & 3925.15 & 3901.67 & 23.4809 & -605.148 \tabularnewline
78 & 4760 & 4819.94 & 3850 & 969.939 & -59.9392 \tabularnewline
79 & 4000 & 3496.29 & 3867.5 & -371.207 & 503.707 \tabularnewline
80 & 4840 & 4686.71 & 3947.5 & 739.21 & 153.29 \tabularnewline
81 & 6160 & 4493.59 & 3975.83 & 517.752 & 1666.41 \tabularnewline
82 & 3440 & 3781.71 & 4024.17 & -242.457 & -341.71 \tabularnewline
83 & 3280 & 3727.86 & 4105 & -377.144 & -447.856 \tabularnewline
84 & 2000 & 3600.77 & 4299.17 & -698.394 & -1600.77 \tabularnewline
85 & 3600 & 4104 & 4448.33 & -344.332 & -504.002 \tabularnewline
86 & 4320 & 4148.48 & 4462.5 & -314.019 & 171.519 \tabularnewline
87 & 3480 & 4094.73 & 4442.5 & -347.769 & -614.731 \tabularnewline
88 & 5620 & 4814.94 & 4370 & 444.939 & 805.061 \tabularnewline
89 & 4200 & 4356.81 & 4333.33 & 23.4809 & -156.814 \tabularnewline
90 & 8540 & 5356.61 & 4386.67 & 969.939 & 3183.39 \tabularnewline
91 & 3800 & 4134.63 & 4505.83 & -371.207 & -334.627 \tabularnewline
92 & 5380 & 5365.88 & 4626.67 & 739.21 & 14.1233 \tabularnewline
93 & 5140 & 5155.25 & 4637.5 & 517.752 & -15.2517 \tabularnewline
94 & 2720 & 4351.71 & 4594.17 & -242.457 & -1631.71 \tabularnewline
95 & 3120 & 4285.36 & 4662.5 & -377.144 & -1165.36 \tabularnewline
96 & 3440 & 3872.44 & 4570.83 & -698.394 & -432.439 \tabularnewline
97 & 5020 & 4059 & 4403.33 & -344.332 & 960.998 \tabularnewline
98 & 5800 & 4095.98 & 4410 & -314.019 & 1704.02 \tabularnewline
99 & 2260 & 4118.06 & 4465.83 & -347.769 & -1858.06 \tabularnewline
100 & 5800 & 5061.61 & 4616.67 & 444.939 & 738.394 \tabularnewline
101 & 5660 & 4873.48 & 4850 & 23.4809 & 786.519 \tabularnewline
102 & 4880 & 5953.27 & 4983.33 & 969.939 & -1073.27 \tabularnewline
103 & 3440 & NA & NA & -371.207 & NA \tabularnewline
104 & 5900 & NA & NA & 739.21 & NA \tabularnewline
105 & 5960 & NA & NA & 517.752 & NA \tabularnewline
106 & 5520 & NA & NA & -242.457 & NA \tabularnewline
107 & 5920 & NA & NA & -377.144 & NA \tabularnewline
108 & 3840 & NA & NA & -698.394 & NA \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300219&T=1

[TABLE]
[ROW][C]Classical Decomposition by Moving Averages[/C][/ROW]
[ROW][C]t[/C][C]Observations[/C][C]Fit[/C][C]Trend[/C][C]Seasonal[/C][C]Random[/C][/ROW]
[ROW][C]1[/C][C]1100[/C][C]NA[/C][C]NA[/C][C]-344.332[/C][C]NA[/C][/ROW]
[ROW][C]2[/C][C]680[/C][C]NA[/C][C]NA[/C][C]-314.019[/C][C]NA[/C][/ROW]
[ROW][C]3[/C][C]860[/C][C]NA[/C][C]NA[/C][C]-347.769[/C][C]NA[/C][/ROW]
[ROW][C]4[/C][C]440[/C][C]NA[/C][C]NA[/C][C]444.939[/C][C]NA[/C][/ROW]
[ROW][C]5[/C][C]1480[/C][C]NA[/C][C]NA[/C][C]23.4809[/C][C]NA[/C][/ROW]
[ROW][C]6[/C][C]1620[/C][C]NA[/C][C]NA[/C][C]969.939[/C][C]NA[/C][/ROW]
[ROW][C]7[/C][C]1240[/C][C]779.627[/C][C]1150.83[/C][C]-371.207[/C][C]460.373[/C][/ROW]
[ROW][C]8[/C][C]1440[/C][C]1916.71[/C][C]1177.5[/C][C]739.21[/C][C]-476.71[/C][/ROW]
[ROW][C]9[/C][C]1540[/C][C]1724.42[/C][C]1206.67[/C][C]517.752[/C][C]-184.418[/C][/ROW]
[ROW][C]10[/C][C]860[/C][C]1000.04[/C][C]1242.5[/C][C]-242.457[/C][C]-140.043[/C][/ROW]
[ROW][C]11[/C][C]1180[/C][C]872.023[/C][C]1249.17[/C][C]-377.144[/C][C]307.977[/C][/ROW]
[ROW][C]12[/C][C]1180[/C][C]563.273[/C][C]1261.67[/C][C]-698.394[/C][C]616.727[/C][/ROW]
[ROW][C]13[/C][C]1480[/C][C]928.168[/C][C]1272.5[/C][C]-344.332[/C][C]551.832[/C][/ROW]
[ROW][C]14[/C][C]940[/C][C]924.314[/C][C]1238.33[/C][C]-314.019[/C][C]15.6858[/C][/ROW]
[ROW][C]15[/C][C]1300[/C][C]890.564[/C][C]1238.33[/C][C]-347.769[/C][C]409.436[/C][/ROW]
[ROW][C]16[/C][C]860[/C][C]1717.44[/C][C]1272.5[/C][C]444.939[/C][C]-857.439[/C][/ROW]
[ROW][C]17[/C][C]1220[/C][C]1300.15[/C][C]1276.67[/C][C]23.4809[/C][C]-80.1476[/C][/ROW]
[ROW][C]18[/C][C]2180[/C][C]2231.61[/C][C]1261.67[/C][C]969.939[/C][C]-51.6059[/C][/ROW]
[ROW][C]19[/C][C]940[/C][C]852.96[/C][C]1224.17[/C][C]-371.207[/C][C]87.0399[/C][/ROW]
[ROW][C]20[/C][C]920[/C][C]1923.38[/C][C]1184.17[/C][C]739.21[/C][C]-1003.38[/C][/ROW]
[ROW][C]21[/C][C]2060[/C][C]1694.42[/C][C]1176.67[/C][C]517.752[/C][C]365.582[/C][/ROW]
[ROW][C]22[/C][C]1160[/C][C]947.543[/C][C]1190[/C][C]-242.457[/C][C]212.457[/C][/ROW]
[ROW][C]23[/C][C]980[/C][C]823.689[/C][C]1200.83[/C][C]-377.144[/C][C]156.311[/C][/ROW]
[ROW][C]24[/C][C]1020[/C][C]489.939[/C][C]1188.33[/C][C]-698.394[/C][C]530.061[/C][/ROW]
[ROW][C]25[/C][C]740[/C][C]835.668[/C][C]1180[/C][C]-344.332[/C][C]-95.6684[/C][/ROW]
[ROW][C]26[/C][C]720[/C][C]920.148[/C][C]1234.17[/C][C]-314.019[/C][C]-200.148[/C][/ROW]
[ROW][C]27[/C][C]1340[/C][C]935.564[/C][C]1283.33[/C][C]-347.769[/C][C]404.436[/C][/ROW]
[ROW][C]28[/C][C]1140[/C][C]1734.11[/C][C]1289.17[/C][C]444.939[/C][C]-594.106[/C][/ROW]
[ROW][C]29[/C][C]1200[/C][C]1337.65[/C][C]1314.17[/C][C]23.4809[/C][C]-137.648[/C][/ROW]
[ROW][C]30[/C][C]1900[/C][C]2355.77[/C][C]1385.83[/C][C]969.939[/C][C]-455.773[/C][/ROW]
[ROW][C]31[/C][C]1020[/C][C]1091.29[/C][C]1462.5[/C][C]-371.207[/C][C]-71.2934[/C][/ROW]
[ROW][C]32[/C][C]2140[/C][C]2242.54[/C][C]1503.33[/C][C]739.21[/C][C]-102.543[/C][/ROW]
[ROW][C]33[/C][C]2020[/C][C]2071.92[/C][C]1554.17[/C][C]517.752[/C][C]-51.9184[/C][/ROW]
[ROW][C]34[/C][C]1340[/C][C]1360.88[/C][C]1603.33[/C][C]-242.457[/C][C]-20.8767[/C][/ROW]
[ROW][C]35[/C][C]1400[/C][C]1292.86[/C][C]1670[/C][C]-377.144[/C][C]107.144[/C][/ROW]
[ROW][C]36[/C][C]2320[/C][C]1001.61[/C][C]1700[/C][C]-698.394[/C][C]1318.39[/C][/ROW]
[ROW][C]37[/C][C]1280[/C][C]1354.84[/C][C]1699.17[/C][C]-344.332[/C][C]-74.8351[/C][/ROW]
[ROW][C]38[/C][C]1160[/C][C]1455.98[/C][C]1770[/C][C]-314.019[/C][C]-295.981[/C][/ROW]
[ROW][C]39[/C][C]2120[/C][C]1468.06[/C][C]1815.83[/C][C]-347.769[/C][C]651.936[/C][/ROW]
[ROW][C]40[/C][C]1540[/C][C]2290.77[/C][C]1845.83[/C][C]444.939[/C][C]-750.773[/C][/ROW]
[ROW][C]41[/C][C]2400[/C][C]1929.31[/C][C]1905.83[/C][C]23.4809[/C][C]470.686[/C][/ROW]
[ROW][C]42[/C][C]1420[/C][C]2859.11[/C][C]1889.17[/C][C]969.939[/C][C]-1439.11[/C][/ROW]
[ROW][C]43[/C][C]1480[/C][C]1505.46[/C][C]1876.67[/C][C]-371.207[/C][C]-25.4601[/C][/ROW]
[ROW][C]44[/C][C]3380[/C][C]2651.71[/C][C]1912.5[/C][C]739.21[/C][C]728.29[/C][/ROW]
[ROW][C]45[/C][C]1880[/C][C]2486.92[/C][C]1969.17[/C][C]517.752[/C][C]-606.918[/C][/ROW]
[ROW][C]46[/C][C]2200[/C][C]1785.88[/C][C]2028.33[/C][C]-242.457[/C][C]414.123[/C][/ROW]
[ROW][C]47[/C][C]1980[/C][C]1646.19[/C][C]2023.33[/C][C]-377.144[/C][C]333.811[/C][/ROW]
[ROW][C]48[/C][C]1340[/C][C]1436.61[/C][C]2135[/C][C]-698.394[/C][C]-96.6059[/C][/ROW]
[ROW][C]49[/C][C]1960[/C][C]1889[/C][C]2233.33[/C][C]-344.332[/C][C]70.9983[/C][/ROW]
[ROW][C]50[/C][C]1340[/C][C]1809.31[/C][C]2123.33[/C][C]-314.019[/C][C]-469.314[/C][/ROW]
[ROW][C]51[/C][C]3300[/C][C]1697.23[/C][C]2045[/C][C]-347.769[/C][C]1602.77[/C][/ROW]
[ROW][C]52[/C][C]1780[/C][C]2482.44[/C][C]2037.5[/C][C]444.939[/C][C]-702.439[/C][/ROW]
[ROW][C]53[/C][C]2040[/C][C]2045.98[/C][C]2022.5[/C][C]23.4809[/C][C]-5.9809[/C][/ROW]
[ROW][C]54[/C][C]4460[/C][C]2971.61[/C][C]2001.67[/C][C]969.939[/C][C]1488.39[/C][/ROW]
[ROW][C]55[/C][C]800[/C][C]1610.46[/C][C]1981.67[/C][C]-371.207[/C][C]-810.46[/C][/ROW]
[ROW][C]56[/C][C]1420[/C][C]2691.71[/C][C]1952.5[/C][C]739.21[/C][C]-1271.71[/C][/ROW]
[ROW][C]57[/C][C]1960[/C][C]2376.09[/C][C]1858.33[/C][C]517.752[/C][C]-416.085[/C][/ROW]
[ROW][C]58[/C][C]1940[/C][C]1650.88[/C][C]1893.33[/C][C]-242.457[/C][C]289.123[/C][/ROW]
[ROW][C]59[/C][C]1880[/C][C]1640.36[/C][C]2017.5[/C][C]-377.144[/C][C]239.644[/C][/ROW]
[ROW][C]60[/C][C]940[/C][C]1250.77[/C][C]1949.17[/C][C]-698.394[/C][C]-310.773[/C][/ROW]
[ROW][C]61[/C][C]1880[/C][C]1601.5[/C][C]1945.83[/C][C]-344.332[/C][C]278.498[/C][/ROW]
[ROW][C]62[/C][C]720[/C][C]1903.48[/C][C]2217.5[/C][C]-314.019[/C][C]-1183.48[/C][/ROW]
[ROW][C]63[/C][C]1660[/C][C]2104.73[/C][C]2452.5[/C][C]-347.769[/C][C]-444.731[/C][/ROW]
[ROW][C]64[/C][C]4260[/C][C]3050.77[/C][C]2605.83[/C][C]444.939[/C][C]1209.23[/C][/ROW]
[ROW][C]65[/C][C]2540[/C][C]2805.15[/C][C]2781.67[/C][C]23.4809[/C][C]-265.148[/C][/ROW]
[ROW][C]66[/C][C]2320[/C][C]3905.77[/C][C]2935.83[/C][C]969.939[/C][C]-1585.77[/C][/ROW]
[ROW][C]67[/C][C]2860[/C][C]2662.96[/C][C]3034.17[/C][C]-371.207[/C][C]197.04[/C][/ROW]
[ROW][C]68[/C][C]5880[/C][C]3915.04[/C][C]3175.83[/C][C]739.21[/C][C]1964.96[/C][/ROW]
[ROW][C]69[/C][C]3140[/C][C]3891.09[/C][C]3373.33[/C][C]517.752[/C][C]-751.085[/C][/ROW]
[ROW][C]70[/C][C]4440[/C][C]3215.04[/C][C]3457.5[/C][C]-242.457[/C][C]1224.96[/C][/ROW]
[ROW][C]71[/C][C]3600[/C][C]3125.36[/C][C]3502.5[/C][C]-377.144[/C][C]474.644[/C][/ROW]
[ROW][C]72[/C][C]2920[/C][C]2938.27[/C][C]3636.67[/C][C]-698.394[/C][C]-18.2726[/C][/ROW]
[ROW][C]73[/C][C]2260[/C][C]3441.5[/C][C]3785.83[/C][C]-344.332[/C][C]-1181.5[/C][/ROW]
[ROW][C]74[/C][C]3740[/C][C]3475.98[/C][C]3790[/C][C]-314.019[/C][C]264.019[/C][/ROW]
[ROW][C]75[/C][C]3380[/C][C]3524.73[/C][C]3872.5[/C][C]-347.769[/C][C]-144.731[/C][/ROW]
[ROW][C]76[/C][C]4560[/C][C]4401.61[/C][C]3956.67[/C][C]444.939[/C][C]158.394[/C][/ROW]
[ROW][C]77[/C][C]3320[/C][C]3925.15[/C][C]3901.67[/C][C]23.4809[/C][C]-605.148[/C][/ROW]
[ROW][C]78[/C][C]4760[/C][C]4819.94[/C][C]3850[/C][C]969.939[/C][C]-59.9392[/C][/ROW]
[ROW][C]79[/C][C]4000[/C][C]3496.29[/C][C]3867.5[/C][C]-371.207[/C][C]503.707[/C][/ROW]
[ROW][C]80[/C][C]4840[/C][C]4686.71[/C][C]3947.5[/C][C]739.21[/C][C]153.29[/C][/ROW]
[ROW][C]81[/C][C]6160[/C][C]4493.59[/C][C]3975.83[/C][C]517.752[/C][C]1666.41[/C][/ROW]
[ROW][C]82[/C][C]3440[/C][C]3781.71[/C][C]4024.17[/C][C]-242.457[/C][C]-341.71[/C][/ROW]
[ROW][C]83[/C][C]3280[/C][C]3727.86[/C][C]4105[/C][C]-377.144[/C][C]-447.856[/C][/ROW]
[ROW][C]84[/C][C]2000[/C][C]3600.77[/C][C]4299.17[/C][C]-698.394[/C][C]-1600.77[/C][/ROW]
[ROW][C]85[/C][C]3600[/C][C]4104[/C][C]4448.33[/C][C]-344.332[/C][C]-504.002[/C][/ROW]
[ROW][C]86[/C][C]4320[/C][C]4148.48[/C][C]4462.5[/C][C]-314.019[/C][C]171.519[/C][/ROW]
[ROW][C]87[/C][C]3480[/C][C]4094.73[/C][C]4442.5[/C][C]-347.769[/C][C]-614.731[/C][/ROW]
[ROW][C]88[/C][C]5620[/C][C]4814.94[/C][C]4370[/C][C]444.939[/C][C]805.061[/C][/ROW]
[ROW][C]89[/C][C]4200[/C][C]4356.81[/C][C]4333.33[/C][C]23.4809[/C][C]-156.814[/C][/ROW]
[ROW][C]90[/C][C]8540[/C][C]5356.61[/C][C]4386.67[/C][C]969.939[/C][C]3183.39[/C][/ROW]
[ROW][C]91[/C][C]3800[/C][C]4134.63[/C][C]4505.83[/C][C]-371.207[/C][C]-334.627[/C][/ROW]
[ROW][C]92[/C][C]5380[/C][C]5365.88[/C][C]4626.67[/C][C]739.21[/C][C]14.1233[/C][/ROW]
[ROW][C]93[/C][C]5140[/C][C]5155.25[/C][C]4637.5[/C][C]517.752[/C][C]-15.2517[/C][/ROW]
[ROW][C]94[/C][C]2720[/C][C]4351.71[/C][C]4594.17[/C][C]-242.457[/C][C]-1631.71[/C][/ROW]
[ROW][C]95[/C][C]3120[/C][C]4285.36[/C][C]4662.5[/C][C]-377.144[/C][C]-1165.36[/C][/ROW]
[ROW][C]96[/C][C]3440[/C][C]3872.44[/C][C]4570.83[/C][C]-698.394[/C][C]-432.439[/C][/ROW]
[ROW][C]97[/C][C]5020[/C][C]4059[/C][C]4403.33[/C][C]-344.332[/C][C]960.998[/C][/ROW]
[ROW][C]98[/C][C]5800[/C][C]4095.98[/C][C]4410[/C][C]-314.019[/C][C]1704.02[/C][/ROW]
[ROW][C]99[/C][C]2260[/C][C]4118.06[/C][C]4465.83[/C][C]-347.769[/C][C]-1858.06[/C][/ROW]
[ROW][C]100[/C][C]5800[/C][C]5061.61[/C][C]4616.67[/C][C]444.939[/C][C]738.394[/C][/ROW]
[ROW][C]101[/C][C]5660[/C][C]4873.48[/C][C]4850[/C][C]23.4809[/C][C]786.519[/C][/ROW]
[ROW][C]102[/C][C]4880[/C][C]5953.27[/C][C]4983.33[/C][C]969.939[/C][C]-1073.27[/C][/ROW]
[ROW][C]103[/C][C]3440[/C][C]NA[/C][C]NA[/C][C]-371.207[/C][C]NA[/C][/ROW]
[ROW][C]104[/C][C]5900[/C][C]NA[/C][C]NA[/C][C]739.21[/C][C]NA[/C][/ROW]
[ROW][C]105[/C][C]5960[/C][C]NA[/C][C]NA[/C][C]517.752[/C][C]NA[/C][/ROW]
[ROW][C]106[/C][C]5520[/C][C]NA[/C][C]NA[/C][C]-242.457[/C][C]NA[/C][/ROW]
[ROW][C]107[/C][C]5920[/C][C]NA[/C][C]NA[/C][C]-377.144[/C][C]NA[/C][/ROW]
[ROW][C]108[/C][C]3840[/C][C]NA[/C][C]NA[/C][C]-698.394[/C][C]NA[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300219&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300219&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
11100NANA-344.332NA
2680NANA-314.019NA
3860NANA-347.769NA
4440NANA444.939NA
51480NANA23.4809NA
61620NANA969.939NA
71240779.6271150.83-371.207460.373
814401916.711177.5739.21-476.71
915401724.421206.67517.752-184.418
108601000.041242.5-242.457-140.043
111180872.0231249.17-377.144307.977
121180563.2731261.67-698.394616.727
131480928.1681272.5-344.332551.832
14940924.3141238.33-314.01915.6858
151300890.5641238.33-347.769409.436
168601717.441272.5444.939-857.439
1712201300.151276.6723.4809-80.1476
1821802231.611261.67969.939-51.6059
19940852.961224.17-371.20787.0399
209201923.381184.17739.21-1003.38
2120601694.421176.67517.752365.582
221160947.5431190-242.457212.457
23980823.6891200.83-377.144156.311
241020489.9391188.33-698.394530.061
25740835.6681180-344.332-95.6684
26720920.1481234.17-314.019-200.148
271340935.5641283.33-347.769404.436
2811401734.111289.17444.939-594.106
2912001337.651314.1723.4809-137.648
3019002355.771385.83969.939-455.773
3110201091.291462.5-371.207-71.2934
3221402242.541503.33739.21-102.543
3320202071.921554.17517.752-51.9184
3413401360.881603.33-242.457-20.8767
3514001292.861670-377.144107.144
3623201001.611700-698.3941318.39
3712801354.841699.17-344.332-74.8351
3811601455.981770-314.019-295.981
3921201468.061815.83-347.769651.936
4015402290.771845.83444.939-750.773
4124001929.311905.8323.4809470.686
4214202859.111889.17969.939-1439.11
4314801505.461876.67-371.207-25.4601
4433802651.711912.5739.21728.29
4518802486.921969.17517.752-606.918
4622001785.882028.33-242.457414.123
4719801646.192023.33-377.144333.811
4813401436.612135-698.394-96.6059
49196018892233.33-344.33270.9983
5013401809.312123.33-314.019-469.314
5133001697.232045-347.7691602.77
5217802482.442037.5444.939-702.439
5320402045.982022.523.4809-5.9809
5444602971.612001.67969.9391488.39
558001610.461981.67-371.207-810.46
5614202691.711952.5739.21-1271.71
5719602376.091858.33517.752-416.085
5819401650.881893.33-242.457289.123
5918801640.362017.5-377.144239.644
609401250.771949.17-698.394-310.773
6118801601.51945.83-344.332278.498
627201903.482217.5-314.019-1183.48
6316602104.732452.5-347.769-444.731
6442603050.772605.83444.9391209.23
6525402805.152781.6723.4809-265.148
6623203905.772935.83969.939-1585.77
6728602662.963034.17-371.207197.04
6858803915.043175.83739.211964.96
6931403891.093373.33517.752-751.085
7044403215.043457.5-242.4571224.96
7136003125.363502.5-377.144474.644
7229202938.273636.67-698.394-18.2726
7322603441.53785.83-344.332-1181.5
7437403475.983790-314.019264.019
7533803524.733872.5-347.769-144.731
7645604401.613956.67444.939158.394
7733203925.153901.6723.4809-605.148
7847604819.943850969.939-59.9392
7940003496.293867.5-371.207503.707
8048404686.713947.5739.21153.29
8161604493.593975.83517.7521666.41
8234403781.714024.17-242.457-341.71
8332803727.864105-377.144-447.856
8420003600.774299.17-698.394-1600.77
85360041044448.33-344.332-504.002
8643204148.484462.5-314.019171.519
8734804094.734442.5-347.769-614.731
8856204814.944370444.939805.061
8942004356.814333.3323.4809-156.814
9085405356.614386.67969.9393183.39
9138004134.634505.83-371.207-334.627
9253805365.884626.67739.2114.1233
9351405155.254637.5517.752-15.2517
9427204351.714594.17-242.457-1631.71
9531204285.364662.5-377.144-1165.36
9634403872.444570.83-698.394-432.439
97502040594403.33-344.332960.998
9858004095.984410-314.0191704.02
9922604118.064465.83-347.769-1858.06
10058005061.614616.67444.939738.394
10156604873.48485023.4809786.519
10248805953.274983.33969.939-1073.27
1033440NANA-371.207NA
1045900NANA739.21NA
1055960NANA517.752NA
1065520NANA-242.457NA
1075920NANA-377.144NA
1083840NANA-698.394NA



Parameters (Session):
Parameters (R input):
par1 = additive ; par2 = 12 ;
R code (references can be found in the software module):
par2 <- as.numeric(par2)
x <- ts(x,freq=par2)
m <- decompose(x,type=par1)
m$figure
bitmap(file='test1.png')
plot(m)
dev.off()
mylagmax <- length(x)/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$trend),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$seasonal),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$random),na.action=na.pass,lag.max = mylagmax,main='Random')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
spectrum(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
spectrum(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
cpgram(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
cpgram(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Classical Decomposition by Moving Averages',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observations',header=TRUE)
a<-table.element(a,'Fit',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Random',header=TRUE)
a<-table.row.end(a)
for (i in 1:length(m$trend)) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
if (par1 == 'additive') a<-table.element(a,signif(m$trend[i]+m$seasonal[i],6)) else a<-table.element(a,signif(m$trend[i]*m$seasonal[i],6))
a<-table.element(a,signif(m$trend[i],6))
a<-table.element(a,signif(m$seasonal[i],6))
a<-table.element(a,signif(m$random[i],6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')