Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationFri, 16 Dec 2016 12:35:34 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/16/t148188939439pu7b4idqk6blp.htm/, Retrieved Fri, 01 Nov 2024 03:43:30 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=300195, Retrieved Fri, 01 Nov 2024 03:43:30 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact125
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [multiple regressi...] [2016-12-16 11:35:34] [2d1dd91c3b5ba64567b1d6b2c9fe9017] [Current]
Feedback Forum

Post a new message
Dataseries X:
5	5	4	9
3	3	2	11
5	5	3	13
5	4	2	11
5	4	2	12
5	5	3	11
5	3	3	12
5	5	2	12
5	5	2	13
5	5	4	12
4	5	2	12
2	4	2	11
5	4	3	12
4	5	2	10
5	5	3	12
4	5	2	12
5	4	2	12
5	5	5	12
5	5	3	13
4	5	2	11
4	5	2	11
3	4	3	11
5	5	1	11
4	4	2	13
5	5	3	11
4	4	2	12
5	5	2	11
5	4	3	12
5	5	5	12
5	5	2	10
5	5	5	11
5	5	2	12
5	5	2	11
5	4	4	9
5	4	1	12
4	4	2	11
4	4	2	11
5	5	3	12
5	5	2	13
5	5	3	11
5	5	2	12
5	5	3	9
5	5	4	12
5	5	4	11
5	5	3	12
5	5	2	12
5	4	2	11
4	5	4	10
5	5	4	9
5	5	3	12
4	4	2	13
5	5	2	13
3	4	2	9
4	3	2	11
3	3	3	11
5	4	2	11
5	5	2	12
5	5	3	12
5	4	3	11
5	5	2	12
5	5	2	11
5	5	4	12
5	5	4	11
4	4	3	11
5	5	4	8
4	4	4	12
5	5	4	11
2	2	4	12
4	3	5	11
5	5	3	11
5	5	4	11
4	3	4	10
5	5	2	10
2	3	2	13
5	4	3	11
3	3	4	11
4	5	2	11
4	4	5	13
5	5	1	12
5	5	3	12
4	4	3	9
4	4	2	12
5	5	2	12
4	5	1	13
4	4	2	15
5	5	1	13
5	5	2	13
5	5	2	11
4	4	2	12
4	4	2	9
4	4	3	11
3	3	2	13
4	4	1	12
5	5	1	13
5	5	3	11
4	4	2	12
5	5	3	14
2	2	1	13
5	5	2	11
5	5	2	12
4	4	3	13
3	5	2	11
5	5	2	11
4	4	3	11
5	5	1	13
5	5	4	12
5	5	3	12
5	5	2	11
5	5	3	12
4	5	3	12
5	4	3	10
5	5	4	11
5	3	3	9
4	4	2	14
5	5	3	12
5	5	2	11
2	1	1	13
5	5	1	11
5	5	2	11
5	4	4	11
5	4	3	11
5	5	2	12
5	5	2	11
5	5	3	13
5	5	3	11
4	5	3	11
3	3	2	12
5	4	2	11
5	5	2	11
5	5	3	9
5	5	4	12
4	4	2	14
4	5	2	10
4	4	1	9
5	4	3	12
4	4	3	14
3	4	4	9
4	4	3	11
5	5	1	14
2	2	1	13
5	5	2	10
4	4	1	11
5	5	5	12
5	5	3	10
4	4	2	13
5	4	2	12
4	2	4	14
5	5	2	10
5	5	4	12
5	5	4	9
4	4	3	12
5	5	4	11
5	5	3	11
5	4	4	10
5	5	3	11
5	5	4	12
2	2	2	10
5	5	4	11
3	3	1	13
5	5	4	11
5	4	3	13
5	5	2	12
4	4	2	11
5	5	2	12
5	5	4	10
5	5	3	12
5	4	3	10
5	2	2	13




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time9 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time9 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300195&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]9 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=300195&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300195&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time9 seconds
R ServerBig Analytics Cloud Computing Center







Multiple Linear Regression - Estimated Regression Equation
TVDCSUM[t] = + 12.7553 + 0.0985915EP1[t] -0.2217EP2[t] -0.277576EP3[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
TVDCSUM[t] =  +  12.7553 +  0.0985915EP1[t] -0.2217EP2[t] -0.277576EP3[t]  + e[t] \tabularnewline
 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300195&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]TVDCSUM[t] =  +  12.7553 +  0.0985915EP1[t] -0.2217EP2[t] -0.277576EP3[t]  + e[t][/C][/ROW]
[ROW][C][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300195&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300195&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
TVDCSUM[t] = + 12.7553 + 0.0985915EP1[t] -0.2217EP2[t] -0.277576EP3[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+12.76 0.5835+2.1860e+01 1.838e-50 9.19e-51
EP1+0.09859 0.1647+5.9870e-01 0.5502 0.2751
EP2-0.2217 0.1557-1.4240e+00 0.1562 0.07812
EP3-0.2776 0.09471-2.9310e+00 0.003865 0.001932

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & +12.76 &  0.5835 & +2.1860e+01 &  1.838e-50 &  9.19e-51 \tabularnewline
EP1 & +0.09859 &  0.1647 & +5.9870e-01 &  0.5502 &  0.2751 \tabularnewline
EP2 & -0.2217 &  0.1557 & -1.4240e+00 &  0.1562 &  0.07812 \tabularnewline
EP3 & -0.2776 &  0.09471 & -2.9310e+00 &  0.003865 &  0.001932 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300195&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]+12.76[/C][C] 0.5835[/C][C]+2.1860e+01[/C][C] 1.838e-50[/C][C] 9.19e-51[/C][/ROW]
[ROW][C]EP1[/C][C]+0.09859[/C][C] 0.1647[/C][C]+5.9870e-01[/C][C] 0.5502[/C][C] 0.2751[/C][/ROW]
[ROW][C]EP2[/C][C]-0.2217[/C][C] 0.1557[/C][C]-1.4240e+00[/C][C] 0.1562[/C][C] 0.07812[/C][/ROW]
[ROW][C]EP3[/C][C]-0.2776[/C][C] 0.09471[/C][C]-2.9310e+00[/C][C] 0.003865[/C][C] 0.001932[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300195&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300195&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+12.76 0.5835+2.1860e+01 1.838e-50 9.19e-51
EP1+0.09859 0.1647+5.9870e-01 0.5502 0.2751
EP2-0.2217 0.1557-1.4240e+00 0.1562 0.07812
EP3-0.2776 0.09471-2.9310e+00 0.003865 0.001932







Multiple Linear Regression - Regression Statistics
Multiple R 0.2578
R-squared 0.06644
Adjusted R-squared 0.04936
F-TEST (value) 3.891
F-TEST (DF numerator)3
F-TEST (DF denominator)164
p-value 0.01017
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 1.193
Sum Squared Residuals 233.3

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R &  0.2578 \tabularnewline
R-squared &  0.06644 \tabularnewline
Adjusted R-squared &  0.04936 \tabularnewline
F-TEST (value) &  3.891 \tabularnewline
F-TEST (DF numerator) & 3 \tabularnewline
F-TEST (DF denominator) & 164 \tabularnewline
p-value &  0.01017 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation &  1.193 \tabularnewline
Sum Squared Residuals &  233.3 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300195&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C] 0.2578[/C][/ROW]
[ROW][C]R-squared[/C][C] 0.06644[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C] 0.04936[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C] 3.891[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]3[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]164[/C][/ROW]
[ROW][C]p-value[/C][C] 0.01017[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C] 1.193[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C] 233.3[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300195&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300195&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R 0.2578
R-squared 0.06644
Adjusted R-squared 0.04936
F-TEST (value) 3.891
F-TEST (DF numerator)3
F-TEST (DF denominator)164
p-value 0.01017
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 1.193
Sum Squared Residuals 233.3







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 9 11.03-2.029
2 11 11.83-0.8308
3 13 11.31 1.693
4 11 11.81-0.8063
5 12 11.81 0.1937
6 11 11.31-0.307
7 12 11.75 0.2496
8 12 11.58 0.4154
9 13 11.58 1.415
10 12 11.03 0.9706
11 12 11.49 0.514
12 11 11.51-0.5105
13 12 11.53 0.4713
14 10 11.49-1.486
15 12 11.31 0.693
16 12 11.49 0.514
17 12 11.81 0.1937
18 12 10.75 1.248
19 13 11.31 1.693
20 11 11.49-0.486
21 11 11.49-0.486
22 11 11.33-0.3315
23 11 11.86-0.8622
24 13 11.71 1.292
25 11 11.31-0.307
26 12 11.71 0.2923
27 11 11.58-0.5846
28 12 11.53 0.4713
29 12 10.75 1.248
30 10 11.58-1.585
31 11 10.75 0.2481
32 12 11.58 0.4154
33 11 11.58-0.5846
34 9 11.25-2.251
35 12 12.08-0.08387
36 11 11.71-0.7077
37 11 11.71-0.7077
38 12 11.31 0.693
39 13 11.58 1.415
40 11 11.31-0.307
41 12 11.58 0.4154
42 9 11.31-2.307
43 12 11.03 0.9706
44 11 11.03-0.02944
45 12 11.31 0.693
46 12 11.58 0.4154
47 11 11.81-0.8063
48 10 10.93-0.9308
49 9 11.03-2.029
50 12 11.31 0.693
51 13 11.71 1.292
52 13 11.58 1.415
53 9 11.61-2.609
54 11 11.93-0.9294
55 11 11.55-0.5532
56 11 11.81-0.8063
57 12 11.58 0.4154
58 12 11.31 0.693
59 11 11.53-0.5287
60 12 11.58 0.4154
61 11 11.58-0.5846
62 12 11.03 0.9706
63 11 11.03-0.02944
64 11 11.43-0.4301
65 8 11.03-3.029
66 12 11.15 0.8475
67 11 11.03-0.02944
68 12 11.4 0.6012
69 11 11.1-0.09667
70 11 11.31-0.307
71 11 11.03-0.02944
72 10 11.37-1.374
73 10 11.58-1.585
74 13 11.73 1.268
75 11 11.53-0.5287
76 11 11.28-0.2757
77 11 11.49-0.486
78 13 10.88 2.125
79 12 11.86 0.1378
80 12 11.31 0.693
81 9 11.43-2.43
82 12 11.71 0.2923
83 12 11.58 0.4154
84 13 11.76 1.236
85 15 11.71 3.292
86 13 11.86 1.138
87 13 11.58 1.415
88 11 11.58-0.5846
89 12 11.71 0.2923
90 9 11.71-2.708
91 11 11.43-0.4301
92 13 11.83 1.169
93 12 11.99 0.01472
94 13 11.86 1.138
95 11 11.31-0.307
96 12 11.71 0.2923
97 14 11.31 2.693
98 13 12.23 0.7685
99 11 11.58-0.5846
100 12 11.58 0.4154
101 13 11.43 1.57
102 11 11.39-0.3874
103 11 11.58-0.5846
104 11 11.43-0.4301
105 13 11.86 1.138
106 12 11.03 0.9706
107 12 11.31 0.693
108 11 11.58-0.5846
109 12 11.31 0.693
110 12 11.21 0.7916
111 10 11.53-1.529
112 11 11.03-0.02944
113 9 11.75-2.75
114 14 11.71 2.292
115 12 11.31 0.693
116 11 11.58-0.5846
117 13 12.45 0.5468
118 11 11.86-0.8622
119 11 11.58-0.5846
120 11 11.25-0.2511
121 11 11.53-0.5287
122 12 11.58 0.4154
123 11 11.58-0.5846
124 13 11.31 1.693
125 11 11.31-0.307
126 11 11.21-0.2084
127 12 11.83 0.1692
128 11 11.81-0.8063
129 11 11.58-0.5846
130 9 11.31-2.307
131 12 11.03 0.9706
132 14 11.71 2.292
133 10 11.49-1.486
134 9 11.99-2.985
135 12 11.53 0.4713
136 14 11.43 2.57
137 9 11.05-2.054
138 11 11.43-0.4301
139 14 11.86 2.138
140 13 12.23 0.7685
141 10 11.58-1.585
142 11 11.99-0.9853
143 12 10.75 1.248
144 10 11.31-1.307
145 13 11.71 1.292
146 12 11.81 0.1937
147 14 11.6 2.404
148 10 11.58-1.585
149 12 11.03 0.9706
150 9 11.03-2.029
151 12 11.43 0.5699
152 11 11.03-0.02944
153 11 11.31-0.307
154 10 11.25-1.251
155 11 11.31-0.307
156 12 11.03 0.9706
157 10 11.95-1.954
158 11 11.03-0.02944
159 13 12.11 0.8916
160 11 11.03-0.02944
161 13 11.53 1.471
162 12 11.58 0.4154
163 11 11.71-0.7077
164 12 11.58 0.4154
165 10 11.03-1.029
166 12 11.31 0.693
167 10 11.53-1.529
168 13 12.25 0.7503

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 &  9 &  11.03 & -2.029 \tabularnewline
2 &  11 &  11.83 & -0.8308 \tabularnewline
3 &  13 &  11.31 &  1.693 \tabularnewline
4 &  11 &  11.81 & -0.8063 \tabularnewline
5 &  12 &  11.81 &  0.1937 \tabularnewline
6 &  11 &  11.31 & -0.307 \tabularnewline
7 &  12 &  11.75 &  0.2496 \tabularnewline
8 &  12 &  11.58 &  0.4154 \tabularnewline
9 &  13 &  11.58 &  1.415 \tabularnewline
10 &  12 &  11.03 &  0.9706 \tabularnewline
11 &  12 &  11.49 &  0.514 \tabularnewline
12 &  11 &  11.51 & -0.5105 \tabularnewline
13 &  12 &  11.53 &  0.4713 \tabularnewline
14 &  10 &  11.49 & -1.486 \tabularnewline
15 &  12 &  11.31 &  0.693 \tabularnewline
16 &  12 &  11.49 &  0.514 \tabularnewline
17 &  12 &  11.81 &  0.1937 \tabularnewline
18 &  12 &  10.75 &  1.248 \tabularnewline
19 &  13 &  11.31 &  1.693 \tabularnewline
20 &  11 &  11.49 & -0.486 \tabularnewline
21 &  11 &  11.49 & -0.486 \tabularnewline
22 &  11 &  11.33 & -0.3315 \tabularnewline
23 &  11 &  11.86 & -0.8622 \tabularnewline
24 &  13 &  11.71 &  1.292 \tabularnewline
25 &  11 &  11.31 & -0.307 \tabularnewline
26 &  12 &  11.71 &  0.2923 \tabularnewline
27 &  11 &  11.58 & -0.5846 \tabularnewline
28 &  12 &  11.53 &  0.4713 \tabularnewline
29 &  12 &  10.75 &  1.248 \tabularnewline
30 &  10 &  11.58 & -1.585 \tabularnewline
31 &  11 &  10.75 &  0.2481 \tabularnewline
32 &  12 &  11.58 &  0.4154 \tabularnewline
33 &  11 &  11.58 & -0.5846 \tabularnewline
34 &  9 &  11.25 & -2.251 \tabularnewline
35 &  12 &  12.08 & -0.08387 \tabularnewline
36 &  11 &  11.71 & -0.7077 \tabularnewline
37 &  11 &  11.71 & -0.7077 \tabularnewline
38 &  12 &  11.31 &  0.693 \tabularnewline
39 &  13 &  11.58 &  1.415 \tabularnewline
40 &  11 &  11.31 & -0.307 \tabularnewline
41 &  12 &  11.58 &  0.4154 \tabularnewline
42 &  9 &  11.31 & -2.307 \tabularnewline
43 &  12 &  11.03 &  0.9706 \tabularnewline
44 &  11 &  11.03 & -0.02944 \tabularnewline
45 &  12 &  11.31 &  0.693 \tabularnewline
46 &  12 &  11.58 &  0.4154 \tabularnewline
47 &  11 &  11.81 & -0.8063 \tabularnewline
48 &  10 &  10.93 & -0.9308 \tabularnewline
49 &  9 &  11.03 & -2.029 \tabularnewline
50 &  12 &  11.31 &  0.693 \tabularnewline
51 &  13 &  11.71 &  1.292 \tabularnewline
52 &  13 &  11.58 &  1.415 \tabularnewline
53 &  9 &  11.61 & -2.609 \tabularnewline
54 &  11 &  11.93 & -0.9294 \tabularnewline
55 &  11 &  11.55 & -0.5532 \tabularnewline
56 &  11 &  11.81 & -0.8063 \tabularnewline
57 &  12 &  11.58 &  0.4154 \tabularnewline
58 &  12 &  11.31 &  0.693 \tabularnewline
59 &  11 &  11.53 & -0.5287 \tabularnewline
60 &  12 &  11.58 &  0.4154 \tabularnewline
61 &  11 &  11.58 & -0.5846 \tabularnewline
62 &  12 &  11.03 &  0.9706 \tabularnewline
63 &  11 &  11.03 & -0.02944 \tabularnewline
64 &  11 &  11.43 & -0.4301 \tabularnewline
65 &  8 &  11.03 & -3.029 \tabularnewline
66 &  12 &  11.15 &  0.8475 \tabularnewline
67 &  11 &  11.03 & -0.02944 \tabularnewline
68 &  12 &  11.4 &  0.6012 \tabularnewline
69 &  11 &  11.1 & -0.09667 \tabularnewline
70 &  11 &  11.31 & -0.307 \tabularnewline
71 &  11 &  11.03 & -0.02944 \tabularnewline
72 &  10 &  11.37 & -1.374 \tabularnewline
73 &  10 &  11.58 & -1.585 \tabularnewline
74 &  13 &  11.73 &  1.268 \tabularnewline
75 &  11 &  11.53 & -0.5287 \tabularnewline
76 &  11 &  11.28 & -0.2757 \tabularnewline
77 &  11 &  11.49 & -0.486 \tabularnewline
78 &  13 &  10.88 &  2.125 \tabularnewline
79 &  12 &  11.86 &  0.1378 \tabularnewline
80 &  12 &  11.31 &  0.693 \tabularnewline
81 &  9 &  11.43 & -2.43 \tabularnewline
82 &  12 &  11.71 &  0.2923 \tabularnewline
83 &  12 &  11.58 &  0.4154 \tabularnewline
84 &  13 &  11.76 &  1.236 \tabularnewline
85 &  15 &  11.71 &  3.292 \tabularnewline
86 &  13 &  11.86 &  1.138 \tabularnewline
87 &  13 &  11.58 &  1.415 \tabularnewline
88 &  11 &  11.58 & -0.5846 \tabularnewline
89 &  12 &  11.71 &  0.2923 \tabularnewline
90 &  9 &  11.71 & -2.708 \tabularnewline
91 &  11 &  11.43 & -0.4301 \tabularnewline
92 &  13 &  11.83 &  1.169 \tabularnewline
93 &  12 &  11.99 &  0.01472 \tabularnewline
94 &  13 &  11.86 &  1.138 \tabularnewline
95 &  11 &  11.31 & -0.307 \tabularnewline
96 &  12 &  11.71 &  0.2923 \tabularnewline
97 &  14 &  11.31 &  2.693 \tabularnewline
98 &  13 &  12.23 &  0.7685 \tabularnewline
99 &  11 &  11.58 & -0.5846 \tabularnewline
100 &  12 &  11.58 &  0.4154 \tabularnewline
101 &  13 &  11.43 &  1.57 \tabularnewline
102 &  11 &  11.39 & -0.3874 \tabularnewline
103 &  11 &  11.58 & -0.5846 \tabularnewline
104 &  11 &  11.43 & -0.4301 \tabularnewline
105 &  13 &  11.86 &  1.138 \tabularnewline
106 &  12 &  11.03 &  0.9706 \tabularnewline
107 &  12 &  11.31 &  0.693 \tabularnewline
108 &  11 &  11.58 & -0.5846 \tabularnewline
109 &  12 &  11.31 &  0.693 \tabularnewline
110 &  12 &  11.21 &  0.7916 \tabularnewline
111 &  10 &  11.53 & -1.529 \tabularnewline
112 &  11 &  11.03 & -0.02944 \tabularnewline
113 &  9 &  11.75 & -2.75 \tabularnewline
114 &  14 &  11.71 &  2.292 \tabularnewline
115 &  12 &  11.31 &  0.693 \tabularnewline
116 &  11 &  11.58 & -0.5846 \tabularnewline
117 &  13 &  12.45 &  0.5468 \tabularnewline
118 &  11 &  11.86 & -0.8622 \tabularnewline
119 &  11 &  11.58 & -0.5846 \tabularnewline
120 &  11 &  11.25 & -0.2511 \tabularnewline
121 &  11 &  11.53 & -0.5287 \tabularnewline
122 &  12 &  11.58 &  0.4154 \tabularnewline
123 &  11 &  11.58 & -0.5846 \tabularnewline
124 &  13 &  11.31 &  1.693 \tabularnewline
125 &  11 &  11.31 & -0.307 \tabularnewline
126 &  11 &  11.21 & -0.2084 \tabularnewline
127 &  12 &  11.83 &  0.1692 \tabularnewline
128 &  11 &  11.81 & -0.8063 \tabularnewline
129 &  11 &  11.58 & -0.5846 \tabularnewline
130 &  9 &  11.31 & -2.307 \tabularnewline
131 &  12 &  11.03 &  0.9706 \tabularnewline
132 &  14 &  11.71 &  2.292 \tabularnewline
133 &  10 &  11.49 & -1.486 \tabularnewline
134 &  9 &  11.99 & -2.985 \tabularnewline
135 &  12 &  11.53 &  0.4713 \tabularnewline
136 &  14 &  11.43 &  2.57 \tabularnewline
137 &  9 &  11.05 & -2.054 \tabularnewline
138 &  11 &  11.43 & -0.4301 \tabularnewline
139 &  14 &  11.86 &  2.138 \tabularnewline
140 &  13 &  12.23 &  0.7685 \tabularnewline
141 &  10 &  11.58 & -1.585 \tabularnewline
142 &  11 &  11.99 & -0.9853 \tabularnewline
143 &  12 &  10.75 &  1.248 \tabularnewline
144 &  10 &  11.31 & -1.307 \tabularnewline
145 &  13 &  11.71 &  1.292 \tabularnewline
146 &  12 &  11.81 &  0.1937 \tabularnewline
147 &  14 &  11.6 &  2.404 \tabularnewline
148 &  10 &  11.58 & -1.585 \tabularnewline
149 &  12 &  11.03 &  0.9706 \tabularnewline
150 &  9 &  11.03 & -2.029 \tabularnewline
151 &  12 &  11.43 &  0.5699 \tabularnewline
152 &  11 &  11.03 & -0.02944 \tabularnewline
153 &  11 &  11.31 & -0.307 \tabularnewline
154 &  10 &  11.25 & -1.251 \tabularnewline
155 &  11 &  11.31 & -0.307 \tabularnewline
156 &  12 &  11.03 &  0.9706 \tabularnewline
157 &  10 &  11.95 & -1.954 \tabularnewline
158 &  11 &  11.03 & -0.02944 \tabularnewline
159 &  13 &  12.11 &  0.8916 \tabularnewline
160 &  11 &  11.03 & -0.02944 \tabularnewline
161 &  13 &  11.53 &  1.471 \tabularnewline
162 &  12 &  11.58 &  0.4154 \tabularnewline
163 &  11 &  11.71 & -0.7077 \tabularnewline
164 &  12 &  11.58 &  0.4154 \tabularnewline
165 &  10 &  11.03 & -1.029 \tabularnewline
166 &  12 &  11.31 &  0.693 \tabularnewline
167 &  10 &  11.53 & -1.529 \tabularnewline
168 &  13 &  12.25 &  0.7503 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300195&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C] 9[/C][C] 11.03[/C][C]-2.029[/C][/ROW]
[ROW][C]2[/C][C] 11[/C][C] 11.83[/C][C]-0.8308[/C][/ROW]
[ROW][C]3[/C][C] 13[/C][C] 11.31[/C][C] 1.693[/C][/ROW]
[ROW][C]4[/C][C] 11[/C][C] 11.81[/C][C]-0.8063[/C][/ROW]
[ROW][C]5[/C][C] 12[/C][C] 11.81[/C][C] 0.1937[/C][/ROW]
[ROW][C]6[/C][C] 11[/C][C] 11.31[/C][C]-0.307[/C][/ROW]
[ROW][C]7[/C][C] 12[/C][C] 11.75[/C][C] 0.2496[/C][/ROW]
[ROW][C]8[/C][C] 12[/C][C] 11.58[/C][C] 0.4154[/C][/ROW]
[ROW][C]9[/C][C] 13[/C][C] 11.58[/C][C] 1.415[/C][/ROW]
[ROW][C]10[/C][C] 12[/C][C] 11.03[/C][C] 0.9706[/C][/ROW]
[ROW][C]11[/C][C] 12[/C][C] 11.49[/C][C] 0.514[/C][/ROW]
[ROW][C]12[/C][C] 11[/C][C] 11.51[/C][C]-0.5105[/C][/ROW]
[ROW][C]13[/C][C] 12[/C][C] 11.53[/C][C] 0.4713[/C][/ROW]
[ROW][C]14[/C][C] 10[/C][C] 11.49[/C][C]-1.486[/C][/ROW]
[ROW][C]15[/C][C] 12[/C][C] 11.31[/C][C] 0.693[/C][/ROW]
[ROW][C]16[/C][C] 12[/C][C] 11.49[/C][C] 0.514[/C][/ROW]
[ROW][C]17[/C][C] 12[/C][C] 11.81[/C][C] 0.1937[/C][/ROW]
[ROW][C]18[/C][C] 12[/C][C] 10.75[/C][C] 1.248[/C][/ROW]
[ROW][C]19[/C][C] 13[/C][C] 11.31[/C][C] 1.693[/C][/ROW]
[ROW][C]20[/C][C] 11[/C][C] 11.49[/C][C]-0.486[/C][/ROW]
[ROW][C]21[/C][C] 11[/C][C] 11.49[/C][C]-0.486[/C][/ROW]
[ROW][C]22[/C][C] 11[/C][C] 11.33[/C][C]-0.3315[/C][/ROW]
[ROW][C]23[/C][C] 11[/C][C] 11.86[/C][C]-0.8622[/C][/ROW]
[ROW][C]24[/C][C] 13[/C][C] 11.71[/C][C] 1.292[/C][/ROW]
[ROW][C]25[/C][C] 11[/C][C] 11.31[/C][C]-0.307[/C][/ROW]
[ROW][C]26[/C][C] 12[/C][C] 11.71[/C][C] 0.2923[/C][/ROW]
[ROW][C]27[/C][C] 11[/C][C] 11.58[/C][C]-0.5846[/C][/ROW]
[ROW][C]28[/C][C] 12[/C][C] 11.53[/C][C] 0.4713[/C][/ROW]
[ROW][C]29[/C][C] 12[/C][C] 10.75[/C][C] 1.248[/C][/ROW]
[ROW][C]30[/C][C] 10[/C][C] 11.58[/C][C]-1.585[/C][/ROW]
[ROW][C]31[/C][C] 11[/C][C] 10.75[/C][C] 0.2481[/C][/ROW]
[ROW][C]32[/C][C] 12[/C][C] 11.58[/C][C] 0.4154[/C][/ROW]
[ROW][C]33[/C][C] 11[/C][C] 11.58[/C][C]-0.5846[/C][/ROW]
[ROW][C]34[/C][C] 9[/C][C] 11.25[/C][C]-2.251[/C][/ROW]
[ROW][C]35[/C][C] 12[/C][C] 12.08[/C][C]-0.08387[/C][/ROW]
[ROW][C]36[/C][C] 11[/C][C] 11.71[/C][C]-0.7077[/C][/ROW]
[ROW][C]37[/C][C] 11[/C][C] 11.71[/C][C]-0.7077[/C][/ROW]
[ROW][C]38[/C][C] 12[/C][C] 11.31[/C][C] 0.693[/C][/ROW]
[ROW][C]39[/C][C] 13[/C][C] 11.58[/C][C] 1.415[/C][/ROW]
[ROW][C]40[/C][C] 11[/C][C] 11.31[/C][C]-0.307[/C][/ROW]
[ROW][C]41[/C][C] 12[/C][C] 11.58[/C][C] 0.4154[/C][/ROW]
[ROW][C]42[/C][C] 9[/C][C] 11.31[/C][C]-2.307[/C][/ROW]
[ROW][C]43[/C][C] 12[/C][C] 11.03[/C][C] 0.9706[/C][/ROW]
[ROW][C]44[/C][C] 11[/C][C] 11.03[/C][C]-0.02944[/C][/ROW]
[ROW][C]45[/C][C] 12[/C][C] 11.31[/C][C] 0.693[/C][/ROW]
[ROW][C]46[/C][C] 12[/C][C] 11.58[/C][C] 0.4154[/C][/ROW]
[ROW][C]47[/C][C] 11[/C][C] 11.81[/C][C]-0.8063[/C][/ROW]
[ROW][C]48[/C][C] 10[/C][C] 10.93[/C][C]-0.9308[/C][/ROW]
[ROW][C]49[/C][C] 9[/C][C] 11.03[/C][C]-2.029[/C][/ROW]
[ROW][C]50[/C][C] 12[/C][C] 11.31[/C][C] 0.693[/C][/ROW]
[ROW][C]51[/C][C] 13[/C][C] 11.71[/C][C] 1.292[/C][/ROW]
[ROW][C]52[/C][C] 13[/C][C] 11.58[/C][C] 1.415[/C][/ROW]
[ROW][C]53[/C][C] 9[/C][C] 11.61[/C][C]-2.609[/C][/ROW]
[ROW][C]54[/C][C] 11[/C][C] 11.93[/C][C]-0.9294[/C][/ROW]
[ROW][C]55[/C][C] 11[/C][C] 11.55[/C][C]-0.5532[/C][/ROW]
[ROW][C]56[/C][C] 11[/C][C] 11.81[/C][C]-0.8063[/C][/ROW]
[ROW][C]57[/C][C] 12[/C][C] 11.58[/C][C] 0.4154[/C][/ROW]
[ROW][C]58[/C][C] 12[/C][C] 11.31[/C][C] 0.693[/C][/ROW]
[ROW][C]59[/C][C] 11[/C][C] 11.53[/C][C]-0.5287[/C][/ROW]
[ROW][C]60[/C][C] 12[/C][C] 11.58[/C][C] 0.4154[/C][/ROW]
[ROW][C]61[/C][C] 11[/C][C] 11.58[/C][C]-0.5846[/C][/ROW]
[ROW][C]62[/C][C] 12[/C][C] 11.03[/C][C] 0.9706[/C][/ROW]
[ROW][C]63[/C][C] 11[/C][C] 11.03[/C][C]-0.02944[/C][/ROW]
[ROW][C]64[/C][C] 11[/C][C] 11.43[/C][C]-0.4301[/C][/ROW]
[ROW][C]65[/C][C] 8[/C][C] 11.03[/C][C]-3.029[/C][/ROW]
[ROW][C]66[/C][C] 12[/C][C] 11.15[/C][C] 0.8475[/C][/ROW]
[ROW][C]67[/C][C] 11[/C][C] 11.03[/C][C]-0.02944[/C][/ROW]
[ROW][C]68[/C][C] 12[/C][C] 11.4[/C][C] 0.6012[/C][/ROW]
[ROW][C]69[/C][C] 11[/C][C] 11.1[/C][C]-0.09667[/C][/ROW]
[ROW][C]70[/C][C] 11[/C][C] 11.31[/C][C]-0.307[/C][/ROW]
[ROW][C]71[/C][C] 11[/C][C] 11.03[/C][C]-0.02944[/C][/ROW]
[ROW][C]72[/C][C] 10[/C][C] 11.37[/C][C]-1.374[/C][/ROW]
[ROW][C]73[/C][C] 10[/C][C] 11.58[/C][C]-1.585[/C][/ROW]
[ROW][C]74[/C][C] 13[/C][C] 11.73[/C][C] 1.268[/C][/ROW]
[ROW][C]75[/C][C] 11[/C][C] 11.53[/C][C]-0.5287[/C][/ROW]
[ROW][C]76[/C][C] 11[/C][C] 11.28[/C][C]-0.2757[/C][/ROW]
[ROW][C]77[/C][C] 11[/C][C] 11.49[/C][C]-0.486[/C][/ROW]
[ROW][C]78[/C][C] 13[/C][C] 10.88[/C][C] 2.125[/C][/ROW]
[ROW][C]79[/C][C] 12[/C][C] 11.86[/C][C] 0.1378[/C][/ROW]
[ROW][C]80[/C][C] 12[/C][C] 11.31[/C][C] 0.693[/C][/ROW]
[ROW][C]81[/C][C] 9[/C][C] 11.43[/C][C]-2.43[/C][/ROW]
[ROW][C]82[/C][C] 12[/C][C] 11.71[/C][C] 0.2923[/C][/ROW]
[ROW][C]83[/C][C] 12[/C][C] 11.58[/C][C] 0.4154[/C][/ROW]
[ROW][C]84[/C][C] 13[/C][C] 11.76[/C][C] 1.236[/C][/ROW]
[ROW][C]85[/C][C] 15[/C][C] 11.71[/C][C] 3.292[/C][/ROW]
[ROW][C]86[/C][C] 13[/C][C] 11.86[/C][C] 1.138[/C][/ROW]
[ROW][C]87[/C][C] 13[/C][C] 11.58[/C][C] 1.415[/C][/ROW]
[ROW][C]88[/C][C] 11[/C][C] 11.58[/C][C]-0.5846[/C][/ROW]
[ROW][C]89[/C][C] 12[/C][C] 11.71[/C][C] 0.2923[/C][/ROW]
[ROW][C]90[/C][C] 9[/C][C] 11.71[/C][C]-2.708[/C][/ROW]
[ROW][C]91[/C][C] 11[/C][C] 11.43[/C][C]-0.4301[/C][/ROW]
[ROW][C]92[/C][C] 13[/C][C] 11.83[/C][C] 1.169[/C][/ROW]
[ROW][C]93[/C][C] 12[/C][C] 11.99[/C][C] 0.01472[/C][/ROW]
[ROW][C]94[/C][C] 13[/C][C] 11.86[/C][C] 1.138[/C][/ROW]
[ROW][C]95[/C][C] 11[/C][C] 11.31[/C][C]-0.307[/C][/ROW]
[ROW][C]96[/C][C] 12[/C][C] 11.71[/C][C] 0.2923[/C][/ROW]
[ROW][C]97[/C][C] 14[/C][C] 11.31[/C][C] 2.693[/C][/ROW]
[ROW][C]98[/C][C] 13[/C][C] 12.23[/C][C] 0.7685[/C][/ROW]
[ROW][C]99[/C][C] 11[/C][C] 11.58[/C][C]-0.5846[/C][/ROW]
[ROW][C]100[/C][C] 12[/C][C] 11.58[/C][C] 0.4154[/C][/ROW]
[ROW][C]101[/C][C] 13[/C][C] 11.43[/C][C] 1.57[/C][/ROW]
[ROW][C]102[/C][C] 11[/C][C] 11.39[/C][C]-0.3874[/C][/ROW]
[ROW][C]103[/C][C] 11[/C][C] 11.58[/C][C]-0.5846[/C][/ROW]
[ROW][C]104[/C][C] 11[/C][C] 11.43[/C][C]-0.4301[/C][/ROW]
[ROW][C]105[/C][C] 13[/C][C] 11.86[/C][C] 1.138[/C][/ROW]
[ROW][C]106[/C][C] 12[/C][C] 11.03[/C][C] 0.9706[/C][/ROW]
[ROW][C]107[/C][C] 12[/C][C] 11.31[/C][C] 0.693[/C][/ROW]
[ROW][C]108[/C][C] 11[/C][C] 11.58[/C][C]-0.5846[/C][/ROW]
[ROW][C]109[/C][C] 12[/C][C] 11.31[/C][C] 0.693[/C][/ROW]
[ROW][C]110[/C][C] 12[/C][C] 11.21[/C][C] 0.7916[/C][/ROW]
[ROW][C]111[/C][C] 10[/C][C] 11.53[/C][C]-1.529[/C][/ROW]
[ROW][C]112[/C][C] 11[/C][C] 11.03[/C][C]-0.02944[/C][/ROW]
[ROW][C]113[/C][C] 9[/C][C] 11.75[/C][C]-2.75[/C][/ROW]
[ROW][C]114[/C][C] 14[/C][C] 11.71[/C][C] 2.292[/C][/ROW]
[ROW][C]115[/C][C] 12[/C][C] 11.31[/C][C] 0.693[/C][/ROW]
[ROW][C]116[/C][C] 11[/C][C] 11.58[/C][C]-0.5846[/C][/ROW]
[ROW][C]117[/C][C] 13[/C][C] 12.45[/C][C] 0.5468[/C][/ROW]
[ROW][C]118[/C][C] 11[/C][C] 11.86[/C][C]-0.8622[/C][/ROW]
[ROW][C]119[/C][C] 11[/C][C] 11.58[/C][C]-0.5846[/C][/ROW]
[ROW][C]120[/C][C] 11[/C][C] 11.25[/C][C]-0.2511[/C][/ROW]
[ROW][C]121[/C][C] 11[/C][C] 11.53[/C][C]-0.5287[/C][/ROW]
[ROW][C]122[/C][C] 12[/C][C] 11.58[/C][C] 0.4154[/C][/ROW]
[ROW][C]123[/C][C] 11[/C][C] 11.58[/C][C]-0.5846[/C][/ROW]
[ROW][C]124[/C][C] 13[/C][C] 11.31[/C][C] 1.693[/C][/ROW]
[ROW][C]125[/C][C] 11[/C][C] 11.31[/C][C]-0.307[/C][/ROW]
[ROW][C]126[/C][C] 11[/C][C] 11.21[/C][C]-0.2084[/C][/ROW]
[ROW][C]127[/C][C] 12[/C][C] 11.83[/C][C] 0.1692[/C][/ROW]
[ROW][C]128[/C][C] 11[/C][C] 11.81[/C][C]-0.8063[/C][/ROW]
[ROW][C]129[/C][C] 11[/C][C] 11.58[/C][C]-0.5846[/C][/ROW]
[ROW][C]130[/C][C] 9[/C][C] 11.31[/C][C]-2.307[/C][/ROW]
[ROW][C]131[/C][C] 12[/C][C] 11.03[/C][C] 0.9706[/C][/ROW]
[ROW][C]132[/C][C] 14[/C][C] 11.71[/C][C] 2.292[/C][/ROW]
[ROW][C]133[/C][C] 10[/C][C] 11.49[/C][C]-1.486[/C][/ROW]
[ROW][C]134[/C][C] 9[/C][C] 11.99[/C][C]-2.985[/C][/ROW]
[ROW][C]135[/C][C] 12[/C][C] 11.53[/C][C] 0.4713[/C][/ROW]
[ROW][C]136[/C][C] 14[/C][C] 11.43[/C][C] 2.57[/C][/ROW]
[ROW][C]137[/C][C] 9[/C][C] 11.05[/C][C]-2.054[/C][/ROW]
[ROW][C]138[/C][C] 11[/C][C] 11.43[/C][C]-0.4301[/C][/ROW]
[ROW][C]139[/C][C] 14[/C][C] 11.86[/C][C] 2.138[/C][/ROW]
[ROW][C]140[/C][C] 13[/C][C] 12.23[/C][C] 0.7685[/C][/ROW]
[ROW][C]141[/C][C] 10[/C][C] 11.58[/C][C]-1.585[/C][/ROW]
[ROW][C]142[/C][C] 11[/C][C] 11.99[/C][C]-0.9853[/C][/ROW]
[ROW][C]143[/C][C] 12[/C][C] 10.75[/C][C] 1.248[/C][/ROW]
[ROW][C]144[/C][C] 10[/C][C] 11.31[/C][C]-1.307[/C][/ROW]
[ROW][C]145[/C][C] 13[/C][C] 11.71[/C][C] 1.292[/C][/ROW]
[ROW][C]146[/C][C] 12[/C][C] 11.81[/C][C] 0.1937[/C][/ROW]
[ROW][C]147[/C][C] 14[/C][C] 11.6[/C][C] 2.404[/C][/ROW]
[ROW][C]148[/C][C] 10[/C][C] 11.58[/C][C]-1.585[/C][/ROW]
[ROW][C]149[/C][C] 12[/C][C] 11.03[/C][C] 0.9706[/C][/ROW]
[ROW][C]150[/C][C] 9[/C][C] 11.03[/C][C]-2.029[/C][/ROW]
[ROW][C]151[/C][C] 12[/C][C] 11.43[/C][C] 0.5699[/C][/ROW]
[ROW][C]152[/C][C] 11[/C][C] 11.03[/C][C]-0.02944[/C][/ROW]
[ROW][C]153[/C][C] 11[/C][C] 11.31[/C][C]-0.307[/C][/ROW]
[ROW][C]154[/C][C] 10[/C][C] 11.25[/C][C]-1.251[/C][/ROW]
[ROW][C]155[/C][C] 11[/C][C] 11.31[/C][C]-0.307[/C][/ROW]
[ROW][C]156[/C][C] 12[/C][C] 11.03[/C][C] 0.9706[/C][/ROW]
[ROW][C]157[/C][C] 10[/C][C] 11.95[/C][C]-1.954[/C][/ROW]
[ROW][C]158[/C][C] 11[/C][C] 11.03[/C][C]-0.02944[/C][/ROW]
[ROW][C]159[/C][C] 13[/C][C] 12.11[/C][C] 0.8916[/C][/ROW]
[ROW][C]160[/C][C] 11[/C][C] 11.03[/C][C]-0.02944[/C][/ROW]
[ROW][C]161[/C][C] 13[/C][C] 11.53[/C][C] 1.471[/C][/ROW]
[ROW][C]162[/C][C] 12[/C][C] 11.58[/C][C] 0.4154[/C][/ROW]
[ROW][C]163[/C][C] 11[/C][C] 11.71[/C][C]-0.7077[/C][/ROW]
[ROW][C]164[/C][C] 12[/C][C] 11.58[/C][C] 0.4154[/C][/ROW]
[ROW][C]165[/C][C] 10[/C][C] 11.03[/C][C]-1.029[/C][/ROW]
[ROW][C]166[/C][C] 12[/C][C] 11.31[/C][C] 0.693[/C][/ROW]
[ROW][C]167[/C][C] 10[/C][C] 11.53[/C][C]-1.529[/C][/ROW]
[ROW][C]168[/C][C] 13[/C][C] 12.25[/C][C] 0.7503[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300195&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300195&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 9 11.03-2.029
2 11 11.83-0.8308
3 13 11.31 1.693
4 11 11.81-0.8063
5 12 11.81 0.1937
6 11 11.31-0.307
7 12 11.75 0.2496
8 12 11.58 0.4154
9 13 11.58 1.415
10 12 11.03 0.9706
11 12 11.49 0.514
12 11 11.51-0.5105
13 12 11.53 0.4713
14 10 11.49-1.486
15 12 11.31 0.693
16 12 11.49 0.514
17 12 11.81 0.1937
18 12 10.75 1.248
19 13 11.31 1.693
20 11 11.49-0.486
21 11 11.49-0.486
22 11 11.33-0.3315
23 11 11.86-0.8622
24 13 11.71 1.292
25 11 11.31-0.307
26 12 11.71 0.2923
27 11 11.58-0.5846
28 12 11.53 0.4713
29 12 10.75 1.248
30 10 11.58-1.585
31 11 10.75 0.2481
32 12 11.58 0.4154
33 11 11.58-0.5846
34 9 11.25-2.251
35 12 12.08-0.08387
36 11 11.71-0.7077
37 11 11.71-0.7077
38 12 11.31 0.693
39 13 11.58 1.415
40 11 11.31-0.307
41 12 11.58 0.4154
42 9 11.31-2.307
43 12 11.03 0.9706
44 11 11.03-0.02944
45 12 11.31 0.693
46 12 11.58 0.4154
47 11 11.81-0.8063
48 10 10.93-0.9308
49 9 11.03-2.029
50 12 11.31 0.693
51 13 11.71 1.292
52 13 11.58 1.415
53 9 11.61-2.609
54 11 11.93-0.9294
55 11 11.55-0.5532
56 11 11.81-0.8063
57 12 11.58 0.4154
58 12 11.31 0.693
59 11 11.53-0.5287
60 12 11.58 0.4154
61 11 11.58-0.5846
62 12 11.03 0.9706
63 11 11.03-0.02944
64 11 11.43-0.4301
65 8 11.03-3.029
66 12 11.15 0.8475
67 11 11.03-0.02944
68 12 11.4 0.6012
69 11 11.1-0.09667
70 11 11.31-0.307
71 11 11.03-0.02944
72 10 11.37-1.374
73 10 11.58-1.585
74 13 11.73 1.268
75 11 11.53-0.5287
76 11 11.28-0.2757
77 11 11.49-0.486
78 13 10.88 2.125
79 12 11.86 0.1378
80 12 11.31 0.693
81 9 11.43-2.43
82 12 11.71 0.2923
83 12 11.58 0.4154
84 13 11.76 1.236
85 15 11.71 3.292
86 13 11.86 1.138
87 13 11.58 1.415
88 11 11.58-0.5846
89 12 11.71 0.2923
90 9 11.71-2.708
91 11 11.43-0.4301
92 13 11.83 1.169
93 12 11.99 0.01472
94 13 11.86 1.138
95 11 11.31-0.307
96 12 11.71 0.2923
97 14 11.31 2.693
98 13 12.23 0.7685
99 11 11.58-0.5846
100 12 11.58 0.4154
101 13 11.43 1.57
102 11 11.39-0.3874
103 11 11.58-0.5846
104 11 11.43-0.4301
105 13 11.86 1.138
106 12 11.03 0.9706
107 12 11.31 0.693
108 11 11.58-0.5846
109 12 11.31 0.693
110 12 11.21 0.7916
111 10 11.53-1.529
112 11 11.03-0.02944
113 9 11.75-2.75
114 14 11.71 2.292
115 12 11.31 0.693
116 11 11.58-0.5846
117 13 12.45 0.5468
118 11 11.86-0.8622
119 11 11.58-0.5846
120 11 11.25-0.2511
121 11 11.53-0.5287
122 12 11.58 0.4154
123 11 11.58-0.5846
124 13 11.31 1.693
125 11 11.31-0.307
126 11 11.21-0.2084
127 12 11.83 0.1692
128 11 11.81-0.8063
129 11 11.58-0.5846
130 9 11.31-2.307
131 12 11.03 0.9706
132 14 11.71 2.292
133 10 11.49-1.486
134 9 11.99-2.985
135 12 11.53 0.4713
136 14 11.43 2.57
137 9 11.05-2.054
138 11 11.43-0.4301
139 14 11.86 2.138
140 13 12.23 0.7685
141 10 11.58-1.585
142 11 11.99-0.9853
143 12 10.75 1.248
144 10 11.31-1.307
145 13 11.71 1.292
146 12 11.81 0.1937
147 14 11.6 2.404
148 10 11.58-1.585
149 12 11.03 0.9706
150 9 11.03-2.029
151 12 11.43 0.5699
152 11 11.03-0.02944
153 11 11.31-0.307
154 10 11.25-1.251
155 11 11.31-0.307
156 12 11.03 0.9706
157 10 11.95-1.954
158 11 11.03-0.02944
159 13 12.11 0.8916
160 11 11.03-0.02944
161 13 11.53 1.471
162 12 11.58 0.4154
163 11 11.71-0.7077
164 12 11.58 0.4154
165 10 11.03-1.029
166 12 11.31 0.693
167 10 11.53-1.529
168 13 12.25 0.7503







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
7 0.8022 0.3957 0.1978
8 0.6756 0.6487 0.3244
9 0.6052 0.7897 0.3948
10 0.638 0.7241 0.362
11 0.5274 0.9452 0.4726
12 0.4184 0.8369 0.5816
13 0.3382 0.6765 0.6618
14 0.4364 0.8728 0.5636
15 0.3618 0.7235 0.6382
16 0.2908 0.5817 0.7092
17 0.2202 0.4404 0.7798
18 0.2185 0.4369 0.7815
19 0.2361 0.4722 0.7639
20 0.1928 0.3857 0.8072
21 0.1531 0.3062 0.8469
22 0.1131 0.2262 0.8869
23 0.106 0.2121 0.894
24 0.1347 0.2694 0.8653
25 0.1116 0.2233 0.8884
26 0.08516 0.1703 0.9148
27 0.07151 0.143 0.9285
28 0.05171 0.1034 0.9483
29 0.04057 0.08115 0.9594
30 0.06276 0.1255 0.9372
31 0.04945 0.09891 0.9505
32 0.03696 0.07393 0.963
33 0.02889 0.05778 0.9711
34 0.113 0.2259 0.887
35 0.08718 0.1744 0.9128
36 0.07022 0.1404 0.9298
37 0.05582 0.1116 0.9442
38 0.04445 0.08889 0.9556
39 0.05118 0.1024 0.9488
40 0.04042 0.08084 0.9596
41 0.03041 0.06081 0.9696
42 0.08885 0.1777 0.9111
43 0.07779 0.1556 0.9222
44 0.06088 0.1218 0.9391
45 0.04975 0.0995 0.9503
46 0.0386 0.07721 0.9614
47 0.03247 0.06494 0.9675
48 0.0305 0.06099 0.9695
49 0.06238 0.1248 0.9376
50 0.05215 0.1043 0.9478
51 0.0617 0.1234 0.9383
52 0.06725 0.1345 0.9327
53 0.1275 0.255 0.8725
54 0.1095 0.2191 0.8905
55 0.09123 0.1825 0.9088
56 0.08041 0.1608 0.9196
57 0.06487 0.1297 0.9351
58 0.05435 0.1087 0.9456
59 0.04404 0.08808 0.956
60 0.03457 0.06915 0.9654
61 0.02915 0.05831 0.9708
62 0.02599 0.05198 0.974
63 0.01971 0.03942 0.9803
64 0.01491 0.02982 0.9851
65 0.07614 0.1523 0.9239
66 0.07481 0.1496 0.9252
67 0.0597 0.1194 0.9403
68 0.06169 0.1234 0.9383
69 0.04887 0.09773 0.9511
70 0.03898 0.07796 0.961
71 0.0302 0.06041 0.9698
72 0.0313 0.06259 0.9687
73 0.03864 0.07728 0.9614
74 0.04639 0.09278 0.9536
75 0.03782 0.07564 0.9622
76 0.02979 0.05958 0.9702
77 0.02385 0.0477 0.9762
78 0.04188 0.08375 0.9581
79 0.03306 0.06613 0.9669
80 0.02789 0.05577 0.9721
81 0.05842 0.1168 0.9416
82 0.04773 0.09545 0.9523
83 0.03882 0.07764 0.9612
84 0.04029 0.08057 0.9597
85 0.1617 0.3235 0.8383
86 0.1595 0.319 0.8405
87 0.1704 0.3407 0.8296
88 0.1495 0.2989 0.8505
89 0.1264 0.2529 0.8736
90 0.2416 0.4832 0.7584
91 0.2123 0.4245 0.7877
92 0.2124 0.4249 0.7876
93 0.1813 0.3626 0.8187
94 0.18 0.3601 0.8199
95 0.1537 0.3075 0.8463
96 0.13 0.2601 0.87
97 0.2483 0.4965 0.7517
98 0.2284 0.4568 0.7716
99 0.2021 0.4042 0.7979
100 0.1761 0.3522 0.8239
101 0.1959 0.3919 0.8041
102 0.1687 0.3373 0.8313
103 0.1466 0.2932 0.8534
104 0.1248 0.2495 0.8752
105 0.1265 0.2531 0.8735
106 0.1176 0.2352 0.8824
107 0.1039 0.2078 0.8961
108 0.08774 0.1755 0.9123
109 0.07682 0.1536 0.9232
110 0.06847 0.1369 0.9315
111 0.07691 0.1538 0.9231
112 0.06136 0.1227 0.9386
113 0.1633 0.3266 0.8367
114 0.2641 0.5282 0.7359
115 0.2427 0.4855 0.7573
116 0.2116 0.4231 0.7884
117 0.1847 0.3693 0.8153
118 0.1631 0.3261 0.8369
119 0.1384 0.2768 0.8616
120 0.1173 0.2345 0.8827
121 0.1021 0.2043 0.8979
122 0.08632 0.1726 0.9137
123 0.07041 0.1408 0.9296
124 0.09232 0.1846 0.9077
125 0.07356 0.1471 0.9264
126 0.0592 0.1184 0.9408
127 0.04604 0.09207 0.954
128 0.04083 0.08166 0.9592
129 0.03171 0.06341 0.9683
130 0.057 0.114 0.943
131 0.05193 0.1039 0.9481
132 0.108 0.2161 0.892
133 0.1001 0.2002 0.8999
134 0.2467 0.4935 0.7533
135 0.2064 0.4129 0.7936
136 0.3991 0.7981 0.6009
137 0.4356 0.8712 0.5644
138 0.3822 0.7643 0.6178
139 0.5824 0.8353 0.4177
140 0.5533 0.8934 0.4467
141 0.5574 0.8852 0.4426
142 0.5117 0.9767 0.4883
143 0.5248 0.9505 0.4752
144 0.5197 0.9607 0.4803
145 0.5574 0.8851 0.4426
146 0.4869 0.9738 0.5131
147 0.676 0.6479 0.324
148 0.7993 0.4014 0.2007
149 0.8259 0.3483 0.1741
150 0.8906 0.2187 0.1094
151 0.8889 0.2223 0.1111
152 0.8449 0.3101 0.1551
153 0.7938 0.4125 0.2062
154 0.7696 0.4608 0.2304
155 0.705 0.5899 0.295
156 0.7355 0.529 0.2645
157 0.7094 0.5812 0.2906
158 0.6097 0.7805 0.3903
159 0.5839 0.8323 0.4161
160 0.4636 0.9271 0.5364
161 0.6261 0.7478 0.3739

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
7 &  0.8022 &  0.3957 &  0.1978 \tabularnewline
8 &  0.6756 &  0.6487 &  0.3244 \tabularnewline
9 &  0.6052 &  0.7897 &  0.3948 \tabularnewline
10 &  0.638 &  0.7241 &  0.362 \tabularnewline
11 &  0.5274 &  0.9452 &  0.4726 \tabularnewline
12 &  0.4184 &  0.8369 &  0.5816 \tabularnewline
13 &  0.3382 &  0.6765 &  0.6618 \tabularnewline
14 &  0.4364 &  0.8728 &  0.5636 \tabularnewline
15 &  0.3618 &  0.7235 &  0.6382 \tabularnewline
16 &  0.2908 &  0.5817 &  0.7092 \tabularnewline
17 &  0.2202 &  0.4404 &  0.7798 \tabularnewline
18 &  0.2185 &  0.4369 &  0.7815 \tabularnewline
19 &  0.2361 &  0.4722 &  0.7639 \tabularnewline
20 &  0.1928 &  0.3857 &  0.8072 \tabularnewline
21 &  0.1531 &  0.3062 &  0.8469 \tabularnewline
22 &  0.1131 &  0.2262 &  0.8869 \tabularnewline
23 &  0.106 &  0.2121 &  0.894 \tabularnewline
24 &  0.1347 &  0.2694 &  0.8653 \tabularnewline
25 &  0.1116 &  0.2233 &  0.8884 \tabularnewline
26 &  0.08516 &  0.1703 &  0.9148 \tabularnewline
27 &  0.07151 &  0.143 &  0.9285 \tabularnewline
28 &  0.05171 &  0.1034 &  0.9483 \tabularnewline
29 &  0.04057 &  0.08115 &  0.9594 \tabularnewline
30 &  0.06276 &  0.1255 &  0.9372 \tabularnewline
31 &  0.04945 &  0.09891 &  0.9505 \tabularnewline
32 &  0.03696 &  0.07393 &  0.963 \tabularnewline
33 &  0.02889 &  0.05778 &  0.9711 \tabularnewline
34 &  0.113 &  0.2259 &  0.887 \tabularnewline
35 &  0.08718 &  0.1744 &  0.9128 \tabularnewline
36 &  0.07022 &  0.1404 &  0.9298 \tabularnewline
37 &  0.05582 &  0.1116 &  0.9442 \tabularnewline
38 &  0.04445 &  0.08889 &  0.9556 \tabularnewline
39 &  0.05118 &  0.1024 &  0.9488 \tabularnewline
40 &  0.04042 &  0.08084 &  0.9596 \tabularnewline
41 &  0.03041 &  0.06081 &  0.9696 \tabularnewline
42 &  0.08885 &  0.1777 &  0.9111 \tabularnewline
43 &  0.07779 &  0.1556 &  0.9222 \tabularnewline
44 &  0.06088 &  0.1218 &  0.9391 \tabularnewline
45 &  0.04975 &  0.0995 &  0.9503 \tabularnewline
46 &  0.0386 &  0.07721 &  0.9614 \tabularnewline
47 &  0.03247 &  0.06494 &  0.9675 \tabularnewline
48 &  0.0305 &  0.06099 &  0.9695 \tabularnewline
49 &  0.06238 &  0.1248 &  0.9376 \tabularnewline
50 &  0.05215 &  0.1043 &  0.9478 \tabularnewline
51 &  0.0617 &  0.1234 &  0.9383 \tabularnewline
52 &  0.06725 &  0.1345 &  0.9327 \tabularnewline
53 &  0.1275 &  0.255 &  0.8725 \tabularnewline
54 &  0.1095 &  0.2191 &  0.8905 \tabularnewline
55 &  0.09123 &  0.1825 &  0.9088 \tabularnewline
56 &  0.08041 &  0.1608 &  0.9196 \tabularnewline
57 &  0.06487 &  0.1297 &  0.9351 \tabularnewline
58 &  0.05435 &  0.1087 &  0.9456 \tabularnewline
59 &  0.04404 &  0.08808 &  0.956 \tabularnewline
60 &  0.03457 &  0.06915 &  0.9654 \tabularnewline
61 &  0.02915 &  0.05831 &  0.9708 \tabularnewline
62 &  0.02599 &  0.05198 &  0.974 \tabularnewline
63 &  0.01971 &  0.03942 &  0.9803 \tabularnewline
64 &  0.01491 &  0.02982 &  0.9851 \tabularnewline
65 &  0.07614 &  0.1523 &  0.9239 \tabularnewline
66 &  0.07481 &  0.1496 &  0.9252 \tabularnewline
67 &  0.0597 &  0.1194 &  0.9403 \tabularnewline
68 &  0.06169 &  0.1234 &  0.9383 \tabularnewline
69 &  0.04887 &  0.09773 &  0.9511 \tabularnewline
70 &  0.03898 &  0.07796 &  0.961 \tabularnewline
71 &  0.0302 &  0.06041 &  0.9698 \tabularnewline
72 &  0.0313 &  0.06259 &  0.9687 \tabularnewline
73 &  0.03864 &  0.07728 &  0.9614 \tabularnewline
74 &  0.04639 &  0.09278 &  0.9536 \tabularnewline
75 &  0.03782 &  0.07564 &  0.9622 \tabularnewline
76 &  0.02979 &  0.05958 &  0.9702 \tabularnewline
77 &  0.02385 &  0.0477 &  0.9762 \tabularnewline
78 &  0.04188 &  0.08375 &  0.9581 \tabularnewline
79 &  0.03306 &  0.06613 &  0.9669 \tabularnewline
80 &  0.02789 &  0.05577 &  0.9721 \tabularnewline
81 &  0.05842 &  0.1168 &  0.9416 \tabularnewline
82 &  0.04773 &  0.09545 &  0.9523 \tabularnewline
83 &  0.03882 &  0.07764 &  0.9612 \tabularnewline
84 &  0.04029 &  0.08057 &  0.9597 \tabularnewline
85 &  0.1617 &  0.3235 &  0.8383 \tabularnewline
86 &  0.1595 &  0.319 &  0.8405 \tabularnewline
87 &  0.1704 &  0.3407 &  0.8296 \tabularnewline
88 &  0.1495 &  0.2989 &  0.8505 \tabularnewline
89 &  0.1264 &  0.2529 &  0.8736 \tabularnewline
90 &  0.2416 &  0.4832 &  0.7584 \tabularnewline
91 &  0.2123 &  0.4245 &  0.7877 \tabularnewline
92 &  0.2124 &  0.4249 &  0.7876 \tabularnewline
93 &  0.1813 &  0.3626 &  0.8187 \tabularnewline
94 &  0.18 &  0.3601 &  0.8199 \tabularnewline
95 &  0.1537 &  0.3075 &  0.8463 \tabularnewline
96 &  0.13 &  0.2601 &  0.87 \tabularnewline
97 &  0.2483 &  0.4965 &  0.7517 \tabularnewline
98 &  0.2284 &  0.4568 &  0.7716 \tabularnewline
99 &  0.2021 &  0.4042 &  0.7979 \tabularnewline
100 &  0.1761 &  0.3522 &  0.8239 \tabularnewline
101 &  0.1959 &  0.3919 &  0.8041 \tabularnewline
102 &  0.1687 &  0.3373 &  0.8313 \tabularnewline
103 &  0.1466 &  0.2932 &  0.8534 \tabularnewline
104 &  0.1248 &  0.2495 &  0.8752 \tabularnewline
105 &  0.1265 &  0.2531 &  0.8735 \tabularnewline
106 &  0.1176 &  0.2352 &  0.8824 \tabularnewline
107 &  0.1039 &  0.2078 &  0.8961 \tabularnewline
108 &  0.08774 &  0.1755 &  0.9123 \tabularnewline
109 &  0.07682 &  0.1536 &  0.9232 \tabularnewline
110 &  0.06847 &  0.1369 &  0.9315 \tabularnewline
111 &  0.07691 &  0.1538 &  0.9231 \tabularnewline
112 &  0.06136 &  0.1227 &  0.9386 \tabularnewline
113 &  0.1633 &  0.3266 &  0.8367 \tabularnewline
114 &  0.2641 &  0.5282 &  0.7359 \tabularnewline
115 &  0.2427 &  0.4855 &  0.7573 \tabularnewline
116 &  0.2116 &  0.4231 &  0.7884 \tabularnewline
117 &  0.1847 &  0.3693 &  0.8153 \tabularnewline
118 &  0.1631 &  0.3261 &  0.8369 \tabularnewline
119 &  0.1384 &  0.2768 &  0.8616 \tabularnewline
120 &  0.1173 &  0.2345 &  0.8827 \tabularnewline
121 &  0.1021 &  0.2043 &  0.8979 \tabularnewline
122 &  0.08632 &  0.1726 &  0.9137 \tabularnewline
123 &  0.07041 &  0.1408 &  0.9296 \tabularnewline
124 &  0.09232 &  0.1846 &  0.9077 \tabularnewline
125 &  0.07356 &  0.1471 &  0.9264 \tabularnewline
126 &  0.0592 &  0.1184 &  0.9408 \tabularnewline
127 &  0.04604 &  0.09207 &  0.954 \tabularnewline
128 &  0.04083 &  0.08166 &  0.9592 \tabularnewline
129 &  0.03171 &  0.06341 &  0.9683 \tabularnewline
130 &  0.057 &  0.114 &  0.943 \tabularnewline
131 &  0.05193 &  0.1039 &  0.9481 \tabularnewline
132 &  0.108 &  0.2161 &  0.892 \tabularnewline
133 &  0.1001 &  0.2002 &  0.8999 \tabularnewline
134 &  0.2467 &  0.4935 &  0.7533 \tabularnewline
135 &  0.2064 &  0.4129 &  0.7936 \tabularnewline
136 &  0.3991 &  0.7981 &  0.6009 \tabularnewline
137 &  0.4356 &  0.8712 &  0.5644 \tabularnewline
138 &  0.3822 &  0.7643 &  0.6178 \tabularnewline
139 &  0.5824 &  0.8353 &  0.4177 \tabularnewline
140 &  0.5533 &  0.8934 &  0.4467 \tabularnewline
141 &  0.5574 &  0.8852 &  0.4426 \tabularnewline
142 &  0.5117 &  0.9767 &  0.4883 \tabularnewline
143 &  0.5248 &  0.9505 &  0.4752 \tabularnewline
144 &  0.5197 &  0.9607 &  0.4803 \tabularnewline
145 &  0.5574 &  0.8851 &  0.4426 \tabularnewline
146 &  0.4869 &  0.9738 &  0.5131 \tabularnewline
147 &  0.676 &  0.6479 &  0.324 \tabularnewline
148 &  0.7993 &  0.4014 &  0.2007 \tabularnewline
149 &  0.8259 &  0.3483 &  0.1741 \tabularnewline
150 &  0.8906 &  0.2187 &  0.1094 \tabularnewline
151 &  0.8889 &  0.2223 &  0.1111 \tabularnewline
152 &  0.8449 &  0.3101 &  0.1551 \tabularnewline
153 &  0.7938 &  0.4125 &  0.2062 \tabularnewline
154 &  0.7696 &  0.4608 &  0.2304 \tabularnewline
155 &  0.705 &  0.5899 &  0.295 \tabularnewline
156 &  0.7355 &  0.529 &  0.2645 \tabularnewline
157 &  0.7094 &  0.5812 &  0.2906 \tabularnewline
158 &  0.6097 &  0.7805 &  0.3903 \tabularnewline
159 &  0.5839 &  0.8323 &  0.4161 \tabularnewline
160 &  0.4636 &  0.9271 &  0.5364 \tabularnewline
161 &  0.6261 &  0.7478 &  0.3739 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300195&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]7[/C][C] 0.8022[/C][C] 0.3957[/C][C] 0.1978[/C][/ROW]
[ROW][C]8[/C][C] 0.6756[/C][C] 0.6487[/C][C] 0.3244[/C][/ROW]
[ROW][C]9[/C][C] 0.6052[/C][C] 0.7897[/C][C] 0.3948[/C][/ROW]
[ROW][C]10[/C][C] 0.638[/C][C] 0.7241[/C][C] 0.362[/C][/ROW]
[ROW][C]11[/C][C] 0.5274[/C][C] 0.9452[/C][C] 0.4726[/C][/ROW]
[ROW][C]12[/C][C] 0.4184[/C][C] 0.8369[/C][C] 0.5816[/C][/ROW]
[ROW][C]13[/C][C] 0.3382[/C][C] 0.6765[/C][C] 0.6618[/C][/ROW]
[ROW][C]14[/C][C] 0.4364[/C][C] 0.8728[/C][C] 0.5636[/C][/ROW]
[ROW][C]15[/C][C] 0.3618[/C][C] 0.7235[/C][C] 0.6382[/C][/ROW]
[ROW][C]16[/C][C] 0.2908[/C][C] 0.5817[/C][C] 0.7092[/C][/ROW]
[ROW][C]17[/C][C] 0.2202[/C][C] 0.4404[/C][C] 0.7798[/C][/ROW]
[ROW][C]18[/C][C] 0.2185[/C][C] 0.4369[/C][C] 0.7815[/C][/ROW]
[ROW][C]19[/C][C] 0.2361[/C][C] 0.4722[/C][C] 0.7639[/C][/ROW]
[ROW][C]20[/C][C] 0.1928[/C][C] 0.3857[/C][C] 0.8072[/C][/ROW]
[ROW][C]21[/C][C] 0.1531[/C][C] 0.3062[/C][C] 0.8469[/C][/ROW]
[ROW][C]22[/C][C] 0.1131[/C][C] 0.2262[/C][C] 0.8869[/C][/ROW]
[ROW][C]23[/C][C] 0.106[/C][C] 0.2121[/C][C] 0.894[/C][/ROW]
[ROW][C]24[/C][C] 0.1347[/C][C] 0.2694[/C][C] 0.8653[/C][/ROW]
[ROW][C]25[/C][C] 0.1116[/C][C] 0.2233[/C][C] 0.8884[/C][/ROW]
[ROW][C]26[/C][C] 0.08516[/C][C] 0.1703[/C][C] 0.9148[/C][/ROW]
[ROW][C]27[/C][C] 0.07151[/C][C] 0.143[/C][C] 0.9285[/C][/ROW]
[ROW][C]28[/C][C] 0.05171[/C][C] 0.1034[/C][C] 0.9483[/C][/ROW]
[ROW][C]29[/C][C] 0.04057[/C][C] 0.08115[/C][C] 0.9594[/C][/ROW]
[ROW][C]30[/C][C] 0.06276[/C][C] 0.1255[/C][C] 0.9372[/C][/ROW]
[ROW][C]31[/C][C] 0.04945[/C][C] 0.09891[/C][C] 0.9505[/C][/ROW]
[ROW][C]32[/C][C] 0.03696[/C][C] 0.07393[/C][C] 0.963[/C][/ROW]
[ROW][C]33[/C][C] 0.02889[/C][C] 0.05778[/C][C] 0.9711[/C][/ROW]
[ROW][C]34[/C][C] 0.113[/C][C] 0.2259[/C][C] 0.887[/C][/ROW]
[ROW][C]35[/C][C] 0.08718[/C][C] 0.1744[/C][C] 0.9128[/C][/ROW]
[ROW][C]36[/C][C] 0.07022[/C][C] 0.1404[/C][C] 0.9298[/C][/ROW]
[ROW][C]37[/C][C] 0.05582[/C][C] 0.1116[/C][C] 0.9442[/C][/ROW]
[ROW][C]38[/C][C] 0.04445[/C][C] 0.08889[/C][C] 0.9556[/C][/ROW]
[ROW][C]39[/C][C] 0.05118[/C][C] 0.1024[/C][C] 0.9488[/C][/ROW]
[ROW][C]40[/C][C] 0.04042[/C][C] 0.08084[/C][C] 0.9596[/C][/ROW]
[ROW][C]41[/C][C] 0.03041[/C][C] 0.06081[/C][C] 0.9696[/C][/ROW]
[ROW][C]42[/C][C] 0.08885[/C][C] 0.1777[/C][C] 0.9111[/C][/ROW]
[ROW][C]43[/C][C] 0.07779[/C][C] 0.1556[/C][C] 0.9222[/C][/ROW]
[ROW][C]44[/C][C] 0.06088[/C][C] 0.1218[/C][C] 0.9391[/C][/ROW]
[ROW][C]45[/C][C] 0.04975[/C][C] 0.0995[/C][C] 0.9503[/C][/ROW]
[ROW][C]46[/C][C] 0.0386[/C][C] 0.07721[/C][C] 0.9614[/C][/ROW]
[ROW][C]47[/C][C] 0.03247[/C][C] 0.06494[/C][C] 0.9675[/C][/ROW]
[ROW][C]48[/C][C] 0.0305[/C][C] 0.06099[/C][C] 0.9695[/C][/ROW]
[ROW][C]49[/C][C] 0.06238[/C][C] 0.1248[/C][C] 0.9376[/C][/ROW]
[ROW][C]50[/C][C] 0.05215[/C][C] 0.1043[/C][C] 0.9478[/C][/ROW]
[ROW][C]51[/C][C] 0.0617[/C][C] 0.1234[/C][C] 0.9383[/C][/ROW]
[ROW][C]52[/C][C] 0.06725[/C][C] 0.1345[/C][C] 0.9327[/C][/ROW]
[ROW][C]53[/C][C] 0.1275[/C][C] 0.255[/C][C] 0.8725[/C][/ROW]
[ROW][C]54[/C][C] 0.1095[/C][C] 0.2191[/C][C] 0.8905[/C][/ROW]
[ROW][C]55[/C][C] 0.09123[/C][C] 0.1825[/C][C] 0.9088[/C][/ROW]
[ROW][C]56[/C][C] 0.08041[/C][C] 0.1608[/C][C] 0.9196[/C][/ROW]
[ROW][C]57[/C][C] 0.06487[/C][C] 0.1297[/C][C] 0.9351[/C][/ROW]
[ROW][C]58[/C][C] 0.05435[/C][C] 0.1087[/C][C] 0.9456[/C][/ROW]
[ROW][C]59[/C][C] 0.04404[/C][C] 0.08808[/C][C] 0.956[/C][/ROW]
[ROW][C]60[/C][C] 0.03457[/C][C] 0.06915[/C][C] 0.9654[/C][/ROW]
[ROW][C]61[/C][C] 0.02915[/C][C] 0.05831[/C][C] 0.9708[/C][/ROW]
[ROW][C]62[/C][C] 0.02599[/C][C] 0.05198[/C][C] 0.974[/C][/ROW]
[ROW][C]63[/C][C] 0.01971[/C][C] 0.03942[/C][C] 0.9803[/C][/ROW]
[ROW][C]64[/C][C] 0.01491[/C][C] 0.02982[/C][C] 0.9851[/C][/ROW]
[ROW][C]65[/C][C] 0.07614[/C][C] 0.1523[/C][C] 0.9239[/C][/ROW]
[ROW][C]66[/C][C] 0.07481[/C][C] 0.1496[/C][C] 0.9252[/C][/ROW]
[ROW][C]67[/C][C] 0.0597[/C][C] 0.1194[/C][C] 0.9403[/C][/ROW]
[ROW][C]68[/C][C] 0.06169[/C][C] 0.1234[/C][C] 0.9383[/C][/ROW]
[ROW][C]69[/C][C] 0.04887[/C][C] 0.09773[/C][C] 0.9511[/C][/ROW]
[ROW][C]70[/C][C] 0.03898[/C][C] 0.07796[/C][C] 0.961[/C][/ROW]
[ROW][C]71[/C][C] 0.0302[/C][C] 0.06041[/C][C] 0.9698[/C][/ROW]
[ROW][C]72[/C][C] 0.0313[/C][C] 0.06259[/C][C] 0.9687[/C][/ROW]
[ROW][C]73[/C][C] 0.03864[/C][C] 0.07728[/C][C] 0.9614[/C][/ROW]
[ROW][C]74[/C][C] 0.04639[/C][C] 0.09278[/C][C] 0.9536[/C][/ROW]
[ROW][C]75[/C][C] 0.03782[/C][C] 0.07564[/C][C] 0.9622[/C][/ROW]
[ROW][C]76[/C][C] 0.02979[/C][C] 0.05958[/C][C] 0.9702[/C][/ROW]
[ROW][C]77[/C][C] 0.02385[/C][C] 0.0477[/C][C] 0.9762[/C][/ROW]
[ROW][C]78[/C][C] 0.04188[/C][C] 0.08375[/C][C] 0.9581[/C][/ROW]
[ROW][C]79[/C][C] 0.03306[/C][C] 0.06613[/C][C] 0.9669[/C][/ROW]
[ROW][C]80[/C][C] 0.02789[/C][C] 0.05577[/C][C] 0.9721[/C][/ROW]
[ROW][C]81[/C][C] 0.05842[/C][C] 0.1168[/C][C] 0.9416[/C][/ROW]
[ROW][C]82[/C][C] 0.04773[/C][C] 0.09545[/C][C] 0.9523[/C][/ROW]
[ROW][C]83[/C][C] 0.03882[/C][C] 0.07764[/C][C] 0.9612[/C][/ROW]
[ROW][C]84[/C][C] 0.04029[/C][C] 0.08057[/C][C] 0.9597[/C][/ROW]
[ROW][C]85[/C][C] 0.1617[/C][C] 0.3235[/C][C] 0.8383[/C][/ROW]
[ROW][C]86[/C][C] 0.1595[/C][C] 0.319[/C][C] 0.8405[/C][/ROW]
[ROW][C]87[/C][C] 0.1704[/C][C] 0.3407[/C][C] 0.8296[/C][/ROW]
[ROW][C]88[/C][C] 0.1495[/C][C] 0.2989[/C][C] 0.8505[/C][/ROW]
[ROW][C]89[/C][C] 0.1264[/C][C] 0.2529[/C][C] 0.8736[/C][/ROW]
[ROW][C]90[/C][C] 0.2416[/C][C] 0.4832[/C][C] 0.7584[/C][/ROW]
[ROW][C]91[/C][C] 0.2123[/C][C] 0.4245[/C][C] 0.7877[/C][/ROW]
[ROW][C]92[/C][C] 0.2124[/C][C] 0.4249[/C][C] 0.7876[/C][/ROW]
[ROW][C]93[/C][C] 0.1813[/C][C] 0.3626[/C][C] 0.8187[/C][/ROW]
[ROW][C]94[/C][C] 0.18[/C][C] 0.3601[/C][C] 0.8199[/C][/ROW]
[ROW][C]95[/C][C] 0.1537[/C][C] 0.3075[/C][C] 0.8463[/C][/ROW]
[ROW][C]96[/C][C] 0.13[/C][C] 0.2601[/C][C] 0.87[/C][/ROW]
[ROW][C]97[/C][C] 0.2483[/C][C] 0.4965[/C][C] 0.7517[/C][/ROW]
[ROW][C]98[/C][C] 0.2284[/C][C] 0.4568[/C][C] 0.7716[/C][/ROW]
[ROW][C]99[/C][C] 0.2021[/C][C] 0.4042[/C][C] 0.7979[/C][/ROW]
[ROW][C]100[/C][C] 0.1761[/C][C] 0.3522[/C][C] 0.8239[/C][/ROW]
[ROW][C]101[/C][C] 0.1959[/C][C] 0.3919[/C][C] 0.8041[/C][/ROW]
[ROW][C]102[/C][C] 0.1687[/C][C] 0.3373[/C][C] 0.8313[/C][/ROW]
[ROW][C]103[/C][C] 0.1466[/C][C] 0.2932[/C][C] 0.8534[/C][/ROW]
[ROW][C]104[/C][C] 0.1248[/C][C] 0.2495[/C][C] 0.8752[/C][/ROW]
[ROW][C]105[/C][C] 0.1265[/C][C] 0.2531[/C][C] 0.8735[/C][/ROW]
[ROW][C]106[/C][C] 0.1176[/C][C] 0.2352[/C][C] 0.8824[/C][/ROW]
[ROW][C]107[/C][C] 0.1039[/C][C] 0.2078[/C][C] 0.8961[/C][/ROW]
[ROW][C]108[/C][C] 0.08774[/C][C] 0.1755[/C][C] 0.9123[/C][/ROW]
[ROW][C]109[/C][C] 0.07682[/C][C] 0.1536[/C][C] 0.9232[/C][/ROW]
[ROW][C]110[/C][C] 0.06847[/C][C] 0.1369[/C][C] 0.9315[/C][/ROW]
[ROW][C]111[/C][C] 0.07691[/C][C] 0.1538[/C][C] 0.9231[/C][/ROW]
[ROW][C]112[/C][C] 0.06136[/C][C] 0.1227[/C][C] 0.9386[/C][/ROW]
[ROW][C]113[/C][C] 0.1633[/C][C] 0.3266[/C][C] 0.8367[/C][/ROW]
[ROW][C]114[/C][C] 0.2641[/C][C] 0.5282[/C][C] 0.7359[/C][/ROW]
[ROW][C]115[/C][C] 0.2427[/C][C] 0.4855[/C][C] 0.7573[/C][/ROW]
[ROW][C]116[/C][C] 0.2116[/C][C] 0.4231[/C][C] 0.7884[/C][/ROW]
[ROW][C]117[/C][C] 0.1847[/C][C] 0.3693[/C][C] 0.8153[/C][/ROW]
[ROW][C]118[/C][C] 0.1631[/C][C] 0.3261[/C][C] 0.8369[/C][/ROW]
[ROW][C]119[/C][C] 0.1384[/C][C] 0.2768[/C][C] 0.8616[/C][/ROW]
[ROW][C]120[/C][C] 0.1173[/C][C] 0.2345[/C][C] 0.8827[/C][/ROW]
[ROW][C]121[/C][C] 0.1021[/C][C] 0.2043[/C][C] 0.8979[/C][/ROW]
[ROW][C]122[/C][C] 0.08632[/C][C] 0.1726[/C][C] 0.9137[/C][/ROW]
[ROW][C]123[/C][C] 0.07041[/C][C] 0.1408[/C][C] 0.9296[/C][/ROW]
[ROW][C]124[/C][C] 0.09232[/C][C] 0.1846[/C][C] 0.9077[/C][/ROW]
[ROW][C]125[/C][C] 0.07356[/C][C] 0.1471[/C][C] 0.9264[/C][/ROW]
[ROW][C]126[/C][C] 0.0592[/C][C] 0.1184[/C][C] 0.9408[/C][/ROW]
[ROW][C]127[/C][C] 0.04604[/C][C] 0.09207[/C][C] 0.954[/C][/ROW]
[ROW][C]128[/C][C] 0.04083[/C][C] 0.08166[/C][C] 0.9592[/C][/ROW]
[ROW][C]129[/C][C] 0.03171[/C][C] 0.06341[/C][C] 0.9683[/C][/ROW]
[ROW][C]130[/C][C] 0.057[/C][C] 0.114[/C][C] 0.943[/C][/ROW]
[ROW][C]131[/C][C] 0.05193[/C][C] 0.1039[/C][C] 0.9481[/C][/ROW]
[ROW][C]132[/C][C] 0.108[/C][C] 0.2161[/C][C] 0.892[/C][/ROW]
[ROW][C]133[/C][C] 0.1001[/C][C] 0.2002[/C][C] 0.8999[/C][/ROW]
[ROW][C]134[/C][C] 0.2467[/C][C] 0.4935[/C][C] 0.7533[/C][/ROW]
[ROW][C]135[/C][C] 0.2064[/C][C] 0.4129[/C][C] 0.7936[/C][/ROW]
[ROW][C]136[/C][C] 0.3991[/C][C] 0.7981[/C][C] 0.6009[/C][/ROW]
[ROW][C]137[/C][C] 0.4356[/C][C] 0.8712[/C][C] 0.5644[/C][/ROW]
[ROW][C]138[/C][C] 0.3822[/C][C] 0.7643[/C][C] 0.6178[/C][/ROW]
[ROW][C]139[/C][C] 0.5824[/C][C] 0.8353[/C][C] 0.4177[/C][/ROW]
[ROW][C]140[/C][C] 0.5533[/C][C] 0.8934[/C][C] 0.4467[/C][/ROW]
[ROW][C]141[/C][C] 0.5574[/C][C] 0.8852[/C][C] 0.4426[/C][/ROW]
[ROW][C]142[/C][C] 0.5117[/C][C] 0.9767[/C][C] 0.4883[/C][/ROW]
[ROW][C]143[/C][C] 0.5248[/C][C] 0.9505[/C][C] 0.4752[/C][/ROW]
[ROW][C]144[/C][C] 0.5197[/C][C] 0.9607[/C][C] 0.4803[/C][/ROW]
[ROW][C]145[/C][C] 0.5574[/C][C] 0.8851[/C][C] 0.4426[/C][/ROW]
[ROW][C]146[/C][C] 0.4869[/C][C] 0.9738[/C][C] 0.5131[/C][/ROW]
[ROW][C]147[/C][C] 0.676[/C][C] 0.6479[/C][C] 0.324[/C][/ROW]
[ROW][C]148[/C][C] 0.7993[/C][C] 0.4014[/C][C] 0.2007[/C][/ROW]
[ROW][C]149[/C][C] 0.8259[/C][C] 0.3483[/C][C] 0.1741[/C][/ROW]
[ROW][C]150[/C][C] 0.8906[/C][C] 0.2187[/C][C] 0.1094[/C][/ROW]
[ROW][C]151[/C][C] 0.8889[/C][C] 0.2223[/C][C] 0.1111[/C][/ROW]
[ROW][C]152[/C][C] 0.8449[/C][C] 0.3101[/C][C] 0.1551[/C][/ROW]
[ROW][C]153[/C][C] 0.7938[/C][C] 0.4125[/C][C] 0.2062[/C][/ROW]
[ROW][C]154[/C][C] 0.7696[/C][C] 0.4608[/C][C] 0.2304[/C][/ROW]
[ROW][C]155[/C][C] 0.705[/C][C] 0.5899[/C][C] 0.295[/C][/ROW]
[ROW][C]156[/C][C] 0.7355[/C][C] 0.529[/C][C] 0.2645[/C][/ROW]
[ROW][C]157[/C][C] 0.7094[/C][C] 0.5812[/C][C] 0.2906[/C][/ROW]
[ROW][C]158[/C][C] 0.6097[/C][C] 0.7805[/C][C] 0.3903[/C][/ROW]
[ROW][C]159[/C][C] 0.5839[/C][C] 0.8323[/C][C] 0.4161[/C][/ROW]
[ROW][C]160[/C][C] 0.4636[/C][C] 0.9271[/C][C] 0.5364[/C][/ROW]
[ROW][C]161[/C][C] 0.6261[/C][C] 0.7478[/C][C] 0.3739[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300195&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300195&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
7 0.8022 0.3957 0.1978
8 0.6756 0.6487 0.3244
9 0.6052 0.7897 0.3948
10 0.638 0.7241 0.362
11 0.5274 0.9452 0.4726
12 0.4184 0.8369 0.5816
13 0.3382 0.6765 0.6618
14 0.4364 0.8728 0.5636
15 0.3618 0.7235 0.6382
16 0.2908 0.5817 0.7092
17 0.2202 0.4404 0.7798
18 0.2185 0.4369 0.7815
19 0.2361 0.4722 0.7639
20 0.1928 0.3857 0.8072
21 0.1531 0.3062 0.8469
22 0.1131 0.2262 0.8869
23 0.106 0.2121 0.894
24 0.1347 0.2694 0.8653
25 0.1116 0.2233 0.8884
26 0.08516 0.1703 0.9148
27 0.07151 0.143 0.9285
28 0.05171 0.1034 0.9483
29 0.04057 0.08115 0.9594
30 0.06276 0.1255 0.9372
31 0.04945 0.09891 0.9505
32 0.03696 0.07393 0.963
33 0.02889 0.05778 0.9711
34 0.113 0.2259 0.887
35 0.08718 0.1744 0.9128
36 0.07022 0.1404 0.9298
37 0.05582 0.1116 0.9442
38 0.04445 0.08889 0.9556
39 0.05118 0.1024 0.9488
40 0.04042 0.08084 0.9596
41 0.03041 0.06081 0.9696
42 0.08885 0.1777 0.9111
43 0.07779 0.1556 0.9222
44 0.06088 0.1218 0.9391
45 0.04975 0.0995 0.9503
46 0.0386 0.07721 0.9614
47 0.03247 0.06494 0.9675
48 0.0305 0.06099 0.9695
49 0.06238 0.1248 0.9376
50 0.05215 0.1043 0.9478
51 0.0617 0.1234 0.9383
52 0.06725 0.1345 0.9327
53 0.1275 0.255 0.8725
54 0.1095 0.2191 0.8905
55 0.09123 0.1825 0.9088
56 0.08041 0.1608 0.9196
57 0.06487 0.1297 0.9351
58 0.05435 0.1087 0.9456
59 0.04404 0.08808 0.956
60 0.03457 0.06915 0.9654
61 0.02915 0.05831 0.9708
62 0.02599 0.05198 0.974
63 0.01971 0.03942 0.9803
64 0.01491 0.02982 0.9851
65 0.07614 0.1523 0.9239
66 0.07481 0.1496 0.9252
67 0.0597 0.1194 0.9403
68 0.06169 0.1234 0.9383
69 0.04887 0.09773 0.9511
70 0.03898 0.07796 0.961
71 0.0302 0.06041 0.9698
72 0.0313 0.06259 0.9687
73 0.03864 0.07728 0.9614
74 0.04639 0.09278 0.9536
75 0.03782 0.07564 0.9622
76 0.02979 0.05958 0.9702
77 0.02385 0.0477 0.9762
78 0.04188 0.08375 0.9581
79 0.03306 0.06613 0.9669
80 0.02789 0.05577 0.9721
81 0.05842 0.1168 0.9416
82 0.04773 0.09545 0.9523
83 0.03882 0.07764 0.9612
84 0.04029 0.08057 0.9597
85 0.1617 0.3235 0.8383
86 0.1595 0.319 0.8405
87 0.1704 0.3407 0.8296
88 0.1495 0.2989 0.8505
89 0.1264 0.2529 0.8736
90 0.2416 0.4832 0.7584
91 0.2123 0.4245 0.7877
92 0.2124 0.4249 0.7876
93 0.1813 0.3626 0.8187
94 0.18 0.3601 0.8199
95 0.1537 0.3075 0.8463
96 0.13 0.2601 0.87
97 0.2483 0.4965 0.7517
98 0.2284 0.4568 0.7716
99 0.2021 0.4042 0.7979
100 0.1761 0.3522 0.8239
101 0.1959 0.3919 0.8041
102 0.1687 0.3373 0.8313
103 0.1466 0.2932 0.8534
104 0.1248 0.2495 0.8752
105 0.1265 0.2531 0.8735
106 0.1176 0.2352 0.8824
107 0.1039 0.2078 0.8961
108 0.08774 0.1755 0.9123
109 0.07682 0.1536 0.9232
110 0.06847 0.1369 0.9315
111 0.07691 0.1538 0.9231
112 0.06136 0.1227 0.9386
113 0.1633 0.3266 0.8367
114 0.2641 0.5282 0.7359
115 0.2427 0.4855 0.7573
116 0.2116 0.4231 0.7884
117 0.1847 0.3693 0.8153
118 0.1631 0.3261 0.8369
119 0.1384 0.2768 0.8616
120 0.1173 0.2345 0.8827
121 0.1021 0.2043 0.8979
122 0.08632 0.1726 0.9137
123 0.07041 0.1408 0.9296
124 0.09232 0.1846 0.9077
125 0.07356 0.1471 0.9264
126 0.0592 0.1184 0.9408
127 0.04604 0.09207 0.954
128 0.04083 0.08166 0.9592
129 0.03171 0.06341 0.9683
130 0.057 0.114 0.943
131 0.05193 0.1039 0.9481
132 0.108 0.2161 0.892
133 0.1001 0.2002 0.8999
134 0.2467 0.4935 0.7533
135 0.2064 0.4129 0.7936
136 0.3991 0.7981 0.6009
137 0.4356 0.8712 0.5644
138 0.3822 0.7643 0.6178
139 0.5824 0.8353 0.4177
140 0.5533 0.8934 0.4467
141 0.5574 0.8852 0.4426
142 0.5117 0.9767 0.4883
143 0.5248 0.9505 0.4752
144 0.5197 0.9607 0.4803
145 0.5574 0.8851 0.4426
146 0.4869 0.9738 0.5131
147 0.676 0.6479 0.324
148 0.7993 0.4014 0.2007
149 0.8259 0.3483 0.1741
150 0.8906 0.2187 0.1094
151 0.8889 0.2223 0.1111
152 0.8449 0.3101 0.1551
153 0.7938 0.4125 0.2062
154 0.7696 0.4608 0.2304
155 0.705 0.5899 0.295
156 0.7355 0.529 0.2645
157 0.7094 0.5812 0.2906
158 0.6097 0.7805 0.3903
159 0.5839 0.8323 0.4161
160 0.4636 0.9271 0.5364
161 0.6261 0.7478 0.3739







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level0 0OK
5% type I error level30.0193548OK
10% type I error level350.225806NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 0 &  0 & OK \tabularnewline
5% type I error level & 3 & 0.0193548 & OK \tabularnewline
10% type I error level & 35 & 0.225806 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300195&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]0[/C][C] 0[/C][C]OK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]3[/C][C]0.0193548[/C][C]OK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]35[/C][C]0.225806[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300195&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300195&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level0 0OK
5% type I error level30.0193548OK
10% type I error level350.225806NOK







Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 1.1591, df1 = 2, df2 = 162, p-value = 0.3164
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.2486, df1 = 6, df2 = 158, p-value = 0.2845
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.78168, df1 = 2, df2 = 162, p-value = 0.4594

\begin{tabular}{lllllllll}
\hline
Ramsey RESET F-Test for powers (2 and 3) of fitted values \tabularnewline
> reset_test_fitted
	RESET test
data:  mylm
RESET = 1.1591, df1 = 2, df2 = 162, p-value = 0.3164
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of regressors \tabularnewline
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.2486, df1 = 6, df2 = 158, p-value = 0.2845
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of principal components \tabularnewline
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.78168, df1 = 2, df2 = 162, p-value = 0.4594
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=300195&T=7

[TABLE]
[ROW][C]Ramsey RESET F-Test for powers (2 and 3) of fitted values[/C][/ROW]
[ROW][C]
> reset_test_fitted
	RESET test
data:  mylm
RESET = 1.1591, df1 = 2, df2 = 162, p-value = 0.3164
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of regressors[/C][/ROW] [ROW][C]
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.2486, df1 = 6, df2 = 158, p-value = 0.2845
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of principal components[/C][/ROW] [ROW][C]
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.78168, df1 = 2, df2 = 162, p-value = 0.4594
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=300195&T=7

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300195&T=7

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 1.1591, df1 = 2, df2 = 162, p-value = 0.3164
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.2486, df1 = 6, df2 = 158, p-value = 0.2845
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.78168, df1 = 2, df2 = 162, p-value = 0.4594







Variance Inflation Factors (Multicollinearity)
> vif
     EP1      EP2      EP3 
1.981945 1.924055 1.046453 

\begin{tabular}{lllllllll}
\hline
Variance Inflation Factors (Multicollinearity) \tabularnewline
> vif
     EP1      EP2      EP3 
1.981945 1.924055 1.046453 
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=300195&T=8

[TABLE]
[ROW][C]Variance Inflation Factors (Multicollinearity)[/C][/ROW]
[ROW][C]
> vif
     EP1      EP2      EP3 
1.981945 1.924055 1.046453 
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=300195&T=8

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300195&T=8

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variance Inflation Factors (Multicollinearity)
> vif
     EP1      EP2      EP3 
1.981945 1.924055 1.046453 



Parameters (Session):
par1 = 4 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ;
Parameters (R input):
par1 = 4 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ;
R code (references can be found in the software module):
par5 <- '0'
par4 <- '0'
par3 <- 'No Linear Trend'
par2 <- 'Do not include Seasonal Dummies'
par1 <- '1'
library(lattice)
library(lmtest)
library(car)
library(MASS)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
mywarning <- ''
par1 <- as.numeric(par1)
if(is.na(par1)) {
par1 <- 1
mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.'
}
if (par4=='') par4 <- 0
par4 <- as.numeric(par4)
if (par5=='') par5 <- 0
par5 <- as.numeric(par5)
x <- na.omit(t(y))
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'Seasonal Differences (s=12)'){
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'First and Seasonal Differences (s=12)'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if(par4 > 0) {
x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep='')))
for (i in 1:(n-par4)) {
for (j in 1:par4) {
x2[i,j] <- x[i+par4-j,par1]
}
}
x <- cbind(x[(par4+1):n,], x2)
n <- n - par4
}
if(par5 > 0) {
x2 <- array(0, dim=c(n-par5*12,par5), dimnames=list(1:(n-par5*12), paste(colnames(x)[par1],'(t-',1:par5,'s)',sep='')))
for (i in 1:(n-par5*12)) {
for (j in 1:par5) {
x2[i,j] <- x[i+par5*12-j*12,par1]
}
}
x <- cbind(x[(par5*12+1):n,], x2)
n <- n - par5*12
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
(k <- length(x[n,]))
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
print(x)
(k <- length(x[n,]))
head(x)
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
sresid <- studres(mylm)
hist(sresid, freq=FALSE, main='Distribution of Studentized Residuals')
xfit<-seq(min(sresid),max(sresid),length=40)
yfit<-dnorm(xfit)
lines(xfit, yfit)
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqPlot(mylm, main='QQ Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
print(z)
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, mywarning)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Multiple Linear Regression - Ordinary Least Squares', 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
myr <- as.numeric(mysum$resid)
myr
if(n < 200) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' '))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of fitted values',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_fitted <- resettest(mylm,power=2:3,type='fitted')
a<-table.element(a,paste('
',RC.texteval('reset_test_fitted'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of regressors',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_regressors <- resettest(mylm,power=2:3,type='regressor')
a<-table.element(a,paste('
',RC.texteval('reset_test_regressors'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of principal components',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_principal_components <- resettest(mylm,power=2:3,type='princomp')
a<-table.element(a,paste('
',RC.texteval('reset_test_principal_components'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable8.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variance Inflation Factors (Multicollinearity)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
vif <- vif(mylm)
a<-table.element(a,paste('
',RC.texteval('vif'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable9.tab')